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ABSTRACT

We present a unified model for molecular core formation and evolution, based on numerical simulations
of converging, supersonic flows. Our model applies to star formation in giant molecular clouds dominated
by large-scale turbulence, and contains four main stages: core building, core collapse, envelope infall, and
late accretion. During the building stage, cores form out of dense, post-shock gas, and become increasingly
centrally stratified as the mass grows over time. Even for highly supersonic converging flows, the dense
gas is subsonic, consistent with observations showing quiescent cores. When the shock radius defining the
core boundary exceeds R ≈ 4a(4πGρmean)−1/2, where a is the isothermal sound speed, a wave of collapse
propagates from the edge to the center. During the building and collapse stages, density profiles can be fitted
by Bonnor–Ebert profiles with temperature 1.2–2.9 times the true value, similar to many observed cores. As
found previously for initially static equilibria, outside-in collapse leads to a Larson–Penston density profile
ρ ≈ 8.86a2/(4πGr2). The third stage, consisting of an inside-out wave of gravitational rarefaction leading to
ρ ∝ r−3/2, v ∝ r−1/2, is also similar to that for initially static spheres, as originally described by Shu. We
find that the collapse and infall stages have comparable duration, ∼tff , consistent with estimates for observed
prestellar and protostellar (Class 0/I) cores. Core building takes longer, but does not produce high-contrast objects
until shortly before collapse. The time to reach core collapse, and the core mass at collapse, decrease with
increasing inflow Mach number. For all cases, the accretion rate is � a3/G early on but sharply drops off;
the final system mass depends on the duration of late-stage accretion, set by large-scale conditions in a cloud.
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1. INTRODUCTION

Dense molecular cores are the immediate precursors of new
stars on small scales, and understanding how they grow and
evolve is fundamental to the theory of star formation (Shu et al.
1987; McKee & Ostriker 2007). Because many elements are
involved in core formation, complete theoretical models have
not yet been developed, and it is not yet clear whether a single
dynamical effect dominates the overall process, or whether
several contributing effects have comparable importance. In one
limit that has been studied in some detail, ambient velocities
are negligible, and self-gravitating cores form by the slow
diffusion of partially ionized gas through strongly supporting
magnetic fields until a supercritical configuration is reached
(e.g., Mouschovias & Ciolek 1999). In another limit, which has
been considered more recently—but in much less detail at core
scales, magnetic support is negligible, and supersonic turbulence
creates and destroys condensations, with some fraction of this
gas sufficiently dense and long-lived that it can undergo collapse
(e.g., Mac Low & Klessen 2004). As observed clouds are
both magnetized and strongly turbulent, the eventual theory
for core formation that is developed must account for both
processes; pioneering work toward this goal has begun (e.g.,
Kudoh & Basu 2008; Nakamura & Li 2008). Because of
the technical challenges involved in building comprehensive
models and the need to elucidate the contributing physics, it is
important to develop simplified models in greater detail. In this
contribution, we consider aspects of core growth and evolution
in the turbulence-dominated, unmagnetized limit.

Increasingly detailed observations in recent years provide
constraints on theoretical models (see, e.g., the reviews of Di
Francesco et al. 2007; Ward-Thompson et al. 2007; André
et al. 2008). One class of observations focuses on the density
distribution within cores. One-dimensional (angle-averaged)

density profiles (e.g., Ward-Thompson et al. 1994; Shirley et al.
2000; Bacmann et al. 2000; Evans et al. 2001; Alves et al.
2001; Kirk et al. 2005; Kandori et al. 2005) generally show
a uniform-density center surrounded by a power-law envelope
extending to an outer radius ∼0.1 pc, which is consistent with
the density profile of a static, isothermal, unmagnetized Bonnor–
Ebert (hereafter BE) sphere (Bonnor 1956; Ebert 1955). The
interpretation in terms of static equilibrium is problematic,
however, insofar as many cases show center-to-edge density
contrasts exceeding the maximum ratio (ρc/ρedge = 14.0;
here ρc is the central density) that would be stable against
collapse, and would also require central temperatures greater
than observed values in order to provide support for the total
masses inferred from the integrated continuum emission. In
addition, cores are generally not isolated; rather than being
surrounded by a high-temperature, low-density medium with
pressure matching the core’s outer edge, they are surrounded
by moderate-density cold molecular gas representing clumps
and filaments within larger clouds (Bergin & Tafalla 2007). The
interpretation of observed density profiles as static solutions is
also not unique, in that dynamically collapsing cores initiated
from near-critical equilibrium show the same density profiles as
(supercritical) static solutions (see, e.g., Myers 2005; Kandori
et al. 2005, and below). Concentrations formed within turbulent
flows can also have density profiles resembling BE spheres
(Ballesteros-Paredes et al. 2003).

Velocity information can distinguish between static, oscil-
lating (Keto et al. 2006; Broderick et al. 2007), and collapsing
cores, and can potentially also help discriminate how these cores
formed out of more diffuse gas. Dense, low-mass cores gener-
ally have subsonic internal velocity dispersions, whether for
isolated cores or for cores found in clusters (e.g., Myers 1983;
Goodman et al. 1998; Caselli et al. 2002; Kirk et al. 2007; André
et al. 2007; Lada et al. 2008). In cores containing protostars,
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signatures of infall on small scales (∼0.01–0.1 pc), believed
to be indicative of gravitational collapse, have been observed
via the asymmetry of molecular lines that trace high-density
gas (e.g., Zhou et al. 1993; Mardones et al. 1997; Gregersen
et al. 1997; Di Francesco et al. 2001). For prestellar cores, in-
ward motions are often evident over both small (�0.1 pc) and
larger scales (∼0.1–0.4 pc), sometimes encompassing a whole
star-forming complex (Lee et al. 1999, 2001; Walsh et al. 2006;
see also Peretto et al. 2006). Small-scale inward motions within
cores are subsonic (Lee et al. 2001), while larger-scale motions
can be transonic or supersonic (Walsh et al. 2006 infer higher
velocities in lower-density gas), and may be indicative of con-
verging larger-scale flows in which dense gas builds up in a
shock-bounded stagnation region.

The relative durations of prestellar and protostellar (i.e.,
containing an accreting embedded Class 0 or I object) stages
of core evolution are determined by comparing the relative
numbers of the two classes of sources in a given cloud.
Absolute core lifetimes are further obtained by comparison to
the number of T Tauri stars with measured ages. Several studies
using this statistical approach in different clouds have reached
similar conclusions: the durations of the prestellar and accreting
stages of cores are comparable (Beichman et al. 1986; Lee &
Myers 1999; Jessop & Ward-Thompson 2000; Kirk et al. 2005;
Jørgensen et al. 2007; Hatchell et al. 2007; Enoch et al. 2008;
Evans et al. 2009). Typical prestellar core lifetimes are estimated
at ∼2–5 × 105 yr, amounting to a few times the free-fall time

tff ≡
(

3π

32Gρ̄

)1/2

= 1.37 × 105 yr

(
n̄H

105 cm−3

)−1/2

(1)

measured at the mean core density ρ̄ = 1.4mH n̄H . With life-
times considerably below the ambipolar diffusion time for
strong magnetic fields tAD ≈ 10tff (e.g., Mouschovias & Ciolek
1999), this suggests that observed cores are gravitationally su-
percritical with respect to the magnetic field. This conclusion
is also supported by magnetic field Zeeman observations, indi-
cating that cores have mean mass-to-magnetic flux ratios two
times the critical value (Troland & Crutcher 2008). Since cores
are only identified in millimeter and submillimeter continuum
when the nH exceeds a few ×104 cm−3, in principle it is possible
that an extended period of slow diffusion at lower density pre-
cedes the observed core stage. Turbulence accelerates ambipolar
diffusion, however (e.g., Zweibel 2002; Fatuzzo & Adams 2002;
Li & Nakamura 2004; Heitsch et al. 2004), so it is also possible
that the flux loss needed to reach a magnetically supercritical
state may occur more dynamically, at densities below 104 cm−3.

Theoretical modeling of core evolution has a long history.
Much work has focused on the evolution of unstable thermally
supported equilibria into collapse (formally resulting in infi-
nite density at the origin), followed by accretion of the enve-
lope. Self-similar solutions for collapse and/or accretion stages
of isothermal spheres were found by Larson (1969), Penston
(1969), Shu (1977), and Hunter (1977); these were later gen-
eralized by Whitworth & Summers (1985). Larson (1969) and
Penston (1969) (hereafter LP) independently found self-similar
solutions which describe the density and velocity prior to the
instant of protostar formation (defined as the instant at which the
central density becomes infinite). In the LP solution, the radial
velocity approaches a constant value −3.28a and the density
approaches

ρ = 8.86
a2

4πGr2
(2)

at the instant of central protostar formation, with mass inflow
rate Ṁ = 29.1 a3/G. Here, a is the isothermal sound speed, and
the dimensional factor in the accretion rate is given by

a3

G
= 1.6 × 10−6 M� yr−1

(
T

10 K

)3/2

. (3)

The analysis of Shu (1977) showed that for an initial profile
that is a static singular isothermal sphere, ρ = 2a2/(4πGr2),
evolution yields an “inside-out” infall solution in which a wave
of rarefaction propagates outward at the sound speed. Inside of
the expansion wave, the mass inflow rate is Ṁ = 0.975 a3/G
independent of r, and gas accelerates to free fall (v ∝ r−1/2, ρ ∝
r−3/2). Hunter (1977) connected and extended the investigations
of LP (which address evolution prior to protostar formation)
with that of Shu (which focuses on the accretion stage). He
showed that self-similar solutions before and after the point of
singularity formation (i.e., t = 0) can be smoothly matched.
This allowed the LP solution to be extended into the accretion
phase with similar free-fall behavior near the origin; Hunter
(1977) also found a sequence of self-similar solutions valid for
all time that approach the Shu (1977) expansion wave solution.

Many numerical simulations of isothermal collapse have
shown that the density in the core approaches a ρ ∝ r−2 profile
at the point of protostar formation, regardless of how collapse is
initiated (Bodenheimer & Sweigart 1968; Larson 1969; Penston
1969; Hunter 1977; Foster & Chevalier 1993; Ogino et al.
1999; Hennebelle et al. 2003; Motoyama & Yoshida 2003;
Vorobyov & Basu 2005; Gómez et al. 2007). These simulations
include initiation from a static configuration that is unstable, and
initiation from static, stable configurations that are subjected to
transient compression, either from enhanced external pressure
or a converging velocity field. Another feature common to the
results from simulations is that the collapse generally begins on
the outside, with the infalling region propagating inward as the
central density increases. At the time of singularity formation,
the central velocity has been found to be comparable to the value
−3.3a derived by LP, with the density normalization also similar
to the LP result (Foster & Chevalier 1993; Ogino et al. 1999).
Following the instant of protostar formation, the evolution of
the mass accretion rate over time depends strongly on the initial
conditions, however.

Simulations with triggered core collapse (Hennebelle et al.
2003; Motoyama & Yoshida 2003) are motivated by the fact
that star-forming regions are highly dynamic, such that external
compression may significantly affect core internal evolution,
and enhance the accretion rate by raising the central density.
Triggering events may be associated with high-mass star forma-
tion, but even without these highly energetic events, the large-
scale turbulence that pervades giant molecular clouds (GMCs)
can compress initially quiescent cores. Taking this idea one step
further, it is interesting to consider not just the core-collapse pro-
cess, but also the core formation process, in a strongly turbulent
medium. Gómez et al. (2007) conducted one such study, con-
sidering how an impulsive converging velocity field can create
gravitationally bound, centrally concentrated cores. Core forma-
tion induced by supersonic turbulence has also been studied in a
number of numerical simulations that focus on the large scales,
with much of the emphasis on determining the distribution of
core masses for comparison to observed core mass functions
and the stellar initial mass function (IMF; see, e.g., the review
of McKee & Ostriker 2007). However, these studies have not
had sufficient resolution to investigate the internal properties of
the cores that form. If the mass of a core is built up over time
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as the post-shock product of colliding supersonic flows, what
is the detailed evolution leading up to collapse, and during the
accretion phase?

In this paper, we initiate a study of dynamically induced
core formation and collapse by considering perhaps the simplest
possible situation: a supersonic, converging, spherical flow. Our
initial conditions are a uniform low-density medium with no
stratification. A dense core forms inside a spherical shock,
and over time becomes stratified as its mass grows and it
becomes self-gravitating. When the stratification becomes too
great, collapse and subsequent accretion occurs in a similar
manner to the case of an initially unstable static equilibrium.
We consider cases of varying inflow Mach number, and with the
large-scale inflow either steady over all time, or shut off after an
interval.

The condition of spherical inflow that we adopt for this first
study is, of course, likely to be rare in real clouds. As the main
purpose of this study is to take the first step toward unified
models of core formation and collapse in dynamic environments,
however, we consider one-dimensional solutions the natural
place to start. We shall show that many features consistent
with observed cores are evident even in these idealized models,
suggesting that they are generic to dynamic core formation
scenarios. The present set of simulations, in addition to enabling
identification of characteristic evolutionary stages, also serve as
a useful reference point for more realistic but more complex
simulations. More typical than a converging spherical flow
would be a converging planar flow, which yields a dense
post-shock stagnation layer in which self-gravitating cores can
form. Numerical studies that we have begun for supersonic
planar inflows show results for core building and collapse that
are qualitatively similar to the present results for supersonic
spherical inflows.

The plan of this paper is as follows: in Section 2, we present
the governing equations and describe our problem specification
and numerical method. Section 3 briefly describes results of
collapse initiated from static configurations, demonstrating
that we reproduce prior results, and providing a baseline for
comparison to our models of dynamic formation and collapse.
Section 4 presents numerical results for our converging-flow
simulations, covering the stage of core formation and evolution
up to the point of singularity formation in Section 4.1 and the
subsequent stages in Section 4.2. We introduce a breakdown into
new physically defined stages in Section 4.3, and quantify the
evolution of accretion rates in Section 4.4. Section 5 summarizes
our new results and discusses our findings in the context of
previous theory and observations.

2. GOVERNING EQUATIONS AND NUMERICAL
METHODS

The equations of motion for a spherically symmetric flow
take the form:

∂ρ

∂t
+

1

r2

∂(r2ρv)

∂r
= 0, (4)

∂v

∂t
+ v

∂v

∂r
= − 1

ρ

∂P

∂r
− GM(r)

r2
, (5)

where M is the mass within radius r defined by dM = 4πr2ρdr ,
v is the radial velocity, P is the gas pressure, and ρ is the
density. For prestellar collapse, an isothermal equation of state
P = a2ρ is often used, because cooling is so efficient that
the gas remains at nearly constant temperature during the

gravitational collapse (Larson 1969; Nakamura 1998). We adopt
an isothermal equation of state.

For ease of comparison with previous work, we introduce the
following dimensionless variables:

τ ≡ t/t0, (6)

ξ ≡ r/r0, (7)

D ≡ ρ/ρ0, (8)

u ≡ v/a, (9)

m ≡ M/M0. (10)

Here, ρ0 is a fiducial density representing the volume-
averaged ambient density in a cloud on large scales, which we
shall later set to the uniform density of the converging flow. The
unit of velocity is the isothermal sound speed

a = 0.19 km s−1

(
T

10 K

)1/2

, (11)

the unit of time is related to the free-fall time at the fiducial
density by

t0 ≡ 1

(4πGρ0)1/2
= 0.52 tff = 2.3 × 106 yr

( nH

102 cm−3

)−1/2
,

(12)
the unit of length is related to the Jeans length at the fiducial
density LJ ≡ a(π/Gρ0)1/2 by

r0 ≡ a

(4πGρ0)1/2
= LJ

2π

= 0.44 pc

(
T

10 K

)1/2 ( nH

102 cm−3

)−1/2
, (13)

and the corresponding basic unit of mass is ρ0r
3
0 =

a3/[4π (4πG3ρ0)1/2]. The mass unit adopted in Equation (10)
is larger than this by a factor 4π :

M0 ≡ a3

(4πG3ρ0)1/2
= 3.7 M�

(
T

10 K

)3/2 ( nH

102 cm−3

)−1/2
.

(14)
With the dimensionless variables, the fluid equations become

∂D

∂τ
+

1

ξ 2

∂(ξ 2Du)

∂ξ
= 0, (15)

∂u

∂τ
+ u

∂u

∂ξ
= − 1

D

∂D

∂ξ
− m

ξ 2
, (16)

m =
∫

Dξ 2dξ. (17)

We solve the one-dimensional hydrodynamic Equations (15)–
(17) with the ZEUS-2D (Stone & Norman 1992) code, in spher-
ical symmetry. During the evolution to singularity formation
(collapse phase), we adopt an inner reflecting boundary condi-
tion. For the post-collapse accretion phase, we implement a sink
cell (Boss & Black 1982; Ogino et al. 1999) at the origin when
the central density reaches a reference value. Subsequently, the
inner boundary condition is changed to outflow, and the value
of the central point mass is tracked via the integrated flow off
the grid, with Ṁctr = (a3/G)Dinuinξ

2
in. The sink cell is only

implemented after the inflow in the central region becomes su-
personic, so that information from the inner boundary cannot
propagate into the remainder of the grid.
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3. EVOLUTION OF INITIALLY STATIC CORES

As discussed in Section 1, many previous numerical simula-
tions of core evolution have adopted static initial conditions and
a fixed total mass (e.g., Hunter 1977; Foster & Chevalier 1993;
Ogino et al. 1999; Vorobyov & Basu 2005). The adopted initial
density profile shapes are consistent with (or similar to) a hy-
drostatic equilibrium, i.e., a BE sphere, with the initial density
perturbed above the value that can be supported by the internal
pressure in order to initiate collapse. These fixed-mass simu-
lations adopt a prescribed external pressure at a low density
with an effectively Lagrangian outer boundary (Hunter 1977),
or else a fixed outer boundary with prescribed external pressure
and no mass inflow (Ogino et al. 1999; Vorobyov & Basu 2005).
Foster & Chevalier (1993) explored both types of boundary con-
ditions, and found very similar results for a given initial cloud
density profile. They concluded that the evolution for the fixed-
mass case is insensitive to the outer boundary condition for ini-
tially unstable equilibria. This is consistent with the argument of
Bodenheimer & Sweigart (1968) that the outer boundary con-
dition does not affect evolution up to collapse as long as the
free-fall time (Equation (1)) is shorter than the cloud crossing
time. The ratio of the free-fall time at the mean density to the
sound crossing time rmax/a over the radius of a BE sphere is
π/(8ξ dΨ

dξ
)1/2, which approaches π/4 ∼ 0.785 as ξ approaches

infinity. Here, Ψ = Φ/a2, the dimensionless gravitational po-
tential. For the critical case, the free-fall time is 0.71 times the
sound crossing time over the radius.

For comparison to previous work, we consider collapse of
an initially static BE sphere. For initial conditions, we adopt a
critical BE sphere, i.e., the outer boundary of the grid is at radius

RBE,crit = 6.45
a

(4πGρc)1/2
= 1.72

a

(4πGρedge)1/2

= 2.70
a

(4πGρmean)1/2
(18)

corresponding to dimensionless outer radius ξe = ξcrit =
6.45(ρ0/ρc)1/2. Here, ρmean = 2.45ρedge is the total core mass
divided by its volume. The mass of the critical BE sphere is

MBE,crit = 1.18
a4

(G3Pedge)1/2
= 4.18

a3

(4πG3ρedge)1/2

= 1.5 M�

(
T

10 K

)3/2 ( nH,edge

104 cm−3

)−1/2
. (19)

To initiate collapse, density is perturbed above the equilibrium
value by 10%. Our outer boundary condition is at a fixed
pressure, with no inflow. The temporal evolution of the accretion
rate for this model is shown in Figure 1.

Features similar to those outlined by Vorobyov & Basu
(2005) are observed in our simulation. The accretion rate
peaks at a value approaching the LP prediction at the instant
when the central density (formally) becomes infinite, and
steeply decreases thereafter. Vorobyov & Basu (2005) find that
the decline in the accretion rate after singularity formation
(unlike the increase in the accretion rate in Hunter’s self-
similar extension of the LP solution) can be attributed to the
variation of velocity with radius in the sphere as it evolves toward
collapse. We also considered cases of much larger initial static
spheres, with outer boundaries ξe = 5 ξcrit corresponding to
highly unstable BE configurations. For these cases, the accretion
rate decreases until it reaches a plateau at Ṁ = 1.45 a3/G,

Figure 1. Dashed curve, left scale: the temporal evolution of the mass accretion
rate at inner edge of the grid, for collapse initiated from a critical BE sphere
(see Equation (3) for units). The solid curve, right scale: evolution of the central
point mass (see Equation (14) for units). Time is shown in units scaled by the
density at the outer edge (see Equation (12)).

consistent with the value reported in Shu (1977) (when the
density is 10% greater than for hydrostatic equilibrium), and
then further declines to zero after a rarefaction wave propagates
inward from the outer boundary to reach the center.

Similar to the results of previous simulations, we find that the
first collapse is “outside-in,” with velocities initially nonzero
only in the outer parts where the imbalance between gravity
and pressure is largest.1 This is because the inner portions of
the sphere, at ξ < ξcrit, initially are equivalent to stable BE
solutions. In all of our models initiated from static spheres,
the density profile approaches the LP self-similar solution
D = 8.86ξ−2, and the velocity in the inner region approaches
−3.28a, at the moment of singularity formation. Before this
time, the density profile in the central region is flat with a
magnitude that increases over time. The process can be thought
of as a wave of compression propagating from the outside to the
inside, creating a density distribution in which the ratio of radius
to the Jeans length at the local density is everywhere constant:
r/LJ (r) ≈ √

8.86/2π ≈ 0.47. The singularity represents the
instant the compression wave converges at the center.

Supersonic inflow velocities can be achieved without shock
formation in the interior of the core (except at r = 0)
because inward acceleration occurs at all radii where the inward
gravitational force exceeds the outward pressure force. By
construction, the solutions initiated from static configurations
all have gravity (slightly) exceeding pressure forces everywhere
in the initial state, so that the inward acceleration is nonzero.
After a singularity forms at the center, accretion begins, and the
flow in the interior transitions from the v = const., ρ ∝ r−2

LP solution to a free-fall solution, with the accreting region
propagating from the interior to the exterior in a manner similar
to that described by Shu (1977). Thus, while collapse develops
in an “outside-in” fashion, accretion develops in an “inside-
out” fashion. Note that accretion in any centrally concentrated
configuration should work its way outward from the center,
because gravitational collapse times decline outward ∝ ρ−1/2,
which is tff ∝ r for an inverse-square density profile (true for
either the LP profile or the singular isothermal sphere).

1 For cases where the initial sphere is larger than the critical BE sphere,
collapse begins at radii near ξcrit, as was previously shown by Foster &
Chevalier (1993).
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Figure 2. Density and velocity profiles (solid lines) for converging-flow model with Ma = 1.05, at times τ as noted in the upper panel for each pair. The radius is
normalized by the central density, i.e., the abscissa is r(4πGρc)1/2/a. For the three upper panels on the right, the dotted line is a fit to a BE sphere with temperature
TBE, with the fitted temperature noted in each panel. The dashed vertical lines denote the critical radius of a BE sphere with the same central density and sound speed
a. The dot-dashed vertical lines mark twice this critical radius. The time for the leftmost pair is half of the collapse time τcoll. The time for the second and third
pairs are when the shock reaches the critical BE radius and twice that value. The time for the last pair is the instant of collapse τcoll (defined in the simulations as
ρc/ρ0 = 4 × 107). The top-right panel shows with a dashed diagonal line the LP density profile D = 8.86ξ−2.

4. CONVERGING-FLOW MODEL RESULTS

In this section, we present the results of our simulations
of core formation and evolution for the case of converging
spherical, supersonic flows. For these simulations, the outer
boundary condition at ξmax is maintained at a constant density
and inflow velocity. The inflow velocity is characterized by
the Mach number relative to the isothermal sound speed,
Ma ≡ vin/a. We vary Ma over the range from 1.05 to 7. For some
models (see below), we suppress inflow at the outer radius after
collapse occurs to test how the late-time accretion rate is altered.
The initial conditions consist of uniform (low) density, and
uniform inflow velocity equal to the value at the outer boundary.
The size of the grid, in terms of the reference length scale given
in Equation (13), is 2.51327r0, which amounts to a fraction 0.4
of the Jeans length at the initial density. Note that the radius of a
critical BE sphere at the same external pressure (so that ρedge =
ρ0) would be RBE,crit = 6.45(ρedge/ρc)1/2r0 = 1.72r0. That is, a
critical BE sphere confined by the same ambient pressure would
be able to fit within our simulation domain, with plenty of room
to spare. The size of zones in the radial direction has a constant
logarithmic increment, i.e., Δri+1 = (1 + α)Δri , for some α > 0,
such that ri = r1+α−1[(1+α)i−1−1]Δr1 and Δr1/(rmax−rmin) =
α[(1 + α)N−1 − 1]−1. For all the converging-flow simulations in
this paper, α is set to 0.009; 605 and 597 grids are used during
the collapse phase and accretion phase, respectively.

4.1. Core Formation and Collapse

We begin with a description of the core formation process,
which is similar for all of the converging-flow models. Because

of the reflecting boundary condition at the center and the initial
inflow velocities, immediately after we initiate the simulation, a
shock forms at the origin and propagates outward. The inflowing
matter is compressed by the shock. The shock front divides the
converging inflow into two regions: an inner dense post-shock
region and an outer low-density region of supersonic inflow.
These two regions evolve quasi-independently but are connected
by shock jump conditions. Under competition between gas
pressure and self-gravity, the inner region contracts slowly to
begin forming a dense core. As self-gravity starts to overwhelm
gas pressure, the dense core enters the collapse phase.

At the beginning, the inner region is quasi-hydrostatic, with
the velocity a linear function of radius. With negligible density
gradient and self-gravity in the early stages, Equation (16)
becomes

∂u

∂τ
+ u

∂u

∂ξ
≈ 0. (20)

This equation is satisfied by

u = ξ

τ − τ0
; (21)

for |τ/τ0| 
 1, u ≈ −ξ/τ0, i.e., the coefficient of the
linear profile is constant in time. The leftmost lower panels of
Figures 2–5 show this linear-velocity behavior in the shocked
region, at the time that equals half of the collapse time τcoll.
Throughout this paper, we define the collapse time τcoll as the
moment that ρc/ρ0 = 4 × 107. Shown in the leftmost upper
panels of Figures 2–5 are the density profiles; even when the
density profile has nonzero gradients, the velocity in the inner
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Figure 3. Same as Figure 2, for inflow Mach number Ma = 2.0.

Figure 4. Same as Figure 2, for inflow Mach number Ma = 4.0.



236 GONG & OSTRIKER Vol. 699

Figure 5. Same as Figure 2, for inflow Mach number Ma = 7.0.

region is dominated by the linear term. Note that the leftmost
panels have linear–linear scales. The velocity over the whole
post-shock region is subsonic and negative, which means the
core is slowly contracting. For the Ma = 4, 7 models (see
Figures 4 and 5), the inner part of the density and velocity
profiles oscillate at the beginning of simulations. As the shock
front propagates outward, the mass inside the shock increases,
and so does self-gravity. After a period of accumulation lasting
about 90% of the time until collapse τcoll, the slowly contracting
dense region starts to be gravitationally unstable.

Note that the density and velocity profiles of the regions
outside of the shock go through a transient evolution after
simulations begin. The density profile evolves from a uniform
profile set in the initial condition to a ρ ∝ r−2 profile consistent
with supersonic radial inflow;2 the material is also increasingly
accelerated by gravity. In Figures 2–5, the inflection feature in
the velocity profiles exterior to the shock corresponds to a wave
propagating inward at a speed equal to the inflow speed plus the
sound speed.

Since post-shock velocities are subsonic, gravitational insta-
bility is expected to develop at a point when the radius of the
inner dense post-shock region becomes comparable to the criti-
cal radius of a BE sphere. This expectation is indeed borne out by
our simulations, which moreover show that the properties of the
collapsing dense inner region are similar as those of collapsing
cores initialized from hydrostatic BE spheres. The collapse fol-
lows an “outside-in” pattern, starting from the shock front. The

2 For supersonic radial flow, v ∼ const. upstream of the shock combines with
the steady state mass inflow condition ρvr2 = const. to yield ρ ∝ r−2.

central density increases dramatically and the inflow velocity
inside the shock becomes supersonic. The collapse propagates
inward and establishes a centrally concentrated density profile
(Larson 1969; Penston 1969; Hunter 1977; Shu 1977), which
approaches the LP density profile D(ξ ) = 8.86ξ−2, and the
velocity approaches −3.28a.

The three panels on the right of Figures 2–5 show the density
profile (top) and the velocity profile (bottom) at three different
instants during the outside-in collapse. The density profiles
plotted are normalized by the central density and the interior
regions are fit by BE sphere density profiles.3 The ratio between
the fitted BE sphere temperature TBE and the true temperature
T0 is also noted in the figures. The first figure of these three
shows profiles at the instant when the radius of the post-
shock region reaches the critical radius (see Equation (18)) of
a BE sphere at temperature T0 with the same central density,
i.e., rshock = RBE,crit. We define the period after this as the
supercritical regime. The center-to-edge density ratio after this
point exceeds ∼10. The second figure of these three shows the
instant when the radius of the post-shock region reaches twice
the critical radius of a BE sphere. The third figure is at the
instant of core-collapse τcoll (defined here as ρc/ρ0 = 4 × 107).
The long dashed diagonal line in the third figure shows the LP
density profile, which is very close to the numerical solution.
The time interval between rshock = RBE,crit and collapse for the
Ma = 2 case in code units is 0.048 (see Equation (12)), which

3 That is, we match solutions of the density profile inside the shock to
solutions of the hydrostatic equation dlnD

dξ
= − m(ξ )

ξ2 with a fitted temperature

TBE. These fits are further discussed below.
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Figure 6. Shock front position vs. time for Ma = 4. The solid line is the best
fit to the linear part, i.e., a constant-speed outward-propagating shock at early
times. The collapse occurs for this model at τcoll = 0.16.

corresponds to 1.1 × 105 yr if the inflowing ambient medium’s
density is nH = 100 cm−3.

We note that prior to collapse, the velocities in the dense gas
(inside the shock) remain small. In particular, for Ma � 2 cases,
the inflow velocity inside the shock is subsonic throughout the
post-shock region before the time when rshock = RBE,crit. When
Ma is high, Figures 4 and 5 show that the post-shock velocities
remain subsonic until shortly before the instant of collapse.

The outward propagation speed of the shock, which from the
simulations is approximately constant (Figure 6) at early time,
can be obtained using the shock jump conditions. If the shock
position is ξsh = ushτ , then provided Equation (21) is satisfied,
the velocity on the downstream side is

ud = τush

τ − τ0
. (22)

Note that in order for the downstream velocity to be inward
and the shock to be propagating away from the origin, we must
have τ < τ0. The isothermal shock jump conditions, with
subscript “u” denoting upstream and “d” downstream values,
are Dd (ud − ush) = Du(uu − ush) and Dd [1 + (ud − ush)2] =
Du[1 + (uu −ush)2]; together these imply Dd/Du = (uu −ush)2

and (ud − ush)(uu − ush) = 1. Treating the shock speed as
approximately constant so that Equation (22) holds, we can
solve for the shock velocity to obtain ush = 1

2 (uu + [u2
u + 4 −

4(τ/τ0)]1/2). For τ/τ0 
 1, and taking the upstream velocity as
uu ≈ −Ma which corresponds to the limit of strongly supersonic
inflow, gives

ush ≈ 1

2

[−Ma + (M2
a + 4)1/2

] = 2

Ma + (M2
a + 4)1/2

. (23)

The shock speed decreases as the Mach number increases,
and therefore from Equation (22) the post-shock flow speed
also decreases as the Mach number increases. Figure 6 shows
the position of shock front versus time for Ma = 4. The intercept
and the slope are based on the best fit of the linear part where
τ ∈ [0.0, 0.04]. The intercept is nearly 0 and the slope 0.3061
is the measured shock speed in units of the isothermal sound
speed a; Equation (23) predicts a slightly smaller value 0.24.
The analytical solution (Equation (23)) for ush as a function of
Ma is plotted as a dotted line in Figure 7 (labeled as ush,estimate)
and the shock speeds directly measured from simulations ush

Figure 7. Speed of shock front at early times (asterisks), the radius of the core at
the instant of collapse (diamonds), and the time at which collapse occurs (plus
signs) as a function of Ma. Triangles show the ratio of ξcoll/(ushτ coll), which
is nearly constant, ranging from 0.34 to 0.42. The dotted line is the analytic
estimate for ush given in Equation (23).

are plotted as asterisks. The analytical approximation is about
15%–28% below the measured value from the simulations as
Ma ranges from 1.05 to 7.0.

Using the constant-shock-speed approximation, the imme-
diate post-shock density can also be obtained in terms of the
pre-shock density, in the limit τ/τ0 
 1 and using uu ≈ −Ma

as
Dd

Du

= 1

4

[
Ma + (M2

a + 4)1/2
]2

, (24)

which for Ma � 1 is Dd/Du ≈ M2
a . Because of the radial

convergence of the inflow in the simulations, Du varies; it is
initially equal to 1, but after an initial transient, in the highly
supersonic limit Du would approach (ξouter/ξsh)2 because of mass
conservation.

It is interesting to investigate how the state of the core when it
collapses depends on Mach number. Figure 8 shows the density
profiles and the velocity profiles of the simulated cores at the
instant of collapse τcoll, for different Mach numbers. First, it
is clear that all the density profiles approach the LP solution,
especially for low Mach number cases. The inflow velocity
inside the shock is supersonic and does not strongly vary over
the dense core region. The smaller the Mach number is, the
closer the inflow speed is to the LP result, v = −3.3a. Second,
the radius of the core at the instant of collapse decreases as
Mach number increases. We plot this dependence in Figure 7
with diamonds.

We quantitatively compare the basic core properties in
Figure 7, which shows the collapse time τcoll and the shock
radius ξcoll at time τcoll, both as function of Ma. As noted above,
ξcoll decreases with increasing Ma; the same is true for τcoll.
We also recall that ush decreases with Ma. Interestingly, while
ξcoll, ush, and τcoll all decrease with Ma, the ratio ξcoll/(ushτcoll)
is nearly constant with Ma: it ranges only from 0.34 to 0.42
(see Figure 7). This result is potentially useful for empirical
estimates of core lifetimes, since the inflow velocity Ma, the
isothermal sound speed a and the radius of dense core are all in
principle measurable. If the ratio ξcoll/(ushτcoll) is taken as a con-
stant ≈0.4, and the shock speed is estimated via Equation (23),
then the lifetime of cores up to the point of collapse is given
in dimensional form by tcoll ≈ 1.3Rcoll[Ma + (M2

a + 4)1/2]/a.
In practice, it may be difficult to measure Ma outside of a core,
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Figure 8. Density profiles (top panel) and the velocity profiles (bottom panel) at
the instant of collapse for simulations with different Mach number Ma (as
labeled). The thick dashed line in the top panel is the LP density profile
D = 8.86ξ−2. For higher Ma cases, the shock front is at smaller radius (in
units of r0) and the post-shock speeds in the dense core are lower in magnitude.
Units of length and velocity are given by Equations (13) and (11), respectively.
The density is in units of the GMC ambient value.

because the density is much lower than that of the core, and it is
difficult to isolate the immediate environment of the core from
foreground and background gas. This result is still useful in a
statistical sense, however, using the mean Mach number of the
turbulent flow in a cloud.

Another direct observable is the core density, so it is interest-
ing to test how the values of the collapse time and radius depend
on the mean density in the core at the time of collapse. Dia-
monds in the top panel of Figure 9 show the core radius in units
of a(4πGρmean)−1/2, which is ξcoll(ρmean/ρ0)1/2, as a function
of Ma. We can see ξcoll(ρmean/ρ0)1/2 is nearly constant, ranging
from 4.58 to 3.42 as Mach number increases from 1.05 to 7. Tak-
ing this as approximately constant, and using the measured core
mean density, the predicted size of core at the time of collapse
is Rcoll ≈ 4a(4πGρmean)−1/2. Note that this radius is ∼50%
larger than the critical BE radius for the same temperature (see
Equation (18)). Since the post-shock density increases relative
to the upstream density approximately as Dd/Du ∼ M2

a (see
Equation (24)), it is also interesting to test how ξcollMa depends
on Mach number. In fact this quantity decreases with Ma, as
seen in Figure 9.

To express the core-collapse time in terms of observables,
we normalize the collapse time using the mean core density.
This quantity tcoll(4πGρmean)1/2 = τcoll(ρmean/ρ0)1/2 is plotted
in Figure 9 as a function of Ma. For reference, the core-collapse
time normalized using Ma is also plotted in Figure 9. The free-
fall time tff for a uniform sphere in units of (4πGρmean)−1/2

is 1.92, so that we have tcoll ∼ 8–26 tff as Mach number
varies from 1.05 to 7. This timescale is much longer than
the observed values ∼ 2–5 tff for prestellar cores. The reason
for this disparity is that during the early part of its evolution,
the central density of the core is low, and it would not
be identifiable within its surroundings. This is evident in

Figure 9. Renormalized radius (top panel) and collapse time (bottom panel) of
cores vs. Ma. Diamonds show quantities normalized using the mean core density
and asterisks show quantities normalized using the Mach number (see the text).
The dot-dashed line in the lower panel shows the free-fall time at density ρmean
in units (4πGρmean)1/2, i.e., τff (ρmean/ρ0)1/2 = π (3/8)1/2.

the low contrast between the center and the edge of the
core seen in the first frames of Figures 2–5. Only when the core
approaches collapse does the center-to-edge contrast become
large. For example, for the Ma = 1.05 model, the center-to-
edge density ratio ρc/ρedge reaches 2 at τ = 0.78 and reaches
5 at τ = 0.92; this can be compared with the total time until
collapse, τcoll = 1.027 for this model. For the whole set of
models, the observable fraction of the pre-collapse core life
is 30%–50% if we choose ρc/ρedge � 2, or 10%–20% if we
choose ρc/ρedge � 5. Taking the period when ρc/ρedge � 2
or ρc/ρedge � 5 as the period over which a core could be
observable, e.g., in submillimeter continuum, our simulations
give tobservable ∼ 2–13 tff or tobservable ∼ 1–6 tff , respectively. The
latter is consistent with observed estimates.

Another observable aspect of prestellar cores is their density
structure. As discussed above, for each solution at the times
shown in Figures 2–5, we fit a BE sphere profile. The density
in code units ρ0 is D(ξ ) = ρ/ρ0 and the radius in code units is
ξ = r(4πGρ0)1/2/a. When the central density is instead used
to normalize, the density and radius variables are

D̃ = ρ/ρc = Dρ0/ρc (25)

and

ξ̃ = r
(4πGρc)1/2

a
= ξ (ρc/ρ0)1/2. (26)

For a BE sphere with sound speed aBE, the density profile
normalized by the central density is D̃BE, which is a function of
the scaled radius ξBE = r(4πGρc)1/2/aBE = ξ̃ a/aBE. To fit the
density profiles in our simulations to a BE sphere, the only free
parameter is the ratio of the isothermal sound speed aBE of the
BE sphere to the sound speed in the simulations, a. Thus, for
any given density profile D̃ we adjust the value of aBE/a until
a good match between D̃BE and D̃ is obtained. This procedure
yields the fitted temperature ratio:

TBE

T0
=

(aBE

a

)2
. (27)

The values obtained for TBE/T0 are marked in Figures 2–
5. The range of values we find is 1.23–2.89. This range is
consistent with theoretical expectations. As the radius of the
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BE sphere extends to infinity, the density profile approaches the
singular solution ρ = 2a2

BE/(4πGr2) (Shu 1977) corresponding
to D̃BE = ρ/ρc = 2(aBE/a)2̃ξ−2. The density profile of the
collapsed core approaches the LP solution D̃ = 8.86̃ξ−2. To
match the LP profile with the singular profile therefore requires
2 (aBE/a)2 = 8.86, which corresponds to a temperature ratio
TBE/T0 = 8.86/2 = 4.43. Fits of core profiles to BE spheres
that indicate values of TBE up to 4.43 times the measured thermal
temperature therefore are expected if collapse has taken place;
this does not by itself indicate that magnetic support is present.

4.2. Post-Collapse Evolution: Infall and Accretion Stages

After the central density becomes singular, the evolution tran-
sitions to the infall and accretion stages. For our simulations, we
make this transition by implementing an outflow boundary con-
dition at the center when the central density reaches 4 × 107ρ0.
The initial mass of the central protostar is calculated by inte-
grating the innermost part of the density profile where density is
between [1 × 107, 4 × 107] ρ0. The specific choice of this den-
sity does not significantly affect τcoll, ξcoll, or the subsequent
evolution since the central density increases dramatically only
at the very end of the collapse stage.

At the beginning of the accretion phase, the material inside
the shock falls onto the protostar. The material approaching
the protostar is in a free-fall state (Hunter 1977). The region
of unsupported infall starts from the center and propagates
outward, similar to the “expansion wave” described by Shu
(1977). The density profile inside the rarefaction wave changes
from ρ ∝ r−2 to r−3/2 and the velocity profile changes from
v ∝ r0 to r−1/2. For our simulations, this infall stage ends as the
infall rarefaction wave arrives at the shock front. This generally
occurs very rapidly (in less than 10% of τcoll; see below).

For an initially static density profile Ar−2, where A =
Ka2/(4πG) and K is a constant, if the gas pressure is negligible
the average speed of the rarefaction wave is (2

√
2K/π ) a. For

K = 8.86, which is the LP profile, this yields 2.7a. For the
real case, the initial velocity is nonzero and the gas pressure
is nonnegligible, so that the rarefaction wave propagates at a
modified speed. For example, for the Ma = 1.05 model, which
has ξcoll = 0.29 and infall interval Δτinf = 0.092, the average
speed is 3.15a. For Ma = 4.0 and 7.0, the measured average
infall speed of the infall rarefaction wave is 2.22a and 1.95a,
respectively.

After the infall rarefaction wave arrives at the shock front,
the final accretion stage begins, with material initially outside
the shock falling onto the protostar at supersonic speeds. This
process is similar to Bondi accretion, except that the central
mass is growing and the velocity field for our simulations
is uniformly converging at large distance. During this stage,
the density and the velocity profiles vary ∝ r−3/2 and r−1/2,
respectively, corresponding to free fall.

The typical density profiles and velocity profiles during the
accretion stage for Ma = 1.05 and 4 models are shown in
Figure 10. Three different instants in the evolution are shown:
the instant of core collapse, the instant when the infall rarefaction
wave arrives at the shock front, and a point during the late ac-
cretion stage. The transition from the LP profiles to the free-fall
profiles in density and velocity are clearly evident in the figure.

In a real system, the duration of the accretion stage depends
on the environment of the protostar, and how long the inflow
that creates the core is maintained at large scales. To explore
how the late-time evolution is affected by changes in the
accretion, we have conducted additional simulations in which

Figure 10. Density and velocity profiles during the accretion phase for
Ma = 1.05 (left) and Ma = 4 (right) models. The density profiles (top) and the
velocity profiles (bottom) are each shown at three different instants: the solid
lines show the instant of core collapse, the dashed lines show the instant when
the gravitational rarefaction wave arrives at the shock front, and the dot-dashed
lines show the profiles at a late accretion stage. Numbers in the figure show the
corresponding time for each instant. In the upper panels, the LP density profile
D = 8.86ξ−2 is plotted for reference with the thick dashed lines. The transitions
from D ∝ ξ−2 (early) to D ∝ ξ−3/2 (late) and u ∝ ξ0 (early) to u ∝ ξ−1/2

(late) are evident.

the flow inward from the outer boundary is halted at the
end of the infall stage (i.e., when the rarefaction reaches
the shock). Suppression of inflow will affect the mass flux
onto the protostar after the rarefaction wave from the boundary
reaches the central protostar. We discuss comparison of these
models to our standard models in Section 4.4.

4.3. Definition of Evolutionary Stages

Based on the results presented in Sections 4.1 and 4.2, we
have identified four main stages of protostellar core formation
and evolution in a supersonic turbulent medium (see Figure 11
for a schematic depiction).

1. Core building. Converging flows in a supersonic turbulent
medium collide, with post-shock compressed gas accumu-
lating over time in stagnant, shock-bounded regions. If these
dense regions are not destroyed by larger-scale turbulence,
the high-density gas will undergo a long contraction process
during which gas pressure competes with self-gravity. The
typical character of this stage is that the velocity inside the
dense gas is subsonic and increases linearly with distance
from the center. Since the center-to-edge density contrast
is relatively low, these clumps are gravitationally subcriti-
cal. Toward the end of this stage, when the center-to-edge
density contrast becomes appreciable, these objects would
become observable as prestellar cores. This core-building
stage lasts >90% of τcoll; only the last 10%–20% would be
observable.

2. Core collapse. The core built up during the first stage
accumulates enough mass that it becomes gravitationally
supercritical, which we operationally define as rshock >
RBE,crit. Self-gravity overwhelms the gas pressure, and
the unstable core starts to collapse. The collapse begins
near the shock front, where the imbalance between gravity
and pressure gradient forces is greatest, and propagates
inward. This collapse is an “outside-in” process. During
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Figure 11. Four stages of core evolution in the idealized models of this paper.
(1) Core building via supersonic converging flow, yielding a stagnant, shock-
bounded dense region. (2) Core collapse, propagating from outside to inside,
leading to a density profile ρ ∝ r−2. (3) Envelope infall, propagating from
inside to outside, and resulting in free fall onto the protostar. (4) Late accretion
of ambient gas onto the protostar. For real systems, evolution would be modified
in several ways: converging flows would be nonspherical, angular momentum
would lead to disk formation, and outflows would contribute to clearing the
envelope.

core collapse, the central density increases dramatically and
the inflow velocity inside the core becomes supersonic. As
the collapse propagates inward, a density profile ρ ∝ r−2

is left behind and the velocity increases toward the center.
The end of this stage is defined by the instant of protostar
formation τcoll, when the wave of collapse has reached the
center of the core. The density profile approaches the LP
profile, ρ = 8.86a2/(4πGr2). The velocity in the interior of
the collapsed core approaches a uniform value comparable
to that in the LP solution −3.28a. The central density is high
enough to be optically thick and a protostar forms. Because
of their large central volume densities, prestellar cores
during this collapse stage would be observed as having high
peak submillimeter flux densities. This stage lasts for a time
Δτsupcrit, less than 10% of the prestellar core lifetime τcoll.

3. Envelope infall. During this stage, the high-density material
inside the shock front falls to the protostar (or, if angular
momentum was included, a circumstellar disk). This stage
starts at the instant of the protostar formation and ends at
the instant when the gravitational rarefaction wave reaches
the shock front, clearing out the remnants of the dense gas
that accumulated during core building. During this stage,
the density and velocity profiles in the interior change from
LP profiles to free-fall profiles. Since the core contains an
embedded protostar, the system would be observationally
classified as Class 0/I. This stage lasts for a time Δtinf less
than 10% of the prestellar core lifetime. In a real system,
the fraction of the envelope mass that eventually reaches
the center would depend on the details of the protostellar
wind, which would sweep up at least the polar portion of
the envelope, creating an outflow.

Figure 12. Top panel shows the ratio of the duration of the supercritical
collapsing stage Δτsupcrit (asterisks) and the post-collapse infall stage Δτinf
(diamonds) to the prestellar lifetime τcoll of cores, as a function of Mach number.
The bottom panel shows ratios Δtsupcrit/tff (diamonds) and Δtinf/tff (asterisks),
which range from [0.8, 1], as a function of Mach number; here tff is computed
using the mean density inside the shock at τcoll.

4. Late accretion. During this stage, material from the ambient
environment directly accretes to the protostar (or, more
realistically, a disk). Accretion during this stage is similar
to Bondi accretion, with free-falling density and velocity
profiles ρ ∝ r−3/2 and v ∝ r−1/2 over the whole core
region. For a real system, the duration of the late accretion
stage, and hence the final stellar mass, depends on ambient
conditions far from the protostar. In a real system, the
potential of this stage to contribute significantly to the stellar
mass would also depend on protostellar winds, which can
reverse the accretion.

Although we have identified these stages based on idealized
spherically symmetric models with constant gaseous inflow
rates at large distance, we expect that the same stages would
be present, in modified form, under more realistic conditions.
Based on our simulations, the ratios Δτsupcrit/τcoll and Δτinf/τcoll
decrease with increasing Ma, as shown in Figure 12. The
supercritical stage and the infall stage have similar durations,
and range from 9% to 3% of the prestellar core lifetime tcoll,
which itself ranges from 8 to 26 tff . The supercritical collapse
period (stage 2) Δtsupcrit and the infall period (stage 3) Δtinf thus
both range over ∼0.8–1 tff , as shown in Figure 12. While the
time to reach collapse would differ for nonspherical or nonsteady
converging large-scale flows, we expect that the character of the
evolution would not. We also expect that the ratios Δtsupcrit/tff
and Δtinf/tff would remain order unity.

4.4. Evolution of Mass Accretion Rates

Figure 13 shows the temporal evolution of the mass accretion
rate and the total integrated mass of the central protostar for
Ma = 1.05, 2, 4, and 7. These can be compared with the mass
accretion rate and the integrated central mass for an initially
static critical BE sphere, as shown in Figure 1 (see also Vorobyov
& Basu 2005, who show similar accretion histories to Figure 1).
For both the initially static collapse and our models that allow for
core building from supersonic flows, there is a sharp early peak
in the accretion rate. The rise starting from Ṁ = 0 corresponds
to the moment of protostar formation at τcoll. The smooth decline
that follows (ending at the points marked “i” in Figure 13)
corresponds to the infall stage, as the gravitational rarefaction
wave propagates outward. At late times, however, the accretion
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Figure 13. Temporal evolution of the mass accretion rate (thin solid lines; left axis) and the integrated mass of protostar (thick solid line; right axis) for models with
Mach number Ma = 1.05, 2, 4, and 7, as labeled. The corresponding dot-dashed lines show the results for models in which the inflow to the grid is suppressed after
the end of the infall stage. The point marked i represents the end of the infall stage, p represents the instant when the density profile reaches ρ ∝ r−3/2 everywhere,
and q represents the instant when the velocity profile reaches v ∝ r−1/2 everywhere. Units of time, mass, and accretion rate are given by Equations (12), (14), and (3),
respectively.

differs for the initially static versus dynamically built cores. For
an initially static unstable BE core, the late accretion steadily
declines over time (Figure 1). In contrast, for cores formed in the
Ma = 1.05 model (i.e., barely supersonic inflow), the late-time
accretion is nearly constant, and for cores formed in large Ma
models, the late accretion rate increases over time (thin lines in
Figure 13).

The early-time peak accretion rates can be compared with
the predictions of self-similar models. For the LP profiles at
the instant of core collapse, D = 8.86ξ−2 and u = −3.28 give
Ṁ = 29.1a3/G, while the self-similar solution for the accretion
phase in Hunter (1977) predicts Ṁ = 46.195a3/G. In fact, we
do see a jump in Ṁ above 29.1a3/G as the evolution transits
from the collapse stage to the infall stage. This phenomenon
is most clearly evident for the Ma = 1.05 model, which has
the highest resolution of the central region because the shock
strength is lower than in the high Ma models, yielding a larger
core (see Figure 8) at the instant of collapse.

The detailed behavior of Ṁ during the late accretion stage
can be understood in terms of various transitions that occur. For
Ma = 1.05, the accretion rate (see Figure 13) starts to increase
from point i until to point p, and then decreases. The increases
from i to p occurs as gas stored between the shock front and the
outer boundary collapses into the center. The point p represents
the instant when the density in the whole outer region reaches a
profile ρ ∝ r−3/2. After point p, the gravitational rarefaction has
reached the boundary, and subsequent accretion is limited by the
inflow rate imposed at the outer boundary. For the Ma = 2, 4,
and 7 models shown in Figure 13, the mass accretion process
between point i and p is similar to that of Ma = 1.05. However,
there is additional transitory behavior before the accretion rate
decreases to the inflow rate imposed at the boundary. At the
instant corresponding to point p, the rarefaction has produced
ρ ∝ r−3/2 over the whole region. But the velocity profile has
v ∝ r−1/2 only over the inner region. During the stage between
point p and q, the density profile stays almost unchanged but
the velocity profile evolves to reach v ∝ r−1/2 everywhere (see

Figure 14. Protostellar mass at the end of the infall stage (diamonds), the core
mass inside the shock at the instant τcoll of protostar formation (asterisks), and
the critical BE sphere mass (triangles) based on the mean core density at time
τcoll, all as a function of Mach number Ma. The mass unit is given by Equation
(14).

also Figure 10). After point q, the accretion rate decreases to the
imposed inflow rate. The stage between p and q is most obvious
for the Ma = 4.0, 7.0 models.

As mentioned above, we have also performed models in
which inflow to the grid is halted after the point when the
rarefaction reaches the shock. The resulting late-stage accretion
(see Figure 13) is initially the same as in our standard models,
but then declines over time, after the rarefaction wave reaches
the boundary.

The mass of the protostar at the end of the infall stage and the
total core mass Mcore inside the shock at instant of core collapse
are shown in Figure 14. For comparison, we also show the
critical BE sphere mass (see Equation (19)) using the mean
core density at the time of collapse for ρmean = 2.45ρedge;
these are lower than the actual core mass. Because there is
continued mass passing through the shock during the infall
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stage, the post-infall protostellar mass is slightly higher than
the core mass inside the shock at the time when core collapses.
As the Mach number increases, the post-infall protostellar mass
and the core mass at τcoll both decrease. The protostellar mass
ranges over 0.06–8.8 M� and the core mass at τcoll ranges over
0.05–7.5 M�, taking nH = 100 cm−3 for the ambient density.

5. SUMMARY AND CONCLUSIONS

Star formation takes place in GMCs pervaded by supersonic
turbulence, and theoretical models of prestellar (and protostel-
lar) cores must take these large-scale supersonic flows into
account. Here, we have developed models in an idealized, spher-
ically symmetric framework that nevertheless captures key as-
pects of the real situation, enabling us to identify and analyze
the main stages of core formation and evolution in a dynamic
environment.

Our models differ from previous studies of core evolution in
that the cores are not present as either stable or unstable density
concentrations in our initial conditions—the initial density is
everywhere uniform. Instead, during the first evolutionary stage
cores are built “from scratch” by the collision of converging
supersonic flows. The boundaries defining the outer edge of a
core—where the density drops—correspond to a shock front
across which the temperature is constant and the mass flux is
nonzero. The shock front propagates outward, with the mass of
the post-shock dense region growing in time. Initially, the core
is essentially uniform. Over time, the mass grows sufficiently so
that the core becomes centrally stratified due to self-gravity.
Observationally, the latter part of this “core-building” stage
corresponds to prestellar cores that have low to intermediate
peak brightness. The period over which ρc/ρedge � 5, and a
core would be clearly identifiable in observations, amounts to
1–6 tff , with the free-fall time defined using the mean core
density.

When the center-to-edge density contrast exceeds ∼10, the
core becomes supercritical and a stage of violent “outside-
in” collapse ensues. The density profile throughout the core
approaches ρ ∝ r−2, and a protostar forms at the center. We
define the instant that collapse is complete and a protostar
forms as tcoll, or τcoll in our dimensionless variables. Although
the central density becomes very large, the wave of outside-
in collapse still leaves most of the core mass in the outer
parts. Observationally, this core-collapse stage corresponds to
prestellar cores that have high peak brightness. The period
Δtsupcrit over which cores are supercritical, undergoing outside-
in collapse, amounts to less than 10% of tcoll, or 0.8–1 tff .

The third stage of evolution is governed by an “inside-out”
wave of gravitationally driven rarefaction propagating from the
center of the core to the shock front that defines the core’s outer
edge. The accretion rate onto the star during this infall stage is
initially very high, but declines over time. At the end of this infall
stage, the dense envelope built during the first stage has plunged
into the star. The velocity and density profiles approach free fall,
v ∝ r−1/2 and ρ ∝ r−3/2, respectively. Observationally, this
stage corresponds to Class 0/I embedded protostars. The period
Δtinf over which cores undergo this inside-out infall is similar to
the duration of the previous stage, Δtsupcrit, and comparable to tff .

During the final stage of evolution, there is no longer a
massive envelope. The protostar can continue to accrete from
the more distant, lower-density gas in its surroundings. The
late-stage accretion rate and the total mass accumulated by the
system depend on the large-scale environment, rather than the
properties established in the core during the building stage.

Observationally, this stage corresponds to a nonembedded YSO
that may still be accreting from a disk.

Based on our simulations, our chief conclusions are as
follows.

1. The initiation of star formation via outside-in core collapse,
followed by inside-out envelope infall, appears to be very
robust. The dynamical behavior during these stages of
evolution is very similar whether the core is initiated
as an unstable equilibrium (as in previous models) or is
built up dynamically through a shocked converging flow
(as in the present work). The LP singular solution with
ρ = 8.86a2/(4πGr2) appears to be an “attractor,” in
that models initiated from stationary equilibria or with
different supersonic converging velocities all arrive at this
configuration at the moment of protostar formation.

2. Prior to the point at which cores become supercritical
and outside-in collapse begins, the velocities interior to
cores are subsonic, even if they are created by highly
supersonic flows. In fact, higher inflow velocities from
ambient gas produce lower post-shock velocities within
the dense core (see Figures 2–5 and Equation (23)). This
result is consistent with observations showing that dense
cores are quiescent in their interiors (see, e.g., Myers 1983;
Goodman et al. 1998; Lee et al. 2001; Caselli et al. 2002;
Kirk et al. 2007; André et al. 2007; Lada et al. 2008).

3. Throughout both the core-building and core-collapse stage,
density profiles for cores formed by shocked converging
flows can be fitted by BE profiles, but with fitted tempera-
tures TBE larger than the true temperature T0. The range
of temperatures fitted for our models with Mach num-
bers up to 7 is TBE/T0 = 1.2–2.9. This result is con-
sistent with observational findings (Kandori et al. 2005;
Kirk et al. 2005) that effective temperatures greater than
directly measured values (from fitting spectral energy dis-
tributions (SEDs)) are usually required in order to fit BE
spheres to observed prestellar cores. The largest possible
ratio that could be obtained for an isothermal spherical
flow is TBE/T0 = 4.43, so that any observed ratio larger
than this suggests that magnetic fields contribute apprecia-
ble support, or else the core is anisotropic. Dapp & Basu
(2009) have also recently pointed out that the temperature fit
based on matching a BE profile may be significantly higher
than the true kinetic temperature, for clouds in collapsing
stages.

4. At the time of collapse, for all Mach numbers the core
size and mean density are closely related. We find that
Rcoll ≈ 4a(4πGρmean)−1/2 within 15% for Mach numbers
Ma = 1.05–7. This radius is ∼50% larger than the critical
radius of a BE sphere with the same mean internal density.

5. As Ma increases, and assuming a given ambient medium
density ρ0, the time to reach collapse tcoll is shorter, the
physical size of the core at tcoll is smaller, the mean internal
density at tcoll is higher, and the mass of the core at tcoll
is lower. For high Mach number, the collapse time and
collapse radius are related by tcoll ≈ 2.6RcollMa/a. The
range of core masses at the time of collapse at different Ma is
consistent with observed core masses, although the specific
dependence of core mass on Ma found in the present work
may be sensitive to the spherical converging-flow geometry
we have adopted.

6. The durations of the collapse (supercritical) stage and the
infall stage of evolution are comparable for all Ma, and are
close to tff . This is consistent with observations indicating
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similar lifetimes for prestellar cores and embedded Class 0/
I accreting protostars (Beichman et al. 1986; Lee & Myers
1999; Jessop & Ward-Thompson 2000; Kirk et al. 2005;
Jørgensen et al. 2007; Hatchell et al. 2007; Enoch et al.
2008; Evans et al. 2009). These stages are preceded by an
extended core-building stage, during most of which the core
would not be observable because its center-to-edge density
contrast is low.

7. The mass accretion rate onto the protostar (or, more
realistically, star–disk system if angular momentum were
included) peaks at the beginning of the infall stage at a value
�a3/G, and then declines steeply afterward as the material
stored in the envelope is exhausted. This result appears to
hold regardless of how cores form, as it is consistent with
earlier work (see, e.g., Foster & Chevalier 1993; Ogino
et al. 1999; Hennebelle et al. 2003; Motoyama & Yoshida
2003; Vorobyov & Basu 2005) for cores initiated from
unstable equilibria or which undergo externally induced
compression. Later accretion from the ambient medium
depends on how long the large-scale cloud maintains a
focused converging flow.

As noted above, some of our specific conclusions are likely
to change for nonspherical geometry, and for time-dependent
rather than steady large-scale inflow. Furthermore, other ele-
ments that are present in real star formation have been entirely
omitted in these models; these elements include rotation, which
would lead to disk formation; protostellar winds, which would
sweep up and remove a portion of the envelope during the infall
stage, and could prevent late accretion altogether; and magnetic
fields, which would alter the timescales and details of the evo-
lutionary stages.

We expect, however, that many of our basic results will carry
over even if the idealizations we have adopted are relaxed.
While large-scale supersonic converging flows in real GMCs
are not generally spherical, the association of observed cores
with high-density surroundings suggests that the dense gas in
post-shock stagnation regions is still the raw material out of
which cores are built. We expect that in general core masses
and collapse timescales will decrease with increasing density
of the post-shock flow, which itself increases with increasing
Mach number. Preliminary simulations of planar converging
flows that we have conducted indeed bear out this expectation,
showing Mcore ∝ M−1

a . For planar converging flows, many cores
simultaneously grow and then collapse in the post-shock gas
layer; unless this sheet was viewed exactly edge-on, the density
jump at the shock front would not be apparent, and cores would
be seen as surrounded by moderate-density gas.

We also expect outside-in collapse followed by inside-out
infall to be a generic feature of core evolution. Although
the duration of this pressure-mediated collapse is ∼tff , it is
unlike free-fall collapse in a crucial way: the core does not
remain nearly uniform. We speculate that the development of
stratification during outside-in collapse will suppress growth of
perturbations and subfragmentation for the nonspherical case.
Even though the increase in density implies that the local Jeans
mass becomes smaller and smaller, this is only true in the very
center of the core. Instead, we expect that collapse of cores built
within shocked converging flows will produce single systems,
which may be binary (or multiple) if the angular momentum
is sufficient. Nonspherical converging flows that create sheets
and filaments of shocked gas and produce many such cores
simultaneously could be the progenitors of stellar clusters.
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