
Professor Alberto Bolatto
Observational Astronomy

ASTR 310
Fall 2009

Introduction to MATLAB

1 Introduction

MATLAB provides a powerful vectorized high level language with syntax very similar to C, spe-
cially useful for data analysis and display. MATLAB originated as an extension of the LINPACK
and EISPACK libraries of routines for linear algebra and wasdeveloped in the late 80s by Cleve
Moler. It then evolved into a (proprietary) language that incorporates several object-oriented
features as well as powerful graphics (seehttp://www.mathworks.com for more details).
While it has a very large user base in Engineering and Physics, its Astronomy user base is small
and as a result does not have the wealth of legacy software ported that IDL has. Therefore, on the
one hand, be prepared to program. On the other hand, it is substantially more modern, consistent,
cohesive, and overall less clunky (I find) than the alternative.

Vectorized languages like MATLAB and IDL allow operations over arrays of numbers using very
simple syntax, essentially the same syntax one would use to operate over scalars. MATLAB has a
very flexible implementation of n-dimensional arrays: 3 and4 dimensional data is very common in
Astronomy, where the 2 spatial dimensions are generally combined with a 3rd spectral dimension
and maybe a 4th polarization dimension. The display capabilities are extremely good: graphics
are automatically resized and the user has complete controlover a large number of properties,
including extensive annotation. The implementation of 3D graphics is also very good. Finally,
MATLAB can be easily interfaced with C or FORTRAN routines toincrease its execution speed,
if need be.

2 Starting MATLAB

As for IDL, the computer should be running Linux. Once you have logged into your account and
started the X-windows system using thestartx command, open a terminal. The latest version of
MATLAB in the system is v7.8, and can be started by typingmatlab2009 at the prompt. This
will open the MATLAB console.

The main part of the MATLAB console is the Command Window. There you will see the prompt
>>. Usually to the left of the Command Window there are a number of auxiliary windows that
are configurable by the user and contain the Command History,information about variables in the
Workspace, etc. Just over the Command Window there are several buttons and pull down menues.
One of the most useful is the little window that is used to select or indicate the current directory.
That is the default directory where MATLAB will look for or create files. The same information
can be obtained by enteringpwd at the MATLAB prompt.

In fact,pwd is a MATLAB function. It actually produces a string variableas the output, containing
the current work directory. Most commands produce an outputin MATLAB. If unassigned, the



result of a MATLAB operation is stored in the MATLAB variableans (short for answer, it used to
be the default in programable calculators). Unless the input line is terminated by a semicolon (; )
the result will be printed in the screen. So entering3* 5 will produce a replyans = 15 , while
entering3* 5; will produce no reply but still store the result of the operation in the variableans .
To see the contents of a variable, just enter its name (noprint command necessary... in fact
print is used to obtain hardcopies, more on that later). For example, to see the output of the last
unassigned operation, enterans . If you request to see the contents of a variable that is undefined,
MATLAB will return an error saying just that. If the variableis empty, MATLAB will return the
empty matrix symbol[] if it is numerical, or the empty string symbol’’ if it is a string. Those
same symbols can be used to define empty variables of the appropriate type.

Although MATLAB has a number of automatically executed startup files that can be editted to
reset the configuration (e.g.,help startup ), this is hardly necessary. To see the current search
path, typematlabpath . To add a directory to the search path useaddpath once. MATLAB
will remember.

My personal MATLAB code, which may be handy for the lab, can befound in
/n/fornax1/bolatto/matlab

Add that directory to the path if it isn’t already there usingtheaddpath command

addpath /n/fornax1/bolatto/matlab

If you are taking ASTR310, there is instead a local directorythat you can use. In the Fall 2009
semester, that directory is

addpath /n/ursa/A310/abolatto/matlab

3 Obtaining Help

The basic online documentation in MATLAB is provided by the commandhelp , which will pro-
duce hypertext-linked information on the command tree and/or individual commands (e.g.,help
exp ).

A handy feature of MATLAB is that it is effortless to add help information to your own programs.
In any file containing a user-defined function, MATLAB will interpret the block of comments after
the function declaration as the help corresponding to that function. More on this later.

MATLAB has a full-blown hypertext help facility that is launched using the commandhelpdesk .
To look for help on the random number generator, for example,click on the “Search Results” tab
on the upper-left side of the helpdesk and type “random” in the search box. Help for many useful
random number functions will become available. Look forrandn in the list, and click on it.

In the description you will see thatrandn essentially takes one parameter, the size of the array that
you want to generate. Random number generators use a number called “seed” to prime the pseudo
random sequence. MATLAB keeps different seeds for different random number generators, and
always initializes them to the same number when it starts. Togenerate a different random sequence,
we need to change the seed. A handy blind way of doing so is to use the computer clock, which is
provided by the functionclock() (try help clock for an explanation of the format). Enter

randn(’state’,sum(100 * clock));



at the prompt to randomize the generator.

MATLAB uses different functions (and different generators) to generate the different distributions.
The functionrandn will generate normally-distributed random numbers. The functionrand will
generate uniformly-distributed random numbers. Try the instruction

output=randn(1,230);

It will generate 230 normally-distributed random numbers,and put them into theoutput array.
Just as an example of visualization, try plotting them using

plot(output)

A window, called “Figure 1”, should appear with the plot at a number of controls in the top bar. By
default,plot() uses blue lines on a white background to join the values in thearray, and plots
against the index of the array. To see them plotted with individual symbols not joined by lines, try

plot(output,’x’)

4 The Very Basics

In MATLAB, all numerical quantities default to double precision numbers unless the variable that
contains them is declared to be of a different type. So to MATLAB 3, 3.0, and 3e0, are all identical
double precision versions of the number 3. This feature is very handy since it allows one to ignore
variable typing in most situations and permits to just get down to business, with the assurance that
the calculations will be carried out with the best precisionavailable. On the other hand, double
precision numbers take 8 bytes to store, so it is more memory intensive. When working with
very large arrays, it may be useful to carefully consider howto store the data (this will not be a
limitation for us). Seehelp datatypes to get information on the different data types available
in MATLAB as well as the functions that create variables of a given type and to convert between
different types.

Let us start doing simple calculations in MATLAB. Try issuing the command

A=3* 5

This will create the double-precision variable A and set it equal to 15. To see its contents, just enter
A. Try now entering

a=2* 4
a==A

That will compare the contents ofa andA, and produce a 1 or a 0 if they are equal or not.

MATLAB is case-sensitive. Routines (or commands) with capitals or mixed case are different
from the lower case version. The same happens to variable names. To obtain information about
the variables in memory you can look at the Workspace window in the MATLAB console, or use
the commandswho or whos. They will tell you which variables are in memory, and give you
information about them. For just one variable specify its name (e.g.,whos(’A’) ).

Try enteringa=5; a=sqrt(a) . This will definea to contain the number 5, then redefine it to
contain its square root. The semicolon allows you to separate statements within a line (just like in
C), as well as supressing output. If you want to separate statements in a line without suppressing
the output, use the comma (, ) operator.



Note that by default MATLAB gives you four significant digitsin the output. The calculations are
carried out and kept internally at much higher precision, ofcourse. You can change the output
format using theformat command. The default output is equivalent toformat short . To see
more digits, specifyformat long . Other (more exotic) format examples areformat rat ,
format short eng , andformat hex .

The syntax for string variables is very straightforward. For example,a=’Joe’ redefinesa as a
string variable, which is really, deep down, an array of numerical character codes.

4.1 Vectors, Matrices, and Arrays

Now onto vectors and matrices. The instructions

a=[1,2,3,4,5,6]

or

a=[1 2 3 4 5 6]

create a six-element array containing the values 1 through 6. MATLAB uses commas or spaces
to separate columns in a matrix (our vector is technically a1 × 6 size matrix). To separate rows
MATLAB uses the semicolon

b=[1 2 3;4 5 6]

A shorter way of generating the same array is to use the colon (: ) operator:a=1:6 . This generates
an array of numbers starting with 1, incrementing by one until reaching the number 6. A more
general construction involves two colons, with the syntaxstart:increment:end. Soc=1:2:6 is
equivalent toc=[1 3 5] .

Although MATLAB will dynamically change the size of an arrayas new elements are assigned,
it is considerably faster, less accident-prone, and much more convenient to predefine large arrays.
The instruction

a=zeros(1,100)

definesa as an array of zeros of 1 row by 100 columns. It also accepts thealternate syntax

c=[1,100]; a=zeros(c)

Similarly, we could define an array of ones usinga=ones(1,100) . Note that these function can
also generate 2D arrays (or in fact nD arrays).

It is frequently useful to generate arrays of running indices. The instruction

a=[1:10]

or a=1:10 generates an array of 10 numbers from 1 to 10.

Many times it is important to find out the dimensions of an array. MATLAB uses the function
size() , which returns a vector of dimensions. Sometimes we are not interested in all the dimen-
sions, but just the longest one (as with1 × N arrays): MATLAB provides the handylength()
to obtain that number.



4.2 Addressing Arrays: Indices and Subscripts

It is straightforward to access individual elements of a vector. Try a(1),a(10) to print the first
and last elements of the arraya. More generally, we can refer to the last element of any arrayas
a(end) . MATLAB departs from C in the convention for the indexing of arrays: indices start from
1 (just like FORTRAN or BASIC) and not from zero. If you want tosee a range of values,a(3:7)
will print the array elements 3 to 7. For large arrays, MATLABwill automatically indicate the
column range in each line.

There are two mechanisms for accessing data that has more than one dimension: subscripts and
indices. Subscripts are the intuitive mathematical representation. In this picture,b(1,2) refers to
the element in the first row, second column of arrayb. With b as defined in the first paragraph of
the previous section, the result of that operation should be2. This can be easily generalized to an
arbitrary number of dimensions, although it can become cumbersome.

Indices, on the other hand, use just one number to address (orindex) any element of an array. It
actually corresponds to the physical order in which elements are stored in the computer memory.
In MATLAB matrices are stored running through the rows first,then the columns, thus the fastest
running subscript of a matrix is the first subscript, the row subscript. So withb defined above,
b(2) will result in the number 4 (the same asb(2,1) ), andb(3) is equivalent tob(1,2) and
is the number 2.

Since keeping all of this math straight in one’s head can become rapidly challenging, MAT-
LAB has two handy functions to switch between these two different ways of addressing arrays:
sub2ind() andind2sub() . Frequently, the most computationally expedient way of address-
ing an array is using indices.

In MATLAB the colon operator, when used to address the contents of a matrix, stands for “ev-
erything”. So one can obtain all the numbers in the first row ofmatrix b by typing b(1,:) .
Similarly, all numbers in the 3rd column are obtained by issuing b(:,3) , and just plain all num-
bers corresponds tob(:) . As with the example above on the arraya, we can also specify a range
of indices or subscripts:b(3:6) or b(:,2:3) are all valid and (almost) equivalent. Note that
the dimensions of the result are different.

4.3 Vectorized Operations

As we mentioned in the introduction, MATLAB is a vectorized language. That means it operates
automatically over each member of an array without the need for an explicit loop (which would be
necessary in C or FORTRAN). In fact, it is not only more compact, but more efficient and faster to
avoid loops if possible.

Try b=sqrt(a) . This will use the square root operator over each element of the arraya. Sim-
ilarly, c=a.ˆ0.5 will apply the “raise to the 0.5 power” operation to each member of the array
a. This should produce the same result as taking the square root. Verify that by issuingb==c . As
you can see, the equality operator== is also vectorized.

MATLAB uses the dot-operator construction to distinguish between scalar-vectorized operations
and matrix operations. Dot-operators are meant to repeat operations on the members of the array,
while for MATLAB using theˆ operator not preceeded by a dot means to do the proper matrix
operation of raising to a power (this would fail in our case, since the matrix “raise to a power”



is only mathematically defined for arrays with the same number of rows and columns). Other
common dot operators are “. * ” to multiply and “./ ” to divide. Note that addition and subtraction
are identical for arrays and matrices, so they do not need a dot-operator.

Most (if not all) MATLAB functions are vectorized. For example,

max(b-c),min(b-c)

prints the maximum and minimum values of the difference array. The usual mathematical functions
are also vectorized. Trylog(a) for the natural logarithm,sin(a) for the trigonometric sine,
andlog10(a) for the decimal logarithm. The instruction

d=sin(a/5)./exp(a/50)

for example, defines an arrayd in which each element is related to the corresponding element in a
by the mathematical expresion. Recall that all operations are carried out in double precision, and
numbers are always assumed to be floating point.

As you saw, the comparisonb==c produces an array of the same dimensions asb andc , containing
a 1 for each element that is equal and a 0 for each element that is not equal in both arrays. If the
arrays have different dimensions, it will produce an error.To ask whether all the elements in a
vector are equal, MATLAB uses theall() function: all(b==c) . Similarly, we could use the
any() function to ask if there are any elements that are equal in both arrays.

Onto more examples of vectorization,sum(b) calculates the sum of the elements of vectorb.
There is also an analogousprod function for the product, and the cumulative sum and productcan
be calculated usingcumsum(b) andcumprod(b) . More relevant to us, there is amedian()
function. In arrays of two or more dimensions, by default allof these operators do the calculations
along the first non-singleton dimension. So ifc is a matrix,sum(c) will produce a vector of the
same length as the number of columns in the matrix. Try

d=[1 2 3; 4 5 6]
sum(d)

If this is not the dimension along which you want to operate these functions take a second optional
parameter that specifies which dimension you want to collapse. So

sum(d,2)

will sum the columns and produce a consistently-sized result. If you want to sum all the numbers
in d irrespective of their position in the array, do

sum(d(:))

4.4 The All-Important find()

Suppose you have an arraya and you want to identify the indices of that array for which the ele-
ments fulfill some condition. In order to do so, MATLAB provides thefind() function, which
is very similar to thewhere instruction in IDL. Strictly speaking,find returns the indices of
all elements that are non-zero in an array. This turns out to be very useful, since all the com-
parisons return 1 when they are true. For example,ix=find(a>10) will return the indices of
every element ofa that is larger than 10. Now, we can set them all to 10, for example, by doing
a(ix)=10; . No loops necessary!



4.5 Beyond Arrays: Structures

Structures are variables that contain other variables. Think of them as a neat way to organize data.
The different fields of a structure, can contain variables ofdifferent types, so if one gives the fields
a meaningful name this becomes a great way to keep track of thedata.

In MATLAB one can define a structure as one goes. This is an example of a structure with 5 fields
of different types:

image.data=[1 2 3; 4 5 6; 7 8 5];
image.date=’13-Jan-2008’;
image.blank=NaN;
image.ra=13.3212;
image.dec=43.3455;

You can operate on the fields as you would with any variable of that particular type. For example,
to invert the data matrix, one would useinv(image.data) .

4.6 Command-Line Editing

Using the command line requires typing, and typing introduces errors. To a very good approxima-
tion the MATLAB command-line interface implements theemacs commands that are also available
in a UNIX terminal. Here are the most useful:

backspacedeletes the character behind the cursor

deletedeletes the character under the cursor

insert toggles between insert and overwrite modes

page up and down keysjust as you expect, they scroll the Command Window

left and right arrow keys move the cursor on the current line

Ctrl-E or End key move the cursor to the end of the line

Ctrl-A or Home key move the cursor to the beginning of the line

Ctrl-K erase the line from the position of the cursor to the end, and store in the “paste” buffer

Ctrl-Y paste the “paste” buffer

! escape to the shell (i.e., give an in-line shell command)

There are three very handy features to the command-line interface:

up and down arrow keys allow you to move through the command history, so you can re-enter
and/or edit old commands.

pattern matching search through history if you start typing the first few charaters of a line you
want to recall and then press theup arrow key, MATLAB will complete it with the previous
issued command that started with those characters. If you keep pressing the up arrow, it will cycle
through the command history presenting you all the lines that match your initial characters, if any.
Try typing a= and then pressingup arrow .

line completion if you start typing a line, and press thetab key, the interpreter will present several
options available for completion, according to files in the MATLAB path (more on this later).



In the MATLAB graphical interface there is also a Command History and a Workspace tab avail-
able, where one can simply select and click to repeat commands and obtain information about
variables in memory. Since I became a MATLAB user well beforethese features were available I
tend to not use them and just prefer typing (this is also a signof my age).

4.7 Operators

4.7.1 Relational operators

We introduced a number of operators in the previous sections, such as thecolon operator. Another
useful operator is thetranspose operator (’ ), which switches columns and rows in matrices. MAT-
LAB provides the traditional relational operators.== and ˜= are used to represent “equal” and
“nonequal”. Seehelp relop for a description of the relational operators.

As we mentioned before, MATLAB’s syntax is close to the traditional C syntax (which is fairly
intuitive). Note that the AND operator is the ampersand (&),and the OR operator is the vertical bar
(|), as in C. Negation is the tilde operator (˜ ), since the bang (! ) employed in C is used to escape
to the shell in MATLAB. The commandc=(a <b) will produce an array of ones and zeros, 1
wherever the comparison is true, and 0 wherever it is false (i.e., it is the vectorized version of the
same operation in C). This is very different from the result of the same instruction in IDL.

4.7.2 Other operators and useful functions

To request the full list of operators implemented in MATLAB,try help ops . There are also a
number ofis functions that identify particular conditions. This is very similar to the approach taken
in the language C. For example, in the IEEE convention of floating point numerical representation
used in all modern computers there are particular codes to identify NaNs (not-a-number) or infinity.
MATLAB provides functions that test for these. Some useful examples are:

isnan(a) Returns 1 for every NaN in arraya.

isinf(a) Returns 1 for every infinite in the input.

isfinite(a) Returns 1 for every finite number in the input.

isreal(a) Returns 1 for every non-complex number in the input.

Try a=1/0 andisinf(a) , for example. SinceNaNs propagate, it is somethings useful to throw
them out of operations like taking the mean. So a function that identifies them can be very use-
ful: ix=find(˜isnan(a)); m=mean(a(ix)); (i.e., find all values that are notNaNs and
average them).

4.8 Loops: Hating and Loving Them

MATLAB provides the traditional loop functions:for and while , as well as the branching
constructsif-then-else , if-elseif , andswitch . To see a list of the flow control possi-
bilities, try help lang .

To repeat the message about vectorized languages: loops arevery flexible but very slow. They also



complicate the code, and make it less compact. They are to be avoided whenever it is possible to
use the vectorized features of MATLAB. Programs using loopsare also much much much slower
than the vectorized versions. Try the following comparisonof execution times of a vectorized
program

u=rand(1,1e6);
tic; ix=find(u >0.5); u(ix)=0; toc

versus one that uses afor loop to do exactly the same

u=rand(1,1e6);
tic; for i=1:length(u), if (u(i) >0.5), u(i)=0; end; end; toc

Here the functionlength() returns the longest dimension of the arrayu (the other dimension
in our case is 1). The syntax of thefor loop is straightforward, and you can incrementi by
something different from 1 each iteration by using the double-colon constructstart:increment:end
that we have presented before.

In my machine, the vectorized version is about 23 times faster than the one with the loop and
comparison. It is true that one cannot live without loops, but minimizing their use leads to much
more compact, cleaner, and faster code.

5 Input and Output

Without the ability to input and output data, even the most powerful calculation engine would be
next to useless. The simplest format for data is text files. These files are frequently also called
ASCII files (ASCII — pronouncedaski — stands for American Standard Code for Information
Interchange, a standard for numerically representing alphabets developed in the 1960s). You can
read in text files produced with an editor, and write similar files too. Here is how.

5.1 Writing a File

There is more than one way to save the arrays we created above onto a text file. The simplest (and
least flexible) is to use an option of the commandsave . Try the following sequence of commands:

u=1:100; v=rand(1,length(u));
m=[u;v]’;
save testdata.txt -ascii m
type testdata.txt

The first statement creates a couple of vectors:u contains the integers from 1 to 100,v is 100
uniformly-distributed random numbers. The second statement puts both vectors in a matrix with
a desirable format. The semicolon tells MATLAB that each array is to be a row of the matrix
m (of course, this only works because they have the same length). The apostrophe (’ ) operator
transposes that matrix, so that rows become columns and viceversa. Thus the end result is a matrix
with 100 rows and two columns of numbers. An equivalent statement would bem=[u’,v’] if
you prefer to think that way. Try looking at the variablemto see the resulting format. The third line
tells MATLAB to save the contents of the variablemin text format in the filetestdata.txt .
The final statement simply shows you what is inside a text file (the MATLAB commandtype is



equivalent to the UNIX commandcat ).

The second option is to use the C-like mechanism offprintf . This allows for arbitrary output
formats, so it is infinitely flexible. If you know the C programming language, the following lines
will look awfully familiar:

fp=fopen(’testdata2.txt’,’w’);
fprintf(fp,’%f %f \n’,m’);
fclose(fp)

Here the first line opens the filetestdata.txt for writing (the old contents are erased). The
second instruction is a vectorized version of the Cfprintf statement: the format string is applied
to all values in the matrixmstarting by column order (i.e., the row index is the fast-changing index.
This is the MATLAB convention.) That is whymhas to be transposed first. The last statement
closes the file, after we finished writing. You can try to output the numbers to the screen by using
a fprintf instruction withfp set to 1:fprintf(1,’%f %f \n’,m’) .

One does not need to use the vectorized features offprintf . A more clunky way of achieving
the same goals is to write an explicitfor loop. Replace the middle statement above with the
following:

for i=1:length(original), fprintf(fp,’%f %f \n’,u(i),v(i)); end

You can see again that vectorizing saves a lot of typing, and allows for more compact (thus more
easy to debug) code.

5.2 Formatting print statements

The functionfprintf can be used to format the output in almost any conceivable manner. Please
see the MATLAB help on this routine for a detailed explanation.

5.3 Reading a file in column format

The simplest way of reading a file in column format, such as theone we have just written, is to use
the load command. This command will automatically recognize the fileas a text file, read the
columns and rows, and return a matrix. Let us try

m_2=load(’testdata.txt’);

Please verify that the file was correctly read. A quick version of the sameload command would
be

load testdata.txt

which will create a variabletestdata with the contents of the file.

To parse more complex file formats MATLAB provides the commandsfscanf andtextscan .
The latter is particularly easy to use. Please look at their help.

Here we have usedload to read text files created by MATLAB, but it can read text row and column
formatted files created in a word processor, as long as they have been saved asplain text or ASCII.
As a handy documenting feature, you can insert comment linesin the file (i.e., lines that begin with
the MATLAB comment character, the percent%sign) and they will be ignored byload . We will



talk more about using comments to document files and the importance of documenting below.

5.4 Reading FITS Format Files

Most astronomical data is saved in the FITS (Flexible Image Transport System) format. FITS was
developed in the 1980s and it is the standard in observatories all around the world. Basic FITS
files have two parts: a header section (which has informationabout when and how the data was
obtained, coordinate systems, units, etc), and a data section (the raw data itself, stored as binary
numbers).

MATLAB has a native FITS reader. Request help on the functionsfitsread() andfitsinfo() .
The first one allows you to read in the data stored in a FITS file,while the second one will retrieve
the information in the FITS header.

The MATLAB reader works fine, but I find it less than ideal. I wrote my own FITS reader and
writer many years ago, before MATLAB implemented them, so I tend to prefer my own code. It is
in my matlab directory, so if you paid attention to what we discussed in§2 you should already
have it in your path.

To read a FITS file, use therfits() function (you can requesthelp rfits like for any other
function). Therfits reader will return a structure with many fields, corresponding to the differ-
ent header keyworkd present in the FITS file. To write a FITS file, you use thewfits command.
See its help too.

After reading an image usingrfits , the image data itself will be in thedata field. Try the
following commands:

r=rfits(’n4254_pr.fits’);
imagesc(r.data’);
axis image
set(gca,’ydir’,’nor’);

These instructions will read in a FITS image of NGC 4254 (M99)into MATLAB, display it as an
image, format the axis so that it displays square pixels, andorient it properly so that right is West
and up is North. We will come back to visualization in a moment.

6 Visualizing your Data

Enough background, and onto more interesting things. A veryimportant part of the analysis of any
dataset is its visualization. Humans are not very good at taking in arrays of numbers and making
sense of them, but they excel at seeing patterns in images. Visualization allows us to put the data
in terms that are more easily understandable to our senses.

Let us generate something to work with, by using some of the knowledge we acquired in the
previous sections. We will generate an array of numbers using

t=[0:0.01:10];

We can now calculate a functionf(t), for example:

f=sin(2 * pi * t)./exp(t/5);



Note thatpi is a MATLAB function that returns the numberπ. What doesf(t) looks like?

That is easy to answer using MATLAB’splot() function. Tryplot(t,f) . As we saw before,
plot() produces a plot of the second parameter against the first, or if only one parameter is given
it will plot it against the index number. It is easy to change several properties of the plot. Seehelp
plot for a list of colors, line types, and symbols.

Visualization can serve many purposes. Try

u=t+cos(2 * pi * t);
plot(u,f)

Now we can ask the question, what is the value ofu whenu(t) = f(t)? Click on the zoom button
in the control bar of “Figure 1” (the icon with the magnifyingglass and the plus sign). The zoom
into the first intersection ofu andf , either by repeatedly clicking on it, or by clicking and dragging
to define a box around it. The answer isu = 0.847.

Sometimes we want to specify the range of coordinates in a plot, instead of letting MATLAB
choose it for us. We can do it using theaxis() function. It takes a vector of 4 numbers, specifying
the minimum and maximum ofx andy. For example, tryaxis([0 4 -0.2 0.2]) . The same
function is used to specify some characteristics of the plot. For example, sometimes we want the
scales of the axes to be such that circles appear as circles, not ellipses. We can do that by issuing
the commandaxis equal in MATLAB. Look at help axis for other features.

Documenting plots is very important. Otherwise we would soon forget what they are about. You
can annotate a plot usingxlabel() andylabel() . Let us zoom back out by typingaxis
auto , moving the scroll wheel in the mouse, or right-clicking on the figure and selecting the “Re-
set Zoom” option. Then issuexlabel(’u(t)’); ylabel(’f(t)’) . MATLAB actually
has a built-in TEX interpreter, so very fancy labels are possible (if you do not know what TEX or
LATEX are, do not worry... they are fancy editors used in Physics and Math).

MATLAB is superb at producing publication-quality graphics in many formats. We showed above
how to produce and annotate a basic plot. There other types ofplots that can be produced, just
look at the MATLAB help forgraph2d. For amusement, try clearing producing a polar plot of one
of our functions by sayingpolar(t,f) .

6.1 Being in Control

Let us erase the polar plot by issuing a “clear figure” commandand recreating the previous plot

clf
plot(u,f)

The properties of graphics are manipulated in MATLAB using object handles. MATLAB distin-
guishes between figures and axes. Each figure has a separate window, with the figure number as a
title. If you want to create a new window, issue the commandfigure . If you want to change the
focus back to the older figure, sayfigure(1) . Do you want to look at the properties of Figure
1? Issue the commandget(1) to get a (somewhat overwhelming) list of figure properties. The
documentation for all of them can be found in thehelpdesk . To change the size of the figure,
for example, one needs to alter the last two elements of the 4-elementPosition array (the first two
are the x-y position in the screen in pixels, the second two the x-y sizes in pixels). To alter the size
of the current figure, try the following commands:



s=get(gcf,’Position’)
set(gcf,’Position’,[s(1:2) 400 400])

The first command puts into the variables the value of the propertyPosition for the current figure
(gcf stands for “get current figure”, and it contains the value of the handle of the active figure,
in our case just 1... verify that by issuing the commandgcf ). The second command changes the
value of the propertyPosition in the current figure to an array of 4 numbers. The first two are
the first two elements ofs . The last two are the new size of the window,400 × 400 pixels. The
graphics are resized automatically.

A figure can have many axes, our plot is just one of them. If you have it on the screen and the
active figure is the one that contains it, you can see its properties issuing aget(gca) . As with
gcf , gca is a command that returns the handle of the current axes object. Unlike figures, which
have integer handles, axes have floating point handles that are not displayed anywhere. Sogca is
really handy.

Something really handy in Astronomy is to change the orientation of the x-axis (R.A. decreases to
the right, remember?). To flip it in MATLAB, try

set(gca,’xdir’,’reverse’)

As we have seen in the FITS example above, sometimes one needsto flip the y-axis too. The
instructionset(gca,’ydir’,’normal’) , for example, makes it so that it increases upwards
(the normal mathematical sense).

The default background color of a plot is white. To change trysomething like

set(gca,’Color’,’y’)

Basic colors in MATLAB are abbreviated with one letter (see the help forplot for color and sym-
bol abbreviations). To specify an arbitrary color, give a 3-element array with the RGB component
values in the range 0 to 1, for example,set(gca,’Color’,[0.2 0.8 0.6]) . To change
the line width of the box framing the plot, for example, tryset(gca,’Linewidth’,3) .

Similar handles are available for most of the plotting commands. Change the test program to return
a handle in the command plot:h=plot(u,f) . Then play with the properties. By the way, the
properties are case insensitive and minimum-pattern-matched. Soset(gca,’Linewidth’,3)
andset(gca,’linew’,3) are the same command.

To clean the figure, issue the “clear figure” commandclf . To close the window, issueclose(1) .
The next plot command will create a window with all properties reset to the defaults, if necessary.

6.2 Overplotting

Often you want to plot two graphs in the same plot — comparing data and theory is an example.
Usually new plots erase the old plots. To change that behavior, issuehold on . To return to the
old behavior, issuehold off . Just issuinghold toggles the behavior.

So, to illustrate this, try the following commands:

clf
plot(t,u)
hold on
plot(t,f,’r--’)



this will overplotf onu using a red dashed line.

A very handy command to annotate plots of this type islegend . Look at the help for that com-
mand. Here, we can create a simple legend by issuing the command legend(’u’,’f’) .

6.3 2D and 3D Visualization

MATLAB allows you equally gracefully to display 2D and 3D datasets. To begin, let us create a
2D function.

[x,y]=meshgrid(-100:2:100,-100:2:100);
g=exp(-(x-25).ˆ2/800-(y-35).ˆ2/500);
g=g-2 * exp(-(x+10).ˆ2/700-(y+40).ˆ2/1500);
mesh(x,y,g)

The first line uses themeshgrid() function to define the coordinate grid. The second and third
line add a couple of 2D Gaussians to define our surface. The fourth line displays it as a mesh plot
in 3D. The color scale corresponds to the “height” of the function. Saycolorbar to place the
current color scale on the right side of the plot.

MATLAB allows you to explore the 3D surface in real time. Try clicking on the icon next to the
hand, on the icon bar of the current figure (it is the one with the cube and the circular arrow around
it). Now left-click on the mesh graphic and hold the button down while moving the cursor: you
can change your viewpoint in real time! The current Azimuth and Elevation of your viewpoint are
noted in the left bottom corner. Enterview(3) to go back to the default 3D viewpoint. For a
smooth version of themesh plot, try:

surf(x,y,g)
shading interp

In astronomy we do not use surface plots as these very commonly (our data is too noisy or too full
of details for them to be useful). Many times, we use countourplots. Try

contour(x,y,g)

for a simple contour plot. Frequently we want to specify the contours and their color. For that just
include an array with the contours you want to use as another parameter, and add a string parameter
specifying the color of the contours. Try

contour(x,y,g,-2:0.1:2,’k’)

You can also produce filled contours very easily

contourf(x,y,g,-2:0.1:2)

To have the same scale in thex andy axes, try using theaxis equal command.

All the annotations we described previously can be used with2D and 3D plots. Contourplots can
also be annotated withclabel() . Search for its help if you want to use it.

6.4 Visualizing Images

Let us recreate the 2D image of a galaxy



r=rfits(’n4254_pr.fits’);
imagesc(r.data’);
axis image
set(gca,’ydir’,’nor’);

The imagesc() function creates color display of the data using the currentcolor map and the
full data range. It also flips the y-axis by default because that is handy for JPEG or PNG images
which are defined row by row starting at the top, so theset() statement is there to unflip it.

We have been using the standard MATLAB colormap to display our images, but that is only one
of many choices. Sayhelp graph3d to get a list of the 3D graphic functions, including the
available colormaps. Thejet colormap is the default. Other popular choices arehot , gray , or
hsv . To change the color map and add an intensity bar, try

colormap hot
colorbar

Sometimes one wants to display the negative image. A color map is just aN×3 matrix of numbers
that specifies the RGB color codes for a normalized set of intensities. So, if we flip it, we invert the
color scale and obtain a negative image. We could write our own code to flip the rows in a matrix,
but MATLAB already provides theflipud() function. Try

colormap(flipud(hsv))

Another simple useful manipulation is to change the range ofintensities in the display. To MAT-
LAB, the intensity is just another axis, called the color axis. To define its range, it uses the function
caxis() . So try

caxis([1900 3000])

now we can see the details of the outer spiral arms, although the nucleus is saturated.

We have already talked about how to zoom into a plot (or an image). We can also request informa-
tion about points in the image. Click on the “Data Cursor” icon in the Figure Window. Now when
you place the cursor over the image it should look like a cross. Click anywhere in the image. A
small rectangle appears, showing you the image coordinatesof the point selected, the index (i.e.,
the value of the image at that point), and the corresponding RGB triplet in the current color map.

To see the nucleus and the spiral arms at the same time we need to use an intensity scale that is
non-linear. To do so we can try to display the logarithm of theimage, instead of the image itself.
Let us try the following commands

m=r.data;
ix=find(r.data<=0);
m(ix)=NaN;
hist(log(m(:)),100);
imagesc(log(m’));
caxis([7.5 8.9])

The first three lines look for pixels that are zero or negative, and replace them with harmless not-a-
number values. The logarithm of 0 is−∞, which MATLAB will deal with perfectly fine but would
throw havoc into our data ranges. The logarithm of a negativenumber is a complex number. Again,
MATLAB will just do the calculations, but trying to display amatrix of complex number would
not be allowed byimagesc() . It turns out that this image does not have problematic values, so



we could have ignored that. Then we display the histogram of the logarithm of all pixels in the
image using the functionhist() . The second parameter there indicates the number of bins. This
is useful to select the range in the color axis. Then we display the logarithm of the image using
imagesc() , and we set the intensity range to a good value. Simple, isn’tit?

Finally, let us overplot something on the image. For example, sometimes it is useful to mark the
location of something special with a cross. Or sometimes we want to overplot contour lines. Just
like in the case of the graph, we can use thehold on command to prevent new plots from erasing
old plots. Therefore

hold on

plot(104,214,’+w’,’MarkerSize’,15)
text(108,223,’Something important here’,’Color’,’w’)

where the extra “property-value” pairs are simply a short hand for setting some of the properties of
the symbol (its size) or the text (its color) without having to get a handle to their graphic properties
(and useset() ).

6.5 Eye Candy

There is much more that can be done with graphical visualization. Just to give a couple of exam-
ples, I have prepared two scripts that run on a spectral-spatial datacube. The scriptvisualize2d
plays a movie of the third dimension of the example datacube.The scriptvisualize3d does a
3D isosurface rendering of the same datacube, using a partially transparent surface.

6.6 Making a Hard Copy

This is usually done by creating and printing a Postscript file. MATLAB has theprint command,
which takes care of this as well as output in other formats. Usually, the most common format
for a graph that will be used as a figure in a document is encapsulated postscript. To create an
encapsulated postscript file out of the current figure, tryprint -depsc2 myplot.eps . This
creates an encapsulated level-2 color postcript file containing the plot. Look at the help for the
print command for other options. If you are producing reports using Word, for example, you
may want to create PNG figures instead usingprint -dpng myplot.png .

MATLAB automatically resizes the figure to fit properly within the letter paper bounds. Sometimes
this is undesirable, because it may shift around some of the annotations, resize the axis labels, etc.
To obtain a paper copy that looks identical to the screen, onehas to set a particularly obscure
property of the figure before printing:set(gcf,’PaperPositionMode’,’auto’) .

7 Writing a Program

To avoid all that command-line typing when one is repeating series of commands, one creates a
program. The simplest version of a program is just a batch file, which is what MATLAB calls a
script. It is essentially the same as if you were typing on the terminal, but all the typing can be
repeated with very little effort. To write a script, create atext file (a.k.a. an ASCII file) using an



external editor (such as vi or emacs), or even better the handy MATLAB editor. To start it, simply
enteredit at the prompt.

Now we can create a program with the following command lines:

w=sin(([1:200]/35).ˆ2.5);
w=w+2;
t=3 * [1:200];
plot(t,w)
xlabel(’Time’)
ylabel(’Amplitude’)

It is rare to need a continuation character, but if necessaryMATLAB uses the ellipsis (. . .) as an
indication that a line will continue into the next:

a=[1 2 3 4 ...
6 7 8 9]

will be interpreted as if it was all in one line.

Now, to conclude the program, we need to save the file. MATLAB uses the extension.m to identify
its files. Click on the “File Save” tab or the floppy disk icon inthe editor, or give the keystroke
sequence<Ctrl-x><Ctrl-s> , and save your program with the name “test.m”. To invoke and
execute the program, just entertest at the MATLAB prompt.

7.1 Documenting Code

Documentation is good, and programs should be documented asthey are written (or else you will
find yourself scratching your head and wondering what this code was for in a couple of weeks).
The comment symbol is the percent (%) sign. The remainder of the line after a % sign will be
ignored by the interpreter. Try including those in the editor, and see how the color of the text
changes to green. Use this comment as the first line of the file:% This file corresponds
to the MATLAB tutorial . Now save the file and tryhelp test . Handy, isn’t it?

MATLAB also provides symbols for blocks of comments. Any lines between a%{ and a%} will
be ignored by the interpreter. These need to be the first characters in a line.

7.2 Scripts and functions

The main distinction between batch files (such as the one we wrote during this tutorial) and func-
tions is the fact that scripts run in the user environment, while functions run in their own envi-
ronment. What do I mean by environment? Environment refers to the contents of the variables
defined. A scripts share the same memory space: your main workspace, the same one you use
when typing at the prompt. Thus altering a variable in one script has effects on how others exe-
cute. This can be good or bad: variables can be used to pass information between scripts, but the
end product depends on precisely what sequence of scripts was issued.

By contrast, every time we execute a function its environment is created anew, and the only vari-
ables defined are the parameters passed to the function. So functions are fairly safe and separated
boxes, while scripts share all the same sandbox. Often it is easier to debug a script, since the



internal variables remain in the user environment and are not deleted after it finishes (so they can
be examined). Another (minor) distinction between batch files and functions is that functions can
return one (or more) variables as results.

To define a function in MATLAB, the first instruction in the filehas to be something like

function y=myfunction(x)

wherex is a parameter (or a list of parameters) passed to the function, andy is a variable (it can
also be a list such as[y,z] ) returned by the function (and hopefully assigned some value within
the function). MATLAB functions do not need to return a value. Try transforming the script in§7
into a function.

7.3 I Goofed!

Just like in IDL or the UNIX shell, you can stop the execution of a program by pressingCtrl-C .
This will place you back in the environment from which the program was launched and give you
control.

Sometimes, as when one is writing a complex program with manynested routines, it is very handy
to have some debugging functions available to figure out why something isn’t working as it should.
MATLAB provides several levels of debugging possibilities:

Printing values. The simplest debugging is simply looking at how a program changes a value to
figure out what is going wrong. Since MATLAB prints out the values assigned to variablesunless
a semicolon is used to end the line, then the easiest thing to do is to remove the semicolons from
strategic statements to see the output information. More elaborate, formatted output can be pro-
duced sprinklingdisp or fprintf commands throughout your program.fprintf(1,...)
will write to the standard output (i.e., the screen) and has the same syntax as the C command of
the same name. Check out thehelp information on these two commands.

Giving the control back to the user. Sometimes I want more than just seeing a value. I want to
look at several values (or arrays) and do calculations with them to figure out whether something is
correct or not. The program flow will be interrupted and the control given back to the user when
the interpreter finds the instructionkeyboard . Try inserting it in your test program. To continue
with the program flow, just sayreturn in the command line.

Full blown debugger. MATLAB includes a very handy debugger: sayhelp debug to get all the
relevant information. A very useful pair of instructions are dbstop on error anddbclear
all . The first one tells MATLAB that, if and when an error occurs, the control should be in-
stantly given back to the terminal. It’s just like insertinga keyboard statement the moment an
error happens (although you cannot simplyreturn to continue the execution, since an error has
happened). The editor will automatically load the offending file and a green arrow will indicate
the position of the offending statement. To get back to the working environment, saydbquit .
You can also insert and remove break points using thedbstop command or the handy buttons on
the editor window, step instruction by instruction, etc. Thedbclear all statement will simply
clear all break points, and stop the debugger from pesteringyou again.


