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M67 Cluster Photometry

1 Introduction

You should keep in mind that there are two separate aspects to this project as far as an astronomer
is concerned. First is the knowledge of techniques applicable to CCDs and second is the knowledge
of more general techniques related to obtaining color-magnitude diagrams, whether the data are
obtained with a CCD, with photographic plates, or with a classical photometer. There are, of
course, many interesting things related to the interpretation of the C-M diagram that are the
motivation for such observations, but these are beyond the scope of this course.

2 The Data for M67

If you look at the files in your home directory (use the command ls -al to see the file names and
their sizes), you will notice that you have a directory called M67. Go into this directory by typing
cd M67 (cd = “change directory”). Type ls -al again to see the files in this directory.

There should be a total of seven images. There are four images of the open cluster: a pair of
images of two overlapping fields taken through a V filter (m67vc.fts and m67ve.fts) and a pair of
images of the same two fields taken through an R filter (m67rc.fts and m67re.fts). For each image
file in the FITS format there is a header file (e.g., m67vc.hdr) which has some text describing the
image. There are also flat-field images for each filter and one bias frame. Finally there are two
datafiles, m67.txt and ngc7243.txt, which contain the Color-Magnitude data for M67 and NGC
7243 (the latter is for Part II) that were published in the astronomical literature. In m67.txt,
column 1 is the B-V, and column 2 is the V magnitude, while in ngc7243.txt, column 1 is the V
magnitude, and column 2 is the B-V.

You can view the images by starting MATLAB (see the separate write-up to review the basics
of working with MATLAB) and reading in and displaying the .fits files with commands like this:

vc=rfits(‘m67vc.fts’)
imagesc(vc.data);
axis image

where the third command makes the pixels square in the display. Now the variable vc.data is
an array with 572 columns and 380 rows, containing the image of the cluster center through the
V filter. The image is naturally displayed in the correct astronomical orientation by imagesc
in this case, with North up and East to the left. Because there is a wide range of intensity
between the brightest and the faintest stars, you should try displaying the logarithm of the intensity:
imagesc(log10(vc.data)).

Since you will always want to start by reading in your images, it will save a lot of time and
typing errors if you set up a file with commands to do that job for you. Witin MATLAB, you can
use the edit command to start an editor session. In a new file, enter as text a series of commands
to read the files. Thus:
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vc=rfits(’m67vc.fts’);
ve=readfits(’m67ve.fts’);
...
rf=readfits(’rflat.fts’);
bias=readfits(’biasf.fts’);

Save this file with a name like ’read images’. Then when you start MATLAB, you need only type

read images

and your images will all be read into the names you have given them.

3 Image Processing

The first part of the lab consists of data reduction and a short analysis of the results. The data
reduction consists of three procedures:

• Removing various instrumental artifacts of the CCD, i.e., bias removal and flat-fielding.

• Measuring the magnitudes of all of the stars on all of the images.

• Combining the overlapping images (i.e., combining the m67vc.fts image of the center of the
cluster with the m67ve.fts image of the eastern part of the cluster) by identifying the stars
seen on both images and averaging their magnitudes.

3.1 Bias Removal

The amplifier which reads out the CCD has an offset voltage which contains some random noise
and which also varies across the CCD because of warming of the amplifier as the CCD is read. This
bias is the same for all images recorded at roughly the same time and exactly the same temperature.
A bias frame was created by reading out the CCD without applying any light. Thus, first of all,
subtract the bias frame from each of the other frames (images). You can do this with simple
statements of the form

vcb = vc.data - bias.data;
vfb - vf.data - bias.data;

where the variable name vcb now contains the bias-corrected image. Now the zero of intensity is
really at zero, although the blank portions of your images will not contain zeros because the sky
at our observatory is bright. Don’t forget to subtract the bias from the flat-field images as well as
from the images of the cluster. Maybe it occurs to you that you could just put these statements in
your “read images” file. Good idea. Do it.

3.2 Flat-Fielding

There is considerable variation in the sensitivity of the CCD from one pixel to another. This can be
due to vignetting of the optics or to variations in the electrical characteristics. This variation often
depends on the wavelength of the incident light. “Flat-field” images are taken of the twilight sky
or of an illuminated screen in the telescope dome through each filter to determine this response.
You have flat-field images for V and R in your directory. To see the flat-field variations, let’s first
look at the mean value in the flat-field image:

mean(vfb(:))
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assuming vf to be the name you have given the V band flat-field image. You will see that the image
is well-exposed (but still below the maximum value of 16000 where the CCD saturates). You can
then make a normalized flat field as follows:

vfbn = vfb/mean(vfb(:));
This image will have an average value of 1.0, but will be less where the CCD is less sensitive,

and greater than one where the CCD is most sensitive. Make such an image, and look at it (you
can see the range of values being displayed using colorbar after imagesc).

Now divide the normalized flat-field frames for each filter into all of the others taken through
the same filter. For example:

vcbf = vcb./vfbn;
If you think about this, you see that this will increase the values in the image where the CCD is
less sensitive, and decrease them where it’s more sensitive. This is just what we want in order to
put the whole frame on the same intensity scale. As a result, you should now have four images,
two in V and two in R, which are bias corrected and flat fielded. These are the images we will
measure. Once again, the flat-fielding commands can be put into your “read images”
file, so you don’t have to repeat them again.

3.3 Measuring the Stellar Magnitudes

Two MATLAB procedures are used to get magnitudes. FINDSTARS finds the stars in an image
and lists them. APER measures the fluxes of a star at a given position.

To see how FINDSTARS works, you can invoke it with findstars(’findstars.out’,im,500,10);,
where im is the name of one of your images (corrected for the bias and flat-fielded).

The second parameter is the “minimum value above background”. If this is set too high, you
will lose the faint stars, but if set too low, you will get all sorts of fluctuations that are not real
stars. The background we are referring to is the sky brightness in the image - using curval, im will
show you that this is in the range of 200 – 400, depending on the image. So for “minimum value
above background”, try 500 (this is actually much too high, and will miss faint stars).

The third parameter is the size of the patch that it uses to remove stars from the image. If
you set this value too high bad things will happen (fainter stars will disappear as they are blotched
by a nearby star). If you set it too small, not enough of the original star will be removed and the
search algorithm will be confused (you will get a lot of chaff). Experiment with different values,
but 10 pixels is a good value to start with.

As FINDSTARS executes, you will see that the stars that the algorithm finds are removed
from the image, replaced with a patch of the local background value. As the removal proceeds the
image color stretch is increased more and more, revealing fainter sources (and a lot of noise). To
experiment with a fainter threshold, restart it with findstars(’findstars.out’,im,50,10);.

When it completes, it will show you the stars found overlaid as white circles over the original
image. It will also return a matrix with the results of the fits to the stars. This matrix contains the
following information (one star per row): X and Y coordinates (in CCD pixels), the peak brightness
value, the size of the major and minor axes found by the fit (as a full-width at half-maximum),
and the orientation of the ellipse (position angle). The same information is written to a file in
your directory called “findstars.out” (be mindful, this file is overwritten each time FINDSTARS
is executed). To see the contents of this file from within MATLAB, use the command type as in
type findstars.out.

You will see that some stars are actually artifacts in the CCD (cosmic ray strikes or hot pixels),
and some stars are a blend of more than one source. Note that frequently it is easy to spot these
sources as their size is very different from those of real stars in the image. If you’d like, use an
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editor to remove the lines corresponding to the fake sources from the file. In any case, we will have
another opportunity at getting rid of erroneous sources in the next steps.

Having found the stars in an image, we next use APER to measure the fluxes. This routine
measures a star’s intensity through a circular aperture. You give APER the name of the image and
the coordinates from FINDSTARS (or using the data cursor on the image). It will also require the
following information:

• The radius of the aperture for the flux measurement. You want to pick the size of the aperture
to include as much of the star’s light as possible, without including too much sky background.
This is a compromise choice because there is a lot of light quite far from the central peak, as
you can see from the bright stars, but if you include all of it then you will be including a lot
of sky noise when you measure the dim stars. This is where having a well-focussed telescope
helps retain the dim stars because you can get away with using a small aperture. The effect
of a big aperture, necessary if the telescopic focus is poor, is to lose the dim stars in the noise,
and to lose any stars that have overlapping apertures. Using too small an aperture is better
than using too large an aperture, but your result then becomes very sensitive to exactly how
the star is centered on the pixel pattern. Using a radius about the same as the FWHM (from
FINDSTARS) is probably a good place to start, but you should experiment.

• The inner and outer radii of a ring through which the program will measure the sky brightness.
This value is then normalized to the area of the star aperture and subtracted from the star’s
flux. The inner radius should be greater or equal to the star aperture. The outer radius is
again a compromise: a large aperture will give a better mean sky value, but at the same time
may approach another star, which will contaminate the sky measurement.

• Finally, APER needs the number of electrons/ADU for the CCD (so it can do Poisson statis-
tics). For the photometrics CCD on the 20-inch, it is probably best to use the manufacturer’s
value of K = 16. This is of course the value K that you determined in the first lab. Note
that for the camera presently used in the 20-inch (the Apogee camera that you will use to
get your own images for the second part of this lab) the gain is K = 2.3.

Using this information, you can now try to run APER using, for example, the coordinates
of the first star returned by FINDSTARS: [flx,err]=aper(im,108.2,272.1,8,12,15,16). When
executing, APER will show you a cutout of your image centered on the position you gave it, with
a white circle indicating the region over which the flux of the star will be calculated, and two red
circles showing you the annulus you selected for the sky. APER returns two values, the star flux
and its error.

To make things a bit simpler, I have written a function called all aper(’phot.out’,’findstars.out’,im).
This routine takes the name of the file written by FINDSTARS (you can edit it to remove erroneous
sources if you want) and the image, and it executes APER for each source in the list. Please, edit
the file to change the parameters to others you may want to try. After executing APER for each
source, it will ask you whether the result is good or bad (1 or 0). Enter the corresponding value.
Use this to mark as “bad” the photometry for sources that are blended, caused by hot pixels, or too
close to the edges of the CCD. If you make a mistake do not worry, you can correct it later. This
information will then be written into a file called “phot.out” together with the result of APER.
This is your chance to flag some stars as bad, if you have not already removed them by editing
the “findstars.out” file. Be sure to mark as bad any spurious source (like a hot pixel) and any
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star where the aperture overlaps with another star. Remember that you can get a hardcopy of the
photometry by using the UNIX command to print the file: lpr phot.out. The file can be loaded
into a MATLAB matrix p using p=load(’phot.out’). The columns correspond to: (1,2) the x
and y coordinates, (3) the flux of the source, (4) the error in the flux, and (5) the value you entered
indicating whether the photometry is valid or not. If you made a mistake when you entered the
flag, that can be easily corrected by editing the file.

Those stars which are in the part of the sky where the central (“c”) and eastern (“e”) images
overlap will have been measured twice in each filter. By comparing the results, we can estimate
the measurement error. In addition, the best value for the magnitude in a given color will be the
average of the two measured values. You will use a procedure called pmerge to merge the two
photometry files from the “e” and “c” plates. You first must identify a reference star seen on both
images, and write down its coordinates on both the “e” and “c” images. For example, suppose
the two images through the visual filter are called vc and ve. Then display the first image with
figure(1); imagesc(vc) and the other with figure(2); imagesc(ve). You can then use the data
cursor to obtain the coordinates of the same star in one image and another.

Suppose a star in the vc image has coordinates x=100 and y=200, and the same star in the ve
image has coordinates x=250 and y=190. Then you would run merge as follows:

pmerge(’vmerge.pht’,’veast.out’,[340,277],’vcen.out’,[108,272])

where we assume that all aper has been run on the eastern image to produce the file “veast.out”.
(You want to put the east image first so the new coordinates will be positive.) The result will be
found in a file called “vmerge.out”. This file has a format similar to that produced by all aper,
with seven columns: (1,2) x and y coordinates (those in the second image will be shifted to coincide
with those in the first), (3) the flux, (4) the error in the flux, (5) the flag indicating validity (should
be all ones, invalid sources are expunged in the merge process), (6,7) the location of the star in
the original files (0 if not in one of them). Be careful that the two files you wish to merge do not
contain any blank lines, as this will result in an error when you run pmerge.

3.4 Plotting the Color-Magnitude Diagram

Now you need to get the color of your stars. A “color” is the difference between the magnitudes
measured through different filters. Since we have used the V and the R filters, we will construct
the (V-R) color. The (instrumental) magnitude is simply defined as m = −2.5 log(F ), where F is
the flux of the source. We will later convert this instrumental magnitude to one of the standard
systems.

To calculate the colors use the scolor task on the merged photometry files corresponding to the
V and the R filters. This task will take the difference between the V and R magnitudes, dropping
any stars that were only measured in one filter, or that have been flagged as bad in either of them.

Suppose the two photometry files are called “vmerge.pht” and “rmerge.pht”. We have to again
locate the coordinates of a reference star on the m67ve and the m67re images (assuming that the
“e” file was first when we ran merge). Then we use a command like this:

scolor(’vrfile.col’,’vmerge.pht’,[208,272],’rmerge.ph’,[106,270])

where the numbers in [...] are the x & y coordinates, and ’vrfile’ is a name of your choice. The
procedure will write a file called vrfile.col which will have seven columns: (1,2) x and y coordinates
(referred to the first image), (3) V magnitude, (4) R magnitude, (5) V-R color, and (6,7) locations
of the star in the original files. The procedure will also put up a plot of V vs. (V-R). This should
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be a recognizable C-M diagram since the conversion to the standard system will only alter its shape
a bit and also change scales on the coordinate axes somewhat.

Finally, you have to correct for atmospheric extinction, convert the data to the standard color
system and convert from V-R to B-V. All three of these transformations can be combined into
a single linear transformation but you have to figure out the transformation coefficients. (This
simplification works only because we know the magnitudes of two of the stars in the images.) Data
on the two stars are given in the table; the approximate coordinates refer to the m67re.fts image.

x y V B-V

340 274 9.69 1.355
489 164 12.82 0.585

You have to calculate the four transformation coefficients a, b, c, and d in the expressions

B − V = a ∗ (v0 − r0) + b (1)

V = v0 + c ∗ (v0 − r0) + d, (2)

where v0 and r0 are the magnitudes in your instrumental system while B and V are the magnitudes
in the standard system. Find the two standard stars in your .col file from their coordinates. Then
you will have numerical values for four equations, and you can solve for a, b, c, and d.

Once you have the four transformation coefficients, read in your instrumental magnitude and
color matrix with

p=load(’vrfile.col’)

and then use MATLAB’s array arithmetic to get the properly standarized V and (B-V) values:

BmV = a*p(:,5) + b
V = p(:,3) + c*p(:,5) + d

You can now use plot to generate the H-R diagram. To get the magnitude axis to increase
downwards you can flip the y-axis using set(gca,’ydir’,’reverse’). A file in your directory named
m67.txt contains published data for this cluster. You can use the hold command (see inside
MATLAB help hold) to plot this data on the same graph to see how they compare. When you
get a satisfactory plot, you should create a hardcopy and print it out to include it in your report
(see MATLAB tutorial).

You should leave all of your data reduction files in your directory and a listing of your final
v0, r0, V, and B − V should be included with the write-up. Also include all of the parameters that
you used in the various commands.

The write-up of this part, i.e., using M67 data, should be ∼ 2 pages long, excluding your
plots and parameter lists. Please include the .m files that you wrote to calibrate and analyze the
data. The analysis is simply to compare your result with the published data on this cluster. You
should include a C-M plot of your results in the write-up. In the comparison you should compare
the quality of the two data sets, i.e., the amount of scatter in the plots. You don’t expect a 1:1
correspondence between stars in the two data sets since they were taken using completely different
techniques but the general shape of the two plots should be similar (Are they? If not, why not?).
In your plot point out the main sequence, giant branch, etc.

Include a short discussion of the quality of your data, as you deduce from comparing the
photometry of the stars that appear in two frames taken with the same filter (hint: look at the last
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column of the output of pmerge to backtrack which stars have good photometry in both the center
and east frames). How does this compare to the purely statistical errors? If they are different, what
reasons could there be for this?

Point out any stars that look like they may not belong to the cluster using your data alone and
explain why. Then do it in comparison with the published data. If you are the first one to measure
a cluster, you don’t have the luxury of a comparison and so you need to develop criteria from your
data alone.

Finally be sure to include a justification for not having to measure any extinction stars or
standard stars. The easiest way to do this is to show that the three transformations involved can
be replaced by one grand linear transformation. Explain what you are doing in the derivation.

Due: 19 Nov 2009
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