The Interstellar Medium and Gas Dynamics

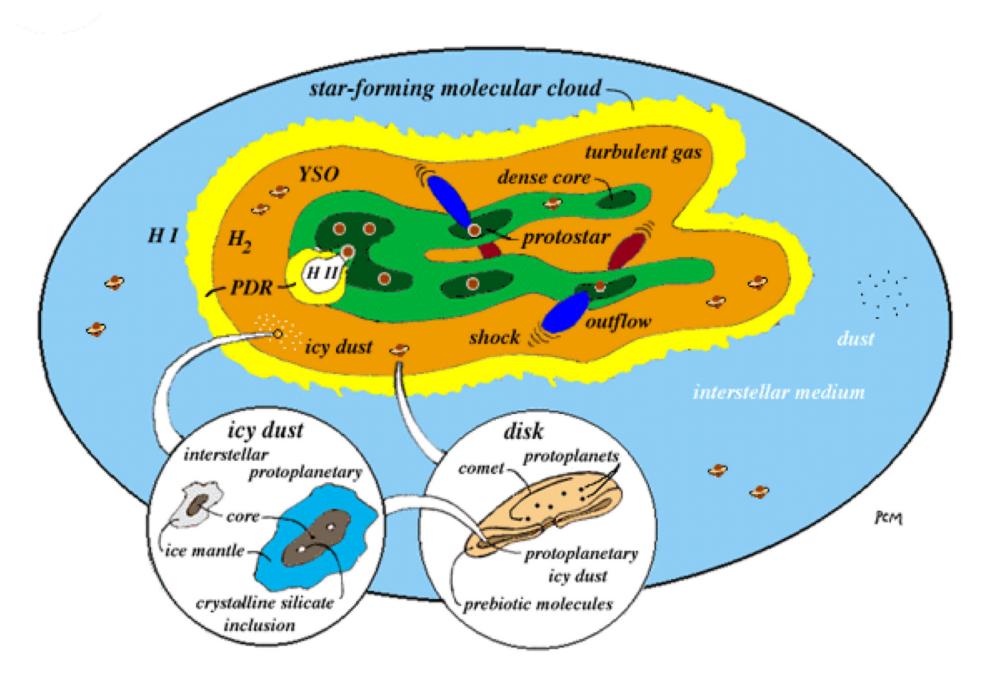
Astronomy 670 Spring 2011

ASTR670

Overview

- Study of the diffuse interstellar gas & dust
 - Energy sources
 - The radiation field
 - Non-thermal components: cosmic rays & B
- Emphasis on Galactic ISM & aspects of ISM in external galaxies
- Connections to Galactic structure, star formation & feedback
- Broad & evolving subject
 - An exhaustive discussion neither desirable nor possible

Literature


Core

- Bruce Draine, "Physics of the Interstellar and Intergalactic Medium" (Princeton 2011)
- James Lequeux, "The Interstellar Medium" (Springer 2005)
- L. Spitzer, Jr., "Physical Processes in the Interstellar Medium" (Wiley 1978)
- D. E. Osterbrock, "Astrophysics of Gaseous Nebulae and Active Galactic Nuclei" (University Science 1989)
- F. H. Shu, "The Physics of Astrophysics" Volumes 1 & 2, (University Science Books, 1991,1992)
- A. G. G. M. Tielens, "The Physics and Chemistry of the Interstellar Medium" (Cambridge 2005)
- G. B. Rybicki & A. P. Lightman, "Radiative Processes in Astrophysics" (Wiley, 1979)

Literature

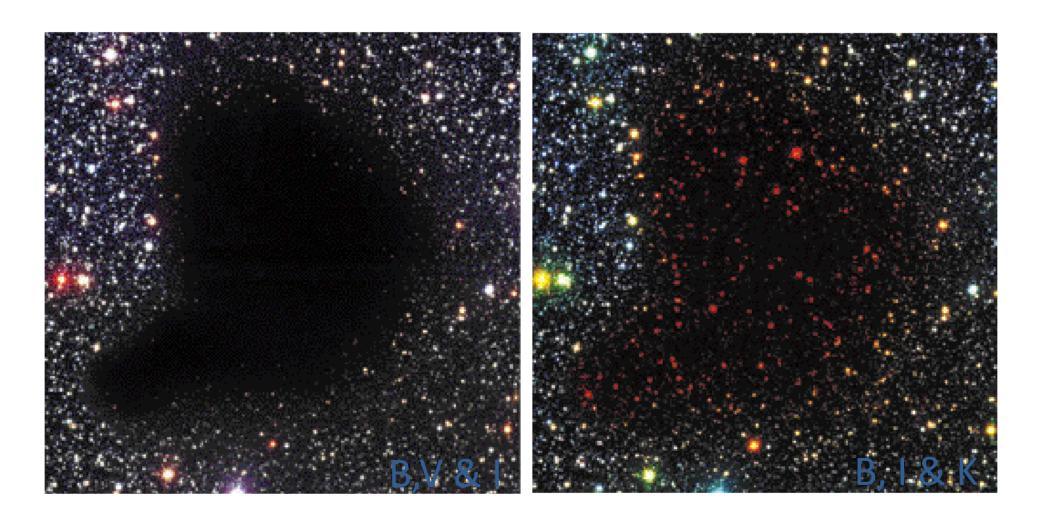
Additional resources

- D. J. Hollenbach & H. A. Thronson (eds.), "Interstellar Processes" (Reidel 1987)
- W. W. Duley & D. A. Williams, "Interstellar Chemistry" (IoP, 1984)
- J. Graham and A. Glassgold's (Berkeley) notes of AY216 at http://astro.berkeley.edu/~ay216/08/NOTES/

1. Introduction: Discovery & History of the ISM

ASTR670

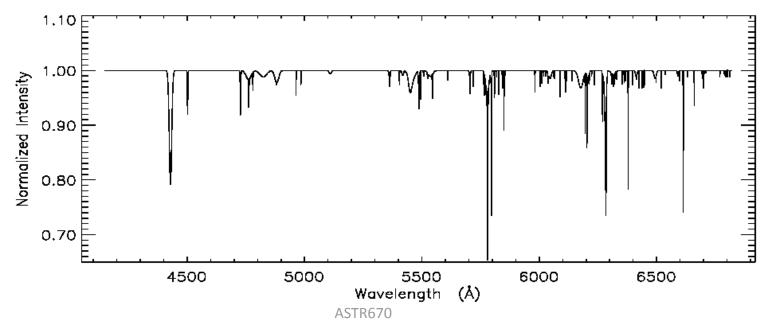
History


- 1656 Huygens, observes Nebula in Orion
- 1755/1796 Kant, Laplace nebular hypothesis
- 1787: Messier's catalog of nebulae
 - 1758-1860: W., C. & J. Herschel list 5079 objects in the "General Catalog"
- 1860-1900: W. Huggins & J. E. Keeler (Lick), spectra of nebula
 - Andromeda (stellar) vs. Orion (line)
- 1904: Hartmann, stationary Ca II H & K in spectroscopic binary δ Ori (ApJ 19, 268)
 - Interstellar or circumstellar?
- 1909: V.M. Slipher (one of the discoverers of galaxy redshifts) argues for interstellar origins
- 1912: V. Hess, discovery of ionizing radiation "die Höhenstrahlung" during balloon flights
 - Not solar

History

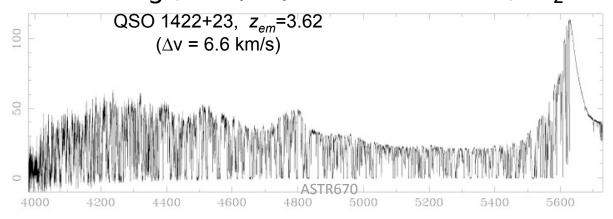
- 1909-1915 Kapteyn, uses star counts to conclude we are near the center of the universe
- 1917 Curtis observes dark bands in spiral nebulae, likens them to ZOA in Milky Way
- 1919 H.N. Russell argues that ZOA is caused by dust
- 1919: E. E. Barnard (Lick), catalog of dark nebulae
 - Holes in stellar distribution or obscuring matter?
- 1926: Eddington predicts interstellar H₂. Influential lecture on "Diffuse Matter in Space" at Royal Society: people paid attention
- 1927-34: Clay, Bothe, Kohlörster & Alvarez, cosmic rays are high energy charged particles not γ rays
- 1930: R. Trumpler (Lick), proof of interstellar extinction
 - Comparison of luminosity & angular diameter distances to open clusters
- 1930: Plaskett & Pearce, narrow Ca II & Na I absorption is interstellar
 - Struve shows stronger Call K in more distant stars

Barnard 68

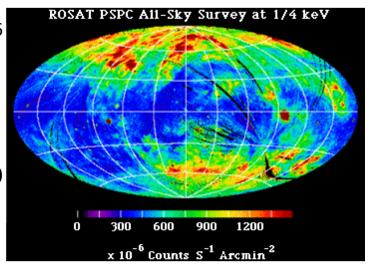


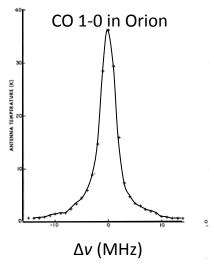
History

- 1932: K. Jansky discovers extraterrestrial radio emission
- 1934: P. W. Merrill, diffuse interstellar bands
- 1938: G. Reber (d. 2002) backyard radiotelescope discovers the Milky Way
- 1937–40: Swings, Rosenfeld, McKellar & Adams: first interstellar diatomic molecules
 - CH, CH⁺, CN
- 1945: van de Hulst, predicts 21-cm line of HI
- 1949: Hall & Hiltner, polarization of starlight correlated with reddening
 - Aligned grains & interstellar magnetic field


Diffuse Interstellar Bands

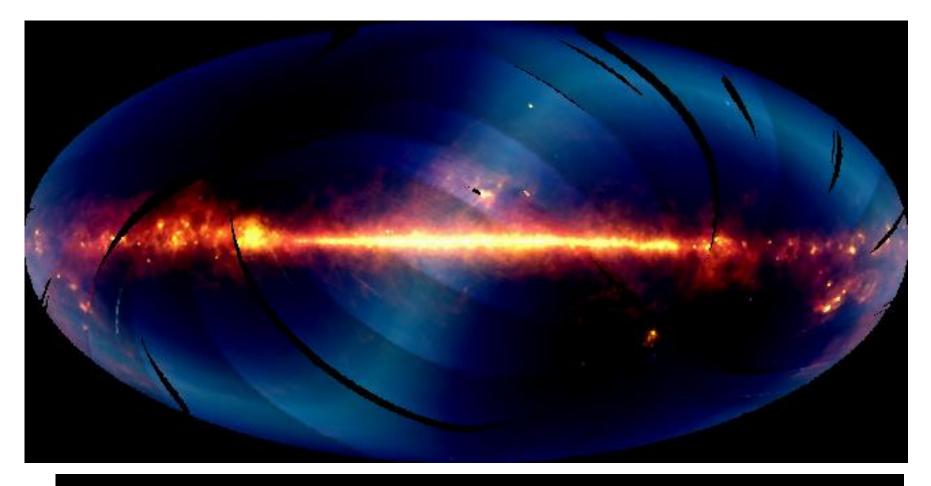
- ~ 200 DIBs known
- Most DIBs are unidentified
- Some DIBs may be due to large carbon-bearing molecules
 - • C_{60} is a candidate for $\lambda\lambda$ 9577, 9632 bands


History


- 1950's: Cosmic rays consist of heavy particles (protons, α particles, etc.)
- 1951: Ewen & Purcell- Muller & Oort, detection of 21 cm line
- 1950's 60's: 21 cm maps of the Galaxy
 - Disk contains 5 x 10 ⁹ M_☉ of gas (≈10% of disk mass)
- 1963: A. Barrett (MIT): OH in absorption against Sgr A
- 1963: Weinreb, Townes et al., interstellar OH masers
- 1966: Lynds & Stockton, the Lyman lpha forest
- 1968: Townes, NH₃ (first polyatomic molecule), H₂O

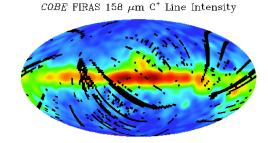
History

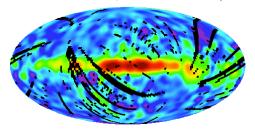
- 1960's: Soft X-ray background from local 10⁶
 K gas
- 1968: Verschuun observation of Zeeman effect at 21cm
- 1970: Wilson, Jefferts & Penzias, 2.6 mm CO
 1–0 emission
- 1973: Carruthers, UV lines of H₂
- 1970's 80's: Infrared
 - H₂ infrared lines, small dust particles, very large molecules
- 1980's 90's: Sub-millimeter
 - Warm interfaces of molecular clouds, cold protostellar regions

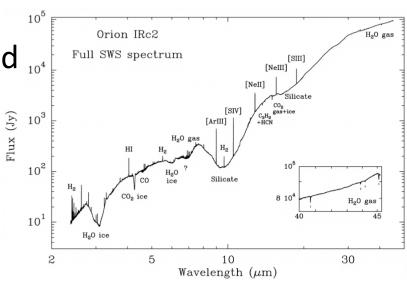


Impact of Space Astronomy

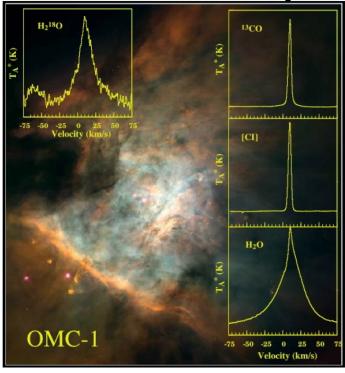
- 1973 80: Copernicus UV satellite
 - Detection of H₂ for many lines of sight
 - Highly ionized atoms (e.g., O VI) → very hot & tenuous component of ISM
 - Depletion of refractory elements from gas into grains
- 1983: IRAS
 - First all-sky survey at 12, 25, 60 & 100 μm
 - Cirrus clouds and dust properties

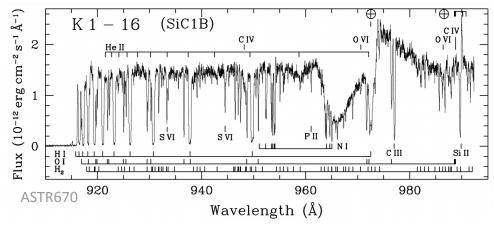

IRAS


Blue: 12 µm Green: 60 µm Red: 100 µm


The Impact of Space Astronomy

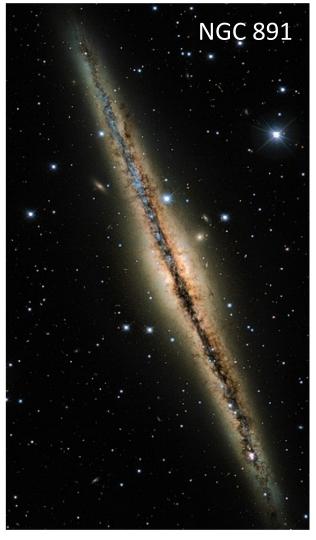
- 1990 91: COBE
 - Galactic distribution of C⁺ & N⁺
- 1995 98 : ISO
 - Mid- and far-IR spectroscopy
 - Nature of grains (silicates, ices)
 and PAHs
 - H₂ lines as probe of shocks and 10⁴
 PDRs
 - Excitation of gas by stars &
 Active Galactic Nuclei

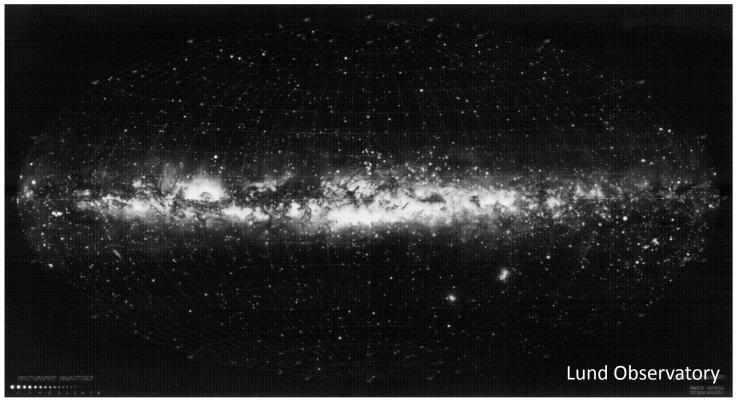




The Impact of Space Astronomy

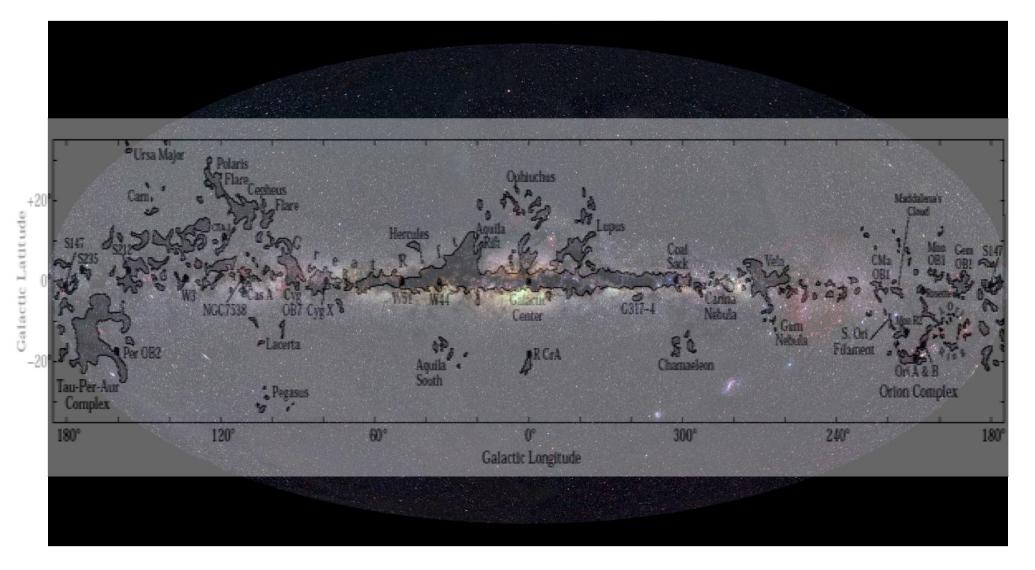
- 1998 2001: SWAS (Submillimeter Wave Astronomy Satellite)
 - High frequency (~500 GHz)
 Pointed observations of H₂O,
 H₂¹⁸O, O₂, CI, & ¹³CO
 - Chemistry, composition & collapse of molecular clouds
- 2000 01: FUSE (Far-UV Space Explorer)



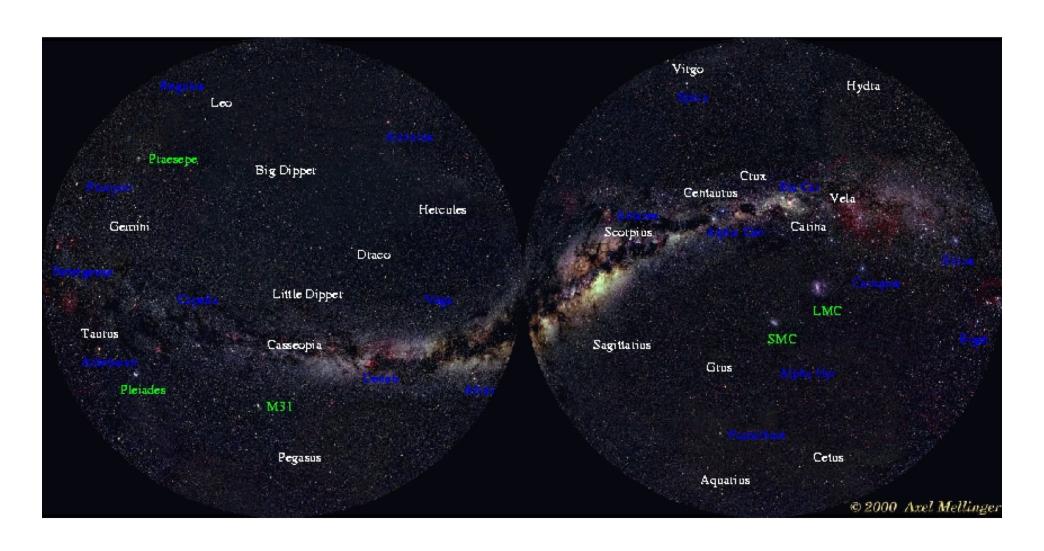


The Galactic Perspective

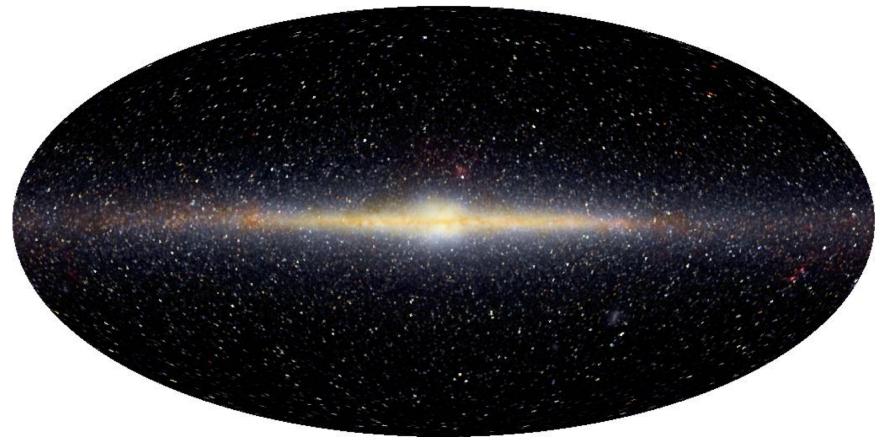
- The Galaxy, like other spirals, has matter between the stars
- The ISM constitutes ~ 1% of the total mass
 - ~ 10^9 M_{\odot} out of ~ 10^{11} M_{\odot}
- The ISM has a profound effect upon the evolution of the galaxies
 - It is the site of star formation
- The ISM is inconspicuous optically
 - Much of the ISM is either cold (< 100 K: IR) or hot (> 10^6 K: x-ray)
 - Nature & importance have only been discovered in the last 100 years



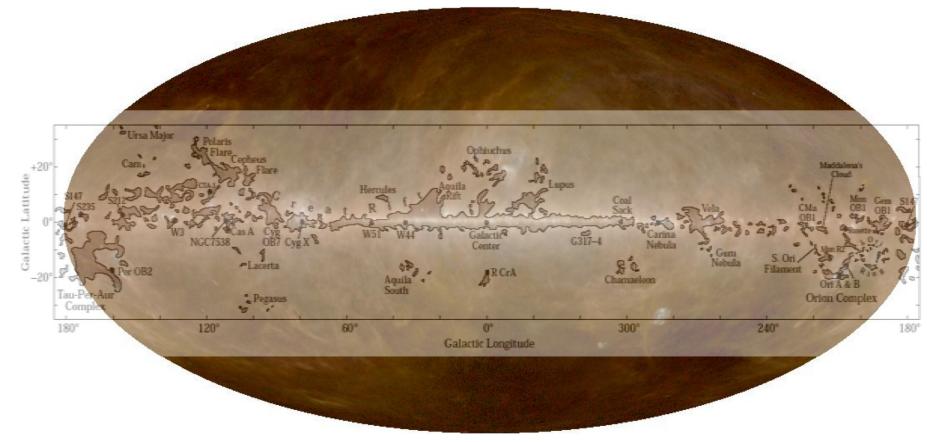
Optical Observations of the Milky Way



- All-sky optical images traces material between the stars (1953-1955)
 - Depicts 7000 brightest stars
- Dark clouds dominate a large sector of the Galaxy to the left of the center
 - $I = 10-50^{\circ}$
 - Next inner-most spiral arm, the Sagittarius-Carina

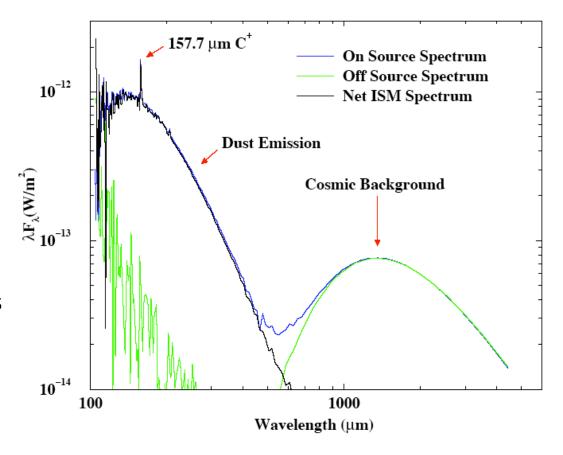

Galactic Coordinates

Equatorial Coordinates



The Galaxy in the Near-IR

- A different picture of the sky emerges in the IR
 - COBE maps the sky between 1.3μm and 4 mm
 - The near-IR (J, K & L) shows mostly stars & reduced ISM absorption
 - The disk-like nature of our Galaxy with its bulge is evident


The Galaxy in the Far-Infrared

- 100, 140 & 240 μm
 - No ordinary stars, only a few with circumstellar dust shells are weakly detected
 - The bulk majority of emission is from clouds of cool dust (≤ 20 K)

Far-IR Spectrum of the ISM

- COBE spectrum of the Galactic plane, 0.1-4 mm
- Cool dust peaks at ≈ 140 μm
 - T_{dust} \approx 20 K
- $C^{+2}P_{3/2} {}^{2}P_{1/2} 157.74 \mu m$
 - Diffuse WIM
 - C ionized by UV photons
 - hv > 11.25 eV
 - 911.76 Å Lyman edge
 - 1101.72 Å C edge
- C⁺ is common near FUV sources
 - Hot, young stars
 - Includes a large fraction of the Galactic disk

The Local ISM (120 pc)

- Sun is at the center, Galactic Center at top
 - -OB stars (blue), AFG (yellow), and; KM (orange)
 - -Rings of denser gas (yellow)
 - 3-d shells of "warm" gas (\sim 5000 K), containing low-density, hot gas (\sim 10⁵⁻⁶ K)
 - Supernovae & winds from stars in OB associations
- Interior of the Local Bubble
 - $-n \sim 0.05 0.07 \text{ cm}^{-3}$
- Local Bubble is not spherical
 - -The long axis ⊥ to the Galactic plane
 - -Density gradients or colliding SNR
- Above Arcturus is the "Wall" of denser gas
 - -Like Loop 1, the wall appears to be driven by the Sco-Cen association
- Local Fluff is a denser region ($\sim 0.1 \text{ cm}^{-3}$) recently encountered by the Sun
 - -The Sun is headed to the left at ~ 20 km/s plowing through the Local Fluff

The Local ISM (500 pc)

- Sun is at the center
 - Brightest stars (giants & supergiants)
 - Denser portions of the ISM (orange)

General Properties of the ISM

- Mostly confined to the disk
 - Some gas in the halo, as in ellipticals
- Large ranges in temperature & density
 - $T \approx 10 \dots 10^6 \text{ K}, n \approx 10^{-3} \dots 10^6 \text{ cm}^{-3}$
- Even dense regions are "ultra-high vacuum"
 - Lab UHV is 10^{-10} Torr ($n \approx 4 \times 10^6$ cm⁻³)
 - $n \approx 3 \times 10^{19} \text{ cm}^{-3} \text{ at STP}$
- Far from thermodynamic equilibrium
 - Complex processes & interesting physics

Cosmic Abundances

Element	Abundance	Element	Abundance
Н	1.00	Mg	4.2×10 ⁻⁵
He	0.075	Al	3.1×10 ⁻⁶
С	4.0×10^{-4}	Si	4.3×10 ⁻⁵
N	1.0×10^{-4}	S	1.7×10 ⁻⁵
0	8.3 × 10 ⁻⁴	Ca	2.2×10 ⁻⁶
Na	2.1 × 10 ⁻⁶	Fe	4.3×10 ⁻⁵

- Mass fraction of H, He and "metals"
 - X = 0.71, Y = 0.27, Z = 0.02
- Reference abundances are
 - Solar presumably ISM 4.5 x 10⁹ yr ago
 - HII regions- gas phase only
 - B-star atmospheres recent ISM
 - Considerable disagreement, e.g C:

ISM Classified by Ionization State

- Composition similar to Solar System
 - H is the most abundant element (≥ 90% of atoms)
- ISM regions characterized by state of hydrogen
 - Ionized atomic hydrogen (H⁺ or H II) "H-two"
 - Neutral atomic hydrogen (H⁰ or H I) "H-one"
 - Molecular hydrogen (H₂) "H-two"
- Regions are H II, H I, or H₂
 - Transition zones H II \rightarrow H I \rightarrow H₂ are thin

Ionized Gas

- H II regions surrounding early-type (OB) stars
 - Photoionized
 - $T \approx 10^4 \text{ K}$
 - $-n_e \approx 0.1 \dots 10^4 \text{ cm}^{-3}$
 - Bright nebulae associated with regions of star formation & molecular clouds
- Warm Ionized Medium
 - T ≈ 8000 K
 - $-\langle n_e \rangle \approx 0.025 \text{ cm}^{-3}$
- Hot Ionized Medium: tenuous gas pervading the ISM
 - Ionization by electron impact
 - $T \approx 4.5 \times 10^5 \text{ K}$
 - $-n \approx 0.035 \text{ cm}^{-3}$

H I Regions

- Cool "clouds" (CNM)
 - $-T \approx 100 \text{ K}$
 - $n \approx 40$ cm⁻³
- Warm neutral gas (WNM)
 - $T \approx 7500 \text{ K}$
 - $-n \approx 0.5$ cm⁻³
- Lyman α forest
 - Intergalactic clouds $N_{HI} > 10^{13} \, \text{cm}^{-2}$

Molecular Clouds (H₂ Regions)

- Cold dark clouds ($M \approx 10 1000 \text{ M}_{\odot}$)
 - $-T \ge 10 \text{ K}$
 - $-n \approx 10^2 10^4 \text{ cm}^{-3}$
- Giant molecular clouds ($M \approx 10^3 10^5 \,\mathrm{M}_{\odot}$)
 - T ≥ 20 K
 - $-n \approx 10^2 10^4 \text{ cm}^{-3}$
- Molecular material exhibits complex structure including cores and clumps with $n \approx 10^5 10^9$ cm⁻³
- Molecular clouds are the sites of star formation

Other Ingredients of ISM

- Heavy elements
 - He (≈ 10 %)
 - C, N, O (≈ "cosmic" abundances)
 - Si, Ca, Fe (depleted onto grains)
- Grains (\approx 0.1 µm size, silicates or carbonaceous material, \approx 1% by mass of ISM)
- Photons
 - CMB
 - Star light (average IS radiation field)
 - X-rays (from hot gas & the extragalactic bacground)
- Magnetic fields & cosmic rays

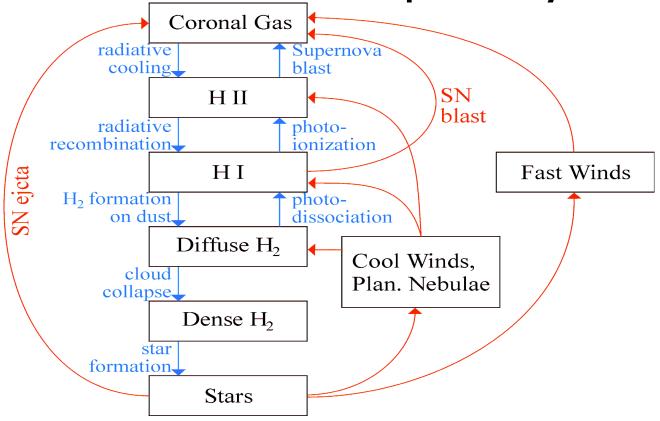
Energy Densities in Local ISM

$$u_{thermal} = \frac{3}{2} p = 0.39 \frac{p/k}{3000 \text{cm}^{-3} \text{K}} \text{ eV cm}^{-3}$$

$$u_{hydro} = \frac{1}{2} \rho \langle v^2 \rangle = 0.13 \frac{n_H}{\text{cm}^{-3}} \left(\frac{v_{rms}}{5 \text{km s}^{-1}} \right)^2 \text{ eV cm}^{-3}$$

$$u_{magnetic} = \frac{B^2}{8\pi} = 0.22 \left(\frac{B}{3\mu G}\right)^2 \text{ eVcm}^{-3}$$

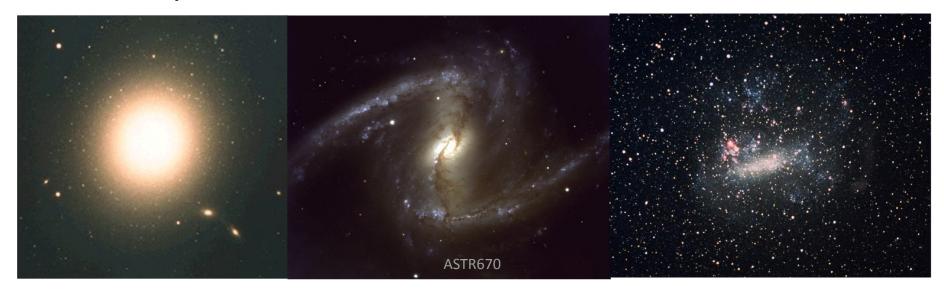
$$u_{starlight} = 0.5 \text{ eV cm}^{-3}$$


$$u_{cosmic \, rays} = 0.8 \, \text{eV cm}^{-3}$$

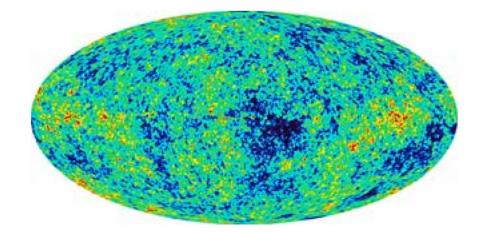
$$u_{3KCBR} = 0.25 \text{ eV cm}^{-3}$$

Coupling between Energy Densities

- All six energy densities are of comparable magnitude
 - $-u_{thermal}$, u_{hydro} , $u_{magnetic}$ are coupled (magneto-) hydrodynamically
 - $-u_{thermal}$ is (weakly) coupled to $u_{starlight}$
 - $-u_{CR}$ is (weakly) coupled to u_{hydro}
 - $-u_{3KCBR}$ couples via inverse Compton to u_{CR}


The ISM as a Complex System

- Understanding the ISM means
 - Understanding the physical processes which drive mass,
 momentum and energy exchange between stars and its phases


Motivation

- Star formation is the fundamental process which determines the obsevational properties of galaxies
 - History of star formation yield the Hubble sequence

Basic Questions

- How are baryons transformed into stars?
 - Subject to
 - Gravity (well understood)
 - Radiation pressure (small)
 - Magnetic fields
 - Turbulent stresses

Fundamental questions

- Why does star formation occur mostly in spiral arms
- What triggers star formation
- What determines the star formation rate in different Hubble types?
- What determines the initial mass function of stars?
- Why do stars form in multiples?
- How do planets form?