

Teaching the Skills of Professional Astronomy through Collaborative Introductory Labs

Derek Richardson, Fatima Abdurrahman, Alice Olmstead, Sarah Scott, Melissa Hayes-Gehrke University of Maryland, College Park

Introductory Astrophysics

- ASTR120 & ASTR121 (with lab).
 - Two-semester sequence for science majors.
- Students taking the lab should:
 - 1. Experience astronomy through practical exercises.
 - Develop skills needed for professional astronomy,
 e.g., collaboration, data analysis, critical thinking.

Transforming the Lab

- 1. Focus on fundamental topics (6 labs, not 10).
- 2. Think about the approach (freedom to explore).
- 3. Connect to current research (prelab reading).
- 4. Write comprehensive reports (formal sections).
- 5. Collaborate & critique (group work).

1. Focus on Fundamental Topics

Just six labs:

- 1. Intro to MATLAB.
- 2. Stellar Parallax.
- 3. Blackbody and Stellar Spectra.
- 4. Cluster H-R Diagrams.
- 5. HI Rotation Curves.
- 6. Hubble's Law.

Each lab spans 2 weeks (4 hours in-lab time).

1 ugrad LA per section (20 students per LA).

2 sections.

ASTR 121 – Spring 2015

Lab 5 – HI Rotation Curve of the Milky Way

Important dates:

Prelab due: Monday, April 13, 2015

Rough draft due: Monday, April 20, 2015

Final draft due: Friday, April 24, 2015

Science Goals:

At the end of this lab, you should be able to...

- Determine the tangent velocity of HI clouds using 21 cm data
- Determine the orbital speed and orbital radius of the clouds via the tangent point method
- Construct a rotation curve of the galaxy based on these measurements

MATLAB Goals:

In this lab, you will apply MATLAB knowledge to...

- Plot data with x and y error bars
- Fit experimental data and determine information from a fit

2. Think About the Approach

 Lab manual gives broad instructions. It's not a cookbook.

"For each pair of images, you will determine the plate scale s and the apparent separation a of a star between the two images."

Questions provide
 students opportunities
 to reflect on their work.

"What real systems can be represented by each of these rotation curves?"

3. Connect to Current Research

Required pre-lab assignment to read a related "astrobites" article and answer a few questions.

– http://astrobites.org/

🥾 astrobites About V Latest Research V Beyond astro-ph V Guides V Q Subscribe Mapping the Milky Way Enter your email to receive by Caroline Huang | Jul 3, 2015 | Daily paper summaries | 0 comments notifications of new posts. Email Address Subscribe Title: The Skeleton of the Milky Way Follow us on Twitter Authors: Catherine Zucker, Cara Battersby, and Alyssa Goodman Follow @astrobites First Author's Institution: Astronomy Department, University of Virginia Like us on Facebook Status: Submitted to the Astrophysical Journal How many spiral arms does the Milky Way have? You might be surprised to learn that astronomers are still not completely sure. Unlike other galaxies that we can see face-on, our location in the Milky Way makes it hard for us to determine the structure of our own home More Posts About CO and the Milky Way

Figure 1: The velocity-integrated map of CO, which traces out the distribution of H2 in the Milky Way. The color

indicates the density of the molecular gas. From Dame, Hartmann, and Thaddeus (2001), To see a bigger image

check out this link: https://www.cfa.harvard.edu/mmw/Fig2_Dame.pdf)

A lot of what we do know about the Milky Way's structure comes from radial velocity measurements of interstellar gas and much of the interstellar gas is contained in giant molecular clouds (GMCs). Using the line-of-sight velocities of the gas and the Milky Way's rotation curve, we can determine the distances of the gas from the center of the Galaxy. mapping out the structure of the Milky Way. These molecular clouds consist mostly of molecular hydrogen, or H2. Because H2 lacks a permanent electric dipole moment, it is almost invisible at the low temperatures of the molecular clouds, making it very difficult to detect

directly. Instead of measuring emission from molecular hydrogen to locate the GMCs, astronomers often use tracers for the molecular hydrogen, like CO. These tracers make up a small fraction of the gas in molecular clouds, but they have lower-frequency transitions that we can detect. By mapping out the emission of CO across the sky, we can also effectively map out the location of the giant molecular clouds. Figure 1 shows a velocity-integrated map of the Milky Way using CO as a tracer, from Dame, Hartmann, and Thaddeus (2001)

However, when piecing together the three-dimensional structure of the galaxy this way, it can

Astrobites

Like Page

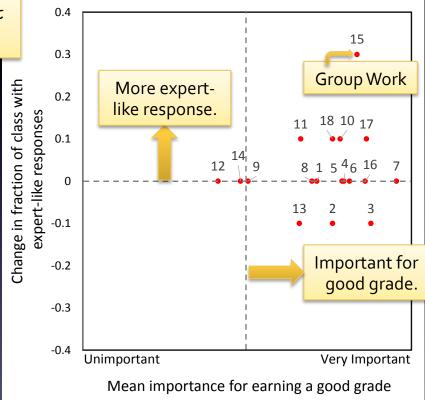
Posts by Category

Astrophysical Classics Career navigation

AAPT Summer Meeting 2015

4. Write Comprehensive Reports

- We use faded scaffolding:
 - Students provided with a template for each lab report, with some (mostly) filled-out sections.
 - Each new lab has fewer pre-filled report sections.
 - The last lab report has no pre-filled sections at all.
- Graded using a detailed rubric.


5. Collaborate & Critique

- Students work in pairs.
- Whole class encouraged to cooperate.
- At the start of the second week of each lab,
 pairs exchange draft lab reports for comment.

Evaluating Our Success

15. "Working in a group is an important part of doing astronomy experiments."

Modified E-CLASS survey
 (Zwickl+13) shows students'
 expectations of what is
 important to experts are
 aligned with assessments.

Summary

- We have transformed the UMD ASTR121 lab to make it more collaborative and relevant for students.
- Student views on astronomy labs became more expert-like.
- Will continue to refine the improvements this year (spring 2016).
- Materials available online (plus teaching manual): ter.ps/9jm
- We thank the UMD TLTC Elevate program for support.
- Related poster: PST2A07 (yesterday, sorry!).

Extra Slides

Part 1: Examining Star Cluster Data and Exploring Photometric Filters

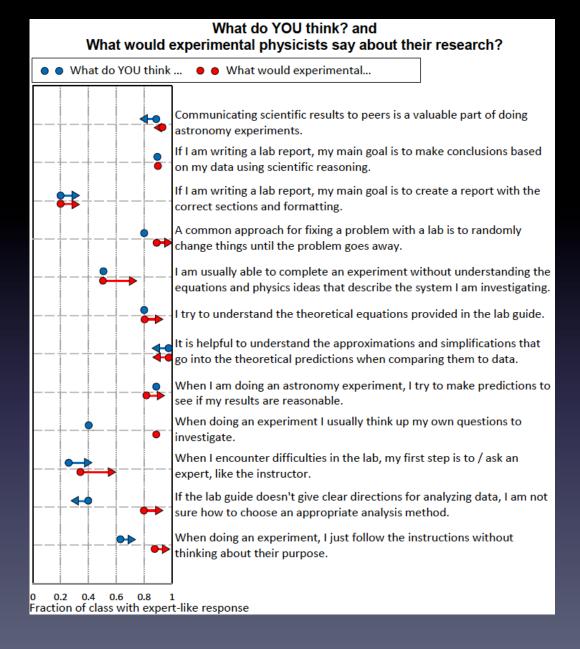
In this part of the lab, you will examine the data for an open cluster.

- 1. In a MATLAB script, read in the data for the open cluster M41. Create a CMD by plotting V apparent magnitude as a function of (B-V), remembering to flip axes as needed. As this is a set of individual points representing distinct stars, have the figure plot points rather than connecting them in a line. Add appropriate axes and title, and include this figure in your report. Which direction does temperature increase on the x-axis? What features can you identify on this CMD?
- 2. On your CMD, look for a main sequence star with (B-V) of 0.5. What surface temperature would this star have? Using your Planck function from the previous lab, plot the blackbody curve of an object with this temperature. Include this figure in your report.
- 3. The data includes apparent magnitudes in the B and V filters. Show on your blackbody plot which wavelength range each filter allows through, as well as the central wavelength of each filter. Include this figure in your lab report.

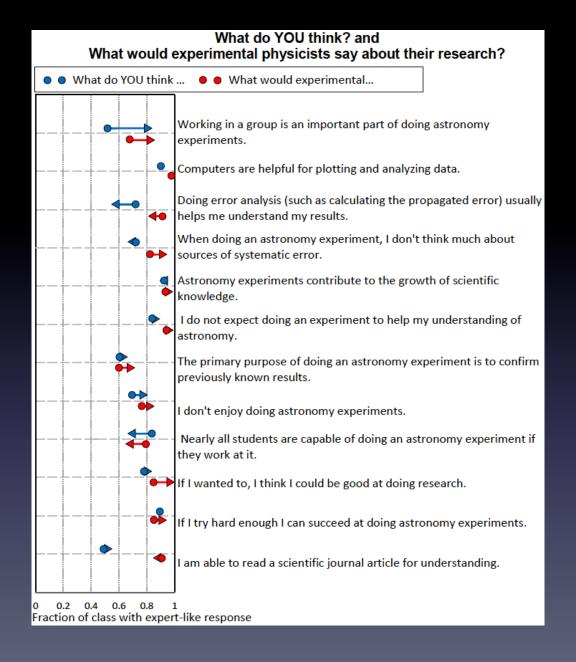
Part 1: Exploring Rotation Curves

In this part of the lab, you will construct rotation curves for different mass distributions. You will use the equation for orbital speed v around an enclosed mass M_r at an orbital radius r,

$$v = \sqrt{\frac{GM_r}{r}},$$


where G is the gravitational constant.

- 1. Consider a system in which almost all the mass is concentrated in a point at the center, resulting in a constant value of M_r . Construct a rotation curve for this system by plotting orbital speed as a function of orbital radius. To set a reasonable scale, use a value of M_r equal to the total mass of the Milky Way and take r to vary on kiloparsec scales.
- 2. Plot a similar curve for a system where enclosed mass is proportional to orbital radius, $M_r \propto r$. Use similar scales as for the previous model and show them together.
- 3. Add a third plot showing a distribution where enclosed mass is proportional to volume, $M_r \propto r^3$. What real systems can be represented by each of these rotation curves?


ASTR121 Lab Report Rubric – 38 Points Total

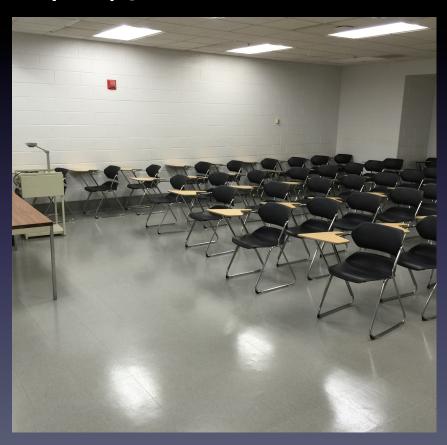
Aspect	Excellent (100%)	Good (75%)	Adequate (50%)	Poor (25%)	Absent (0%)
Cover Page	Cleary presents name and number of lab, student names	Missing an aspect	Missing aspects	Missing all aspects	Absent
(2 pts)	and contact information, date, course and section				
Abstract	Concisely summarizes the purpose, procedures used, and	Missing an aspect	Missing aspects; too	Missing all aspects	Absent
(4 pts)	results of project.		lengthy or inaccurate		
Introduction	Includes the question to be answered by the project	One is missing	Two are missing	Three are missing	Absent
(4 pts)	Develops the reason why the question is				
	relevant/interesting				
	Discusses general method (without specifics) that will				
	be used to answer the question and develops theoretical				
	background				
Methodology	Description of the data used and what was done with the	Some steps are	Only includes	Would be difficult	Absent
(8 pts)	data, complete enough that another scientist could	vague or unclear	generalities, but	to repeat; reader	
	repeat the process.		enough to get the	must guess at	
			idea	some parts	
Analysis	Results and data are clearly displayed, organized in a way	Errors in results,	Unclear results;	Results do not	Absent
(8 pts)	that makes it easy to see trends. Figures and charts are	but otherwise	missing labels or	make sense, or not	
	appropriately labeled and captioned. Excessive data and	well done; flaws	captions;	enough to justify	
	Matlab code are included in appendix. Uncertainties in	in organization	disorganized; missing	conclusions	
	all determined quantities are calculated and explained.		data/plots/tables		
Discussion	Summarizes the data used to draw conclusions	Missing 1-2	Missing 3-5 aspects	Missing 5-6 aspects	Absent
(8pts)	Conclusions follow logically from data	aspects			
	Discusses sources of error (random and systematic)				
	Discusses if conclusions fit expectations and/or seem				
	plausible				
	Discusses any unusual results or disagreement with				
	theory and speculates on cause				
	Discusses addition questions/issues asked in hand-out				
	Discusses real world implication of results		6	6	
Format	Report follows typical scientific format and organization	Some grammar,	Significant errors in	Significant errors in	Paper is
(4 pts)	Any references are cited appropriately in a bibliography	writing, or	one aspect, minor	many aspects	nearly
	Writing flows well and is easy to read	formatting issues.	errors otherwise		unreadable
	Grammar, vocabulary, and similar errors are minimized				

Modified E-CLASS Survey Results (Part 1)

Modified E-CLASS Survey Results (Part 2)

Modified E-CLASS Survey Question Key

Number	Personal/Professional Statement	How important for earning a good grade in this class was		
1	When doing an astronomy experiment, I don't	thinking about sources of		
_	think much about sources of systematic error.	systematic error?		
2	It is helpful to understand the assumptions that go	understanding the approximations		
	into the theoretical predictions when comparing	and simplifications that are included		
	them to data.	in theoretical predictions?		
3	Doing error analysis (such as calculating the	calculating uncertainties to better		
	propagated error) usually helps me understand my results.	understand my results?		
4	If I don't have clear directions for analyzing data, I	choosing an appropriate method for		
	am not sure how to choose an appropriate analysis	analyzing data (without explicit		
	method.	direction)?		
5	I am usually able to complete an experiment	understanding the equations and		
	without understanding the equations and physics	physics ideas that describe the system		
	ideas that describe the system I am investigating.	I am investigating?		
6	I try to understand the theoretical equations	understanding the relevant		
	provided in the lab guide.	equations?		
7	Computers are helpful for plotting and analyzing	using a computer for plotting and		
	data.	analyzing data?		
8	When I am doing an astronomy experiment, I try to	making predictions to see if my		
	make predictions to see if my results are	results are reasonable?		
	reasonable.			
9	When doing an experiment I usually think up my	thinking up my own questions to		
	own questions to investigate.	investigate?		
10	When doing an experiment, I just follow the	thinking about the purpose of the		
	instructions without thinking about their purpose.	instructions in the lab guide?		
11	When I encounter difficulties in the lab, my first	overcoming difficulties without the		
	step is to ask an expert, like the instructor.	instructor's help?		
12	A common approach for fixing a problem with a	randomly changing things to fix a problem with the experiment?		
	lab is to randomly change things until the problem			
	goes away. Communicating scientific results to peers is a			
13	valuable part of doing astronomy experiments	communicating scientific results to peers?		
	I am able to read a scientific journal article for	•		
	understanding.	reading scientific journal articles?		
15	Working in a group is an important part of doing			
	astronomy experiments.	working in a group?		
16	If I am writing a lab report, my main goal is to	making conclusions based on data using scientific reasoning?		
	make conclusions based on my data using			
	scientific reasoning.			
17	If I am writing a lab report, my main goal is to	communicating results with the correct sections and formatting?		
	create a report with the correct sections and			
	formatting.			
18	The primary purpose of doing an astronomy	confirming previously known		
	experiment is to confirm previously known results.	results?		


Lab Facility

- 10 PCs for 40 students in 2 sections.
- Students work in pairs.

Classroom

Capacity 50 students.

Pretty crowded!

