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ABSTRACT 

 In this lab we examine the phenomenon of superluminal motion, both in general and 
for the relativistic jet emitted from 3C 279.  To understand the theory generally, we first 
consider apparent velocities of theoretical objects moving with various speeds at different 
angles to the observer’s line of sight, finding that the angle at which apparent velocity peaks 
at is a function of its actual velocity.  Next, we measured the superluminal motion of the jet 
emitted from 3C 279 using given data and found that the bulk motion of the jet has a velocity 
𝑣𝑎𝑝𝑝 = (7.32 ± 2) 𝑐.  Using this apparent velocity, we calculated a lower bound for the true 

velocity, 𝑣 = (0.991 ± 0.007) 𝑐.  These results are similar to what we expected, with an 
apparent velocity greater than the speed of light and a true velocity less than, but close to the 
speed of light.  
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1. Introduction 

A well-known consequence of Einstein’s theory of special relativity is that maximum 

speed is finite: nothing can travel faster than the speed of light in a vacuum.  Theoretically, 

this limit applies to everything in the universe.  However, some astronomical objects, such 

as quasars and radio galaxies, appear to emit matter at speeds higher than the speed of light.  

This phenomenon, called superluminal motion, does not, in fact, contradict relativity; the 

faster-than-light motion is an illusion caused by matter moving at relativistic speeds at a 

small angle to an observer.   

Figure 1 illustrates this phenomenon: the 

source galaxy emits a jet traveling with velocity 

v on a line with angle θ to an observer’s line of 

sight.  It passes through Point A, then Point B, a 

distance L apart.  Because the light emitted from 

the jet at Point A must travel a farther distance 

d to reach the observer than light emitted from 

Point B, they two emissions will appear closer in 

time than they are, giving the impression that 

the object is moving faster than it is.  

Where we would usually calculate the 

velocity by dividing the distance L by the time between Points A and B, the apparent velocity 

due to super luminal motion is calculated by instead using a ‘distance’ normal to the line of 

sight, Lapp.  From this, an expression for the apparent velocity of the jet can be derived with 

some simply geometry: 

𝑣𝑎𝑝𝑝 =
𝑣 sin 𝜃

1 −
𝑣
𝑐 cos 𝜃

 

Because the ratio 
𝑣

𝑐
 is often expressed as β, the previous equation can also be written: 

𝛽𝑎𝑝𝑝 =
𝛽 sin 𝜃

1 − 𝛽 cos 𝜃
 

In this lab, we will look for a lower limit on the true velocity of a jet.  In order to find this 

limit, one can take the derivative of the right-hand-side of the previous equation and set it 

equal to zero, finding that 

𝛽𝑎𝑝𝑝,𝑚𝑎𝑥 = 𝛾𝛽 

By finding 𝛽, we can calculate the minimum true velocity.    

L 

Lapp 

Figure 1: Diagram of Superluminal Motion 
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2. Methodology 

To understand the relationship between angle to line of sight and apparent velocity of an 

object due to superluminal motion, we first calculated apparent beta for a range of angles for 

six different values of betas.  This data was plotted in Figure 2, and is effectively a 

representation of apparent velocity for different actual velocities (because of how we 

defined beta). 

Next, we calculated the apparent velocity of 3C 297.  In order to do this, we were given 

images showing the movement of this galaxy’s jet over the course of several years (included 

in Appendix 3), as well as the redshift of the galaxy, 𝑧 = (0.5362 ± 0.0004).  Using the 

redshift, we calculated the distance to the galaxy by using the relativistic redshift equation 

and Hubble’s Law, assuming 𝐻𝑜 = (74.2 ± 3.6) km s−1 Mpc−1: 

𝐷 =
𝑧𝑐

𝐻𝑜
= 1635.3 Mps 

Because distances on the given image are measure in milliarcseconds, we then needed to 

determine the scale between distance and angular distance for an object at this distance.  We 

did this by calculating the diameter d of an object at distance D with an angular size 𝜃 of 1”, 

which gave us the conversion from angular size to physical size: 

𝑑 = 𝐷 sin (
𝜃

2
) = 0.007928 Mpc/as 

Next, we measured the distance 𝑙 the jet moved between two points in time.  For this, we 

used the first and fifth image because they show the jet over the longest period of time before 

it becomes unclear.  To determine the distance, we measured the separation of the core of 

the galaxy and the center of the furthest blob at the two points in time and subtracted the 

two, and converted this value from an angle to a distance using the above scale: 

𝑙 = 𝑥2 − 𝑥1 = 2.5569 − 1.8013 = 0.7575 mas = 6.01 × 10−6 Mpc = 1.85 × 10−6 m 

In order to determine velocity, we need distance as well as time; to find the time, we used 

the same method we used to find the distance, but vertically along the image.  By dividing 

the distance between the two times by the distance between consecutive markings of the 

year, we can find the amount of time that has passed between the two images: 

Δ𝑡 =
Δ𝑡𝑝𝑖𝑥

1 𝑦𝑒𝑎𝑟𝑝𝑖𝑥 
= 2.6759 y = 8.4458 × 107 s 

Again, we measured from the cores of the galaxy, assuming the brightest point was the 

center of the galaxy. 
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3. Analysis 

Before calculating the apparent velocity of the jet, we determined the uncertainties of all 

the values that will be used in the calculation.  First, the uncertainty in the distance to 3C 297 

was found by using error propagation and the given values: 

𝜎𝐷 = 𝑑𝑐√(
𝜎𝑧

𝑧
)

2

+ (
𝜎𝐻𝑜

𝐻𝑜
)

2

= 79.35 Mps 

Using this uncertainty in D, we also used error propagation to find the uncertainty in the 

conversion factor between distance and angular size on the image: 

𝜎𝑑 =
𝑑𝜎𝐷

𝐷
= 0.0029 Mpc/as 

Though we could use error propagation on the uncertainties of the distances measured 

from the image based on the intrinsic precision of the ruler we used, the uncertainty 

associated with the measurement was dominated by the difficulty in defining the position of 

the points we were measuring. Therefore, we estimated a more conservative error based on 

the range in which we would define the centers, assigning the value 𝑙 an uncertainty of 0.25 

mas, or 5x1016 m.  Similarly, the uncertainty of the time measurement was dominated by 

ambiguity of measurement points; realistically, the uncertainty is about 5x106 s.   

Finally, we can calculate the apparent velocity and its uncertainty: 

𝑣𝑎𝑝𝑝 =
𝑙

Δ𝑡
= 2.19 × 109 m s−1,              𝜎𝑣𝑎𝑝𝑝

= 𝑣𝑎𝑝𝑝√(
𝜎𝑙

𝑙
)

2

+ (
𝜎Δ𝑡

Δ𝑡
)

2

= 6.06 × 108 m s−1         

Which corresponds to an apparent beta: 

𝛽𝑎𝑝𝑝 =
𝑣𝑎𝑝𝑝

𝑐
= 7.32,                                 𝜎𝛽𝑎𝑝𝑝

= |
𝜎𝑣𝑎𝑝𝑝

𝑐
| = 2.02 

Finally, using the final equation in the introduction, we used 𝛽𝑎𝑝𝑝 to calculate true 𝛽, and 

thereby the true velocity: 

𝛽 =
𝛽𝑎𝑝𝑝

√1 + 𝛽𝑎𝑝𝑝
2

= 0.991,                             𝜎𝛽 =
𝜎𝛽𝑎𝑝𝑝

2

(𝛽𝑎𝑝𝑝 + 1)3
= 0.0071 

This value v  for a lower bound of the true velocity of the jet is given by this 𝛽: 

        𝑣 = 𝛽𝑐 = 0.991 𝑐,                                             𝜎𝑣 = 0.007 𝑐 
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Figure 2: Apparent Velocity as a Function of Angle 

 

4. Discussion 
 

The first indication that we made reasonable measurements for the apparent velocity of 

the jet 𝑣𝑎𝑝𝑝 = (7.32 ± 2) 𝑐 and the true velocity 𝑣 = (0.991 ± 0.007) 𝑐 is the fact that the 

former is greater than the speed of light, and the latter is lower, but close.  By definition, 

superluminal motion is motion that appears to be greater than c, which our 𝑣𝑎𝑝𝑝is, and it 

only occurs for objects moving very close to c, which our 𝑣 is. 

We can also use our plot in Figure 2 to confirm that our results are reasonable:  the bright 

blue line shows apparent velocity for an object with a true 𝛽 of 0.995, a little higher than our 

value, 𝛽 = (0.991 ± 0.007).  The plot peaks at a 𝛽𝑎𝑝𝑝 of about 10, just a little higher than our 

value, 𝛽𝑎𝑝𝑝 = (7.32 ± 2). 

The uncertainties in most of our measurements and calculations is dominated by the 

difficulty in defining the position of the jet in the given image.  Though we should have easily 

been able to measure hundredths of a milliarcsecond, we did not have an objective method 

for determining the center of the galaxy’s core or the extended jet, so we estimated 

uncertainties based on how large our guess of the center was.  To improve our precision, we 

could potentially fit the intensities near the core to a Gaussian and determine the peak, giving 

us a less subjective definition of the center.   
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5. Appendices 

Appendix 1: Function for calculating 𝛽𝑎𝑝𝑝 

function f=bapp(b,t) %Function that will take inputs b for beta and t for 

angle and give apparent beta 
trad=pi().*t./180 %convert t from degrees to radians 
f=sin(trad)*b./(1-b.*cos(trad)); %Calculation of beta 

 

Appendix 2: Script for plotting Figure 2 

theta = linspace(0, 180, 200); %Creates a set of angles theta for input 
beta = [0.5, 0.7, 0.9, 0.995, 0.999, 0.9999]; %Different beta values we’ll 

look at 
clrs = ['r', 'y', 'g', 'b', 'k', 'm']; 
figure(1); clf; %Figure showing apparent beta as a function of angle for a 

set of betas 
hold on; 
for i = 1:6 
    bA = bapp(beta(i),theta); 
    plot(theta, bA, clrs(i)) 
end 
title('Apparent Velocity') 
xlabel('Angle to Line of Sight (degrees)') 
ylabel('Apparent Velocity (normalized to c)') 
legend('0.5', '0.7', '0.9', '0.995', '0.999', '0.9999', 'Location', 

'NorthEast'); 
hold off; 
figure(2); clf; %Same plot, but zoomed in on the y axis to show detail 
hold on; 
for i = 1:6 
    bA = bapp(beta(i),theta); 
    plot(theta, bA, clrs(i)) 
end 
title('Apparent Velocity - Details') 
xlabel('Angle to Line of Sight (degrees)') 
ylabel('Apparent Velocity (normalized to c)') 
legend('0.5', '0.7', '0.9', '0.995', '0.999', '0.9999', 'Location', 

'NorthEast'); 
ylim([0 10]) 
hold off 
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Appendix 3: Images of 3C 279 

 

 
 


