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ABSTRACT

We carry out a systematic exploration of the effect of pre-impact rotation on the outcomes of low-speed collisions
between planetesimals modeled as gravitational aggregates. We use pkdgrav, a cosmology code adapted to
collisional problems and recently enhanced with a new soft-sphere collision algorithm that includes more realistic
contact forces. A rotating body has lower effective surface gravity than a non-rotating one and therefore might suffer
more mass loss as the result of a collision. What is less well understood, however, is whether rotation systematically
increases mass loss on average regardless of the impact trajectory. This has important implications for the efficiency
of planet formation via planetesimal growth, and also more generally for the determination of the impact energy
threshold for catastrophic disruption (leading to the largest remnant retaining 50% of the original mass), as this has
generally only been evaluated for non-spinning bodies. We find that for most collision scenarios, rotation lowers
the threshold energy for catastrophic dispersal. For head-on collisions, we develop a semi-analytic description of
the change in the threshold description as a function of the target’s pre-impact rotation rate, and find that these
results are consistent with the “universal law” of catastrophic disruption developed by Leinhardt and Stewart. Using
this approach, we introduce re-scaled catastrophic disruption variables that take into account the interacting mass
fraction of the target and the projectile in order to translate oblique impacts into equivalent head-on collisions.
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1. INTRODUCTION

Much of the evolution of small solar system bodies (SSSBs)
is dominated by collisions, whether from the initial build-up
of planetesimals (Lissauer 1993) or the subsequent impacts
between remnant bodies that exist today (e.g., Michel et al.
2004). Outcomes of collisions between SSSBs are divided into
two regimes: those dominated by material strength and those
dominated by self-gravity (Holsapple 1994). The transition from
the strength to the gravity regime may occur at body sizes as
small as a few kilometers or less for basalt (Benz & Asphaug
1999; Jutzi et al. 2010). After their formation, planetesimals
interacted with one another in a dynamically cold disk (Levison
et al. 2010). This allowed planet-size objects to form through
collisional growth.

Since the dominant source of confining pressure for
planetesimal-size SSSBs is self-gravity, rather than material
strength, they can be assumed to be gravitational aggregates
(Richardson et al. 2002). Hence, the collisions can often be
treated as impacts between rubble piles, the outcomes of which
are dictated by collisional dissipation parameters and gravity
(Leinhardt et al. 2000; Leinhardt & Richardson 2002). Un-
derstanding the effects that contribute to changes in the mass
(accretion or erosion) of gravitational aggregates is important
for collisional evolution models of the early solar system (e.g.,
Leinhardt & Richardson 2005; Weidenschilling 2011). The out-
comes of impacts in these models are parameterized through a
catastrophic disruption threshold Q�

D (e.g., Benz & Asphaug
1999), which is the specific impact energy required to gravita-
tionally disperse half the total mass of the system, such that the
largest remnant retains the other half of the system mass. How-
ever, few studies have accounted for the effect of pre-impact
rotation on the size evolution of SSSBs.

A rotating body has lower effective surface gravity than a
non-rotating one (with the difference being greatest for surface
material at the equator and decreasing for material closer to
the rotation axis). Therefore, a rotating body might suffer more
mass loss as the result of a collision. A recent laboratory study
by Morris et al. (2012) suggests this is true for solid bodies.
What is less well understood, however, is whether rotation
systematically increases mass loss on average regardless of the
impact trajectory.

In order to explain the collisional evolution of rotation
rates of asteroids, Dobrovolskis & Burns (1984) evaluated
analytically the sensitivity of mass loss to rotation for cratering
impacts on rigid bodies. They found that the angle-averaged
mass loss for cases with rotation is enhanced by factors of
∼10%–40% compared to cases without rotation for rotation
speeds ∼40%–80% of the critical spin rate (see their Figure 2).
Analytic and numerical work by Cellino et al. (1990) showed
that catastrophic disruptions, rather than cratering events, were
a bigger contributor to the rotational evolution of asteroids
through an angular momentum “splash” process; however, they
and subsequent authors (e.g., Love & Ahrens 1996) focused on
the effects of spin-state evolution change rather than mass loss.

Other authors have included pre-impact rotation in their nu-
merical simulations of planetesimal and protoplanet collisions;
however, except for Takeda & Ohtsuki (2009; see below), none
have systematically studied its contribution to mass loss in the
dispersive regime. Using a hard-sphere model, Leinhardt et al.
(2000) performed numerical simulations of collisions of equal-
size bodies with pre-impact rotation; however, their work fo-
cused on the effect of rotation on the shape of the largest rem-
nant. Canup (2008) studied the effect of pre-impact rotation on
lunar formation; however, the work focused on a non-dispersive
collision regime. Using a soft-sphere collision code, Takeda
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& Ohtsuki (2009) performed simulations of hyper-velocity
impacts on rotating ∼10 km size bodies. They found that mass
loss is only sensitive to rotation when the target has an in initial
spin period close to break-up; otherwise, the collisional energy
needed to disrupt a rubble-pile object is not affected by initial
rotation. They argued that, upon collision, the ejection speeds of
fragments in the hemisphere rotating away from the projectile
(prograde direction) are accelerated by the initial rotation, but
this is balanced by fragments in the hemisphere rotating toward
the projectile (retrograde direction) being decelerated. However,
their analysis was restricted to targets with initial rotations of
2.6 and 4.6 revolutions per day (9.23 and 5.58 hr, respectively).
Furthermore, their work focused on the efficiency of angular
momentum transfer in catastrophic collisions.

In this paper, we expand upon the work of previous authors by
performing a systematic study of the effect of pre-impact rota-
tion on the energy required to disperse material from kilometer-
size gravitational aggregates rotating with spin periods of 3,
4.5, and 6 hr. We solve numerically the outcomes of rubble-
pile collisions using a combination of a soft-sphere discrete ele-
ment method (SSDEM) collisional code and a numerical gravity
solver, pkdgrav (Stadel 2001), which is needed to accurately
model the reaccumulation stage. SSDEM has the numerical res-
olution to determine the mechanics involved in enhancing or
diminishing the amount of mass loss associated with collisions
onto a rotating target. SSDEM permits realistic modeling of
multi-contact and frictional forces between discrete indestruc-
tible particles. Thus, it is well suited to the study of low-speed (a
few to tens of m s−1) impacts, as it can model robustly collisions
that do not produce irreversible shock damage to material (as in
hypervelocity, km s−1 impacts). In the quasi-steady-state colli-
sional system generally present in a protoplanetary disk, impact
speeds are typically of order the escape speed of the largest
body in the vicinity. Until the largest body becomes protoplanet
sized, impacts will be typically at speeds less than the sound
speed of the assumed rocky material. Hence, we limit our study
to collisions that occur at subsonic speeds. Most significant col-
lisions today occur at supersonic speeds; however, studies of
supersonic collisions require the use of shock physics codes,
which include the effects of irreversible shock deformation.

Furthermore, we attempt to revise the dependence of catas-
trophic disruption on the impact parameter b = sin θ , where θ
is the angle between the projectile’s path and the target’s cen-
ter at impact (see Section 2.3). Previous studies (Canup 2008;
Leinhardt & Stewart 2012) have shown that the increase in the
threshold for catastrophic disruption for oblique impacts is due
to a reduction in interacting projectile mass. These authors pro-
vide a formulation parameterized by the fraction of interacting
mass, α. We show that this does not account adequately for the
increase in the catastrophic dispersal threshold for impacts with
b �= 0 but α ∼ 1 (impacts where most of the projectile interacts
with the target). We discuss a possible revision to the formu-
lation of the catastrophic disruption variables that includes the
effective interacting target material. By only taking into account
the mass of material that interacts in the collision, oblique im-
pacts are rescaled into equivalent head-on collisions such that
they are well described by the so-called “universal” law for
catastrophic disruption (Leinhardt & Stewart 2012).

Our results have important implications for the efficiency of
planet formation via planetesimal growth, and for the determina-
tion of the impact energy threshold for catastrophic disruption,
as this has generally only been evaluated for non-spinning bod-
ies. In Section 2 we explain the computational methods and

outline the parameter space that we explore. In Section 3 we
provide our results. In Section 4 we discuss these results in
the context of the “universal” law for catastrophic disruption
and formulate a semi-analytic description of the dependence of
catastrophic disruption on pre-impact rotation. We summarize
and offer perspectives in Section 5.

2. METHODOLOGY

2.1. Numerical Method

We use pkdgrav, a parallel N-body gravity tree code (Stadel
2001) adapted for particle collisions (Richardson et al. 2000,
2009, 2011). Originally collisions in pkdgrav were treated as
idealized single-point-of-contact impacts between rigid spheres.
A soft-sphere option was added recently (Schwartz et al. 2012);
with this option, particle contacts can last many time steps, with
reaction forces dependent on the degree of overlap (a proxy for
surface deformation) and contact history.

The spring/dash-pot model used in pkdgrav’s soft-sphere
implementation is described fully in Schwartz et al. (2012).
A spherical particle overlapping with a neighbor feels a reac-
tion force in the normal and tangential directions determined
by spring constants (kn, kt), with optional damping and effects
that impose static, rolling, and/or twisting friction. The damp-
ing parameters (Cn, Ct) are related to the conventional normal
and tangential coefficients of restitution used in hard-sphere
implementations, εn and εt . The static, rolling, and twisting
friction components are parameterized by dimensionless coef-
ficients μs , μr , and μt , respectively. Careful consideration of
the soft-sphere parameters is needed to ensure internal con-
sistency, particularly with the choice of kn, kt, and time step.
The numerical approach has been validated through compar-
ison with laboratory experiments; e.g., Schwartz et al. (2012)
demonstrated that pkdgrav correctly reproduces experiments of
granular flow through cylindrical hoppers, specifically the flow
rate as a function of aperture size, Schwartz et al. (2013) demon-
strated successful simulation of laboratory impact experiments
into sintered glass beads using a cohesion model coupled with
the soft-sphere code in pkdgrav, and Schwartz et al. (2014)
applied the code to low-speed impacts into regolith in order to
test asteroid sampling mechanism design.

2.2. Rubble-pile Model

Our simulations consist of two bodies with a mass ratio of
∼1:10: a stationary target with mass Mtarg and a projectile with
mass Mproj (Mproj = 0.1Mtarg for this work) which impacts the
target at a speed of vimp. Both the target and projectile are
gravitational aggregates of many particles bound together by
self-gravity. The particles themselves are indestructible and have
a fixed mass and radius. In the simulations reported here, the only
friction that is modeled is static friction, for which we assume
μs = 0.5, corresponding to an internal angle of friction of
tan−1(μs) ∼ 27◦ (we discuss the possible outcome dependence
on SSDEM parameters in Section 5).

The rubble piles are created by placing equal-sized particles
randomly in a spherical cloud and allowing the cloud to collapse
under its own gravity with highly inelastic particle collisions.
Randomizing the internal structure of the rubble piles reduces
artificial outcomes due to the crystalline structure of hexagonal
close packing (Leinhardt et al. 2000; Leinhardt & Richardson
2002). Due to symmetry lines and planes in crystalline packing,
there is a dependency of the collision outcome on the initial
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orientation of the target’s principal axes. To test the dependence
of the collision outcome on initial orientation for a spherically
collapsed rubble pile, a series of simulations was performed
where the simulation parameters were kept constant except for
the initial orientation of the target’s equatorial principal axes,
which were varied by increments of 45◦ about its polar axis.
The results of these simulations show that, for a spherically
collapsed rubble pile, the dependence of collision outcome on
initial orientation is small (mass loss deviations of less than 1%
from the mean).

For the simulations presented here, the target had an average
radius of Rtarg ∼ 1.0 km and bulk density of ρtarg ∼ 2 g cm−3.
The projectile had an average radius of Rproj ∼ 0.5 km and
bulk density of ρproj ∼ 2 g cm−3. In order to determine
accurately the physical properties (size, shape, mass, angular
momentum) of the target after the collision, the rubble piles
were constructed with a relatively high number of particles
(Ntarg = 104, Nproj = 103).

The collisional properties of the constituent particles are
specified prior to each simulation. These values were fixed
at εn = 0.8 (mostly elastic collisions with some dissipation)
and εt = 1.0 (no sliding friction). Furthermore, since SSDEM
models treat particle collisions as reactions of springs due to
particle overlaps, the magnitude of the normal and tangential
restoring forces are determined by the spring constants kn
and kt ∼ (2/7)kn. We choose kn by requiring the maximum
fractional particle overlap, xmax, to be ∼1%. For rubble-pile
collisions, the value of kn can be estimated by:

kn ∼ m

(
vmax

xmax

)2

, (1)

where m corresponds to the typical mass of the most energetic
particles, and vmax is the maximum expected speed in the
simulation (Schwartz et al. 2012). Thus, for our rubble-pile
collisions with speeds �10 m s−1, kn ∼ 4 × 1011 kg s−2. The
initial separation of the projectile and target, d, for all cases was
∼4Rtarg, far enough apart that initial tidal effects were negligible.
In order for the post-collision system to reach a steady state,
the total run-time was set to ∼3× the dynamical time for the
system, 1/

√
Gρtarg ∼ 2 hr. Furthermore, a time step Δt ∼ 3 ms

was chosen on the basis of the time required to sample particle
overlaps adequately, for the choice of kn and xmax given above.

2.3. Simulation Parameters and Collision Geometries

In order to probe the effect of rotation on collision outcome,
simulations with the target rubble pile having an initial spin
period Pspin of 3, 4.5, and 6 hr (values well above the spin
break-up limit for a rubble pile of bulk density ∼2 g cm−3,
∼2.3 hr), were compared against runs with the target having
no initial spin. For the material parameters assumed here, a
rotating spherical rubble-pile would likely find a new spin-shape
equilibrium. However, the impacts of our simulations occur
quickly enough that the target does not deviate from its spherical
shape before disrupting. Determining the effect of pre-impact
shape on collision outcome is outside the scope of this study and
is left for future work. For every spin period, simulations were
done with a range of impact speeds such that there was adequate
coverage of the gravitational dispersal regime (collisions that
result in a system losing 0.1–0.9 times its total mass).

Furthermore, three different collision geometries were ex-
plored in this work, each of which depended on two differ-
ent collision parameters. The first was the impact parameter

(a)

(b)

Figure 1. Schematic of two collision scenarios. Panel (a) shows a target impacted
in its equatorial plane by a projectile moving right to left with speed vimp. The
impact angle θ is the angle between the line connecting the centers of two bodies
and the projectile’s velocity vector, at the time of contact. Panel (b) shows a
projectile that impacts a target at an angle δ between the rotation axis (z) and
the projectile’s velocity vector.

b = sin θ , where θ is the angle between the line connecting the
centers of two bodies and the projectile’s velocity vector (see
Figure 1(a)). The second parameter was the angle δ, which is
the angle between the target’s rotation axis and the projectile’s
velocity vector (see Figure 1(b)). In this study, the effect of each
parameter on the collision outcome was studied separately and
compared against the standard case of a head-on collision. In
a head-on collision, the projectile’s velocity vector is normal
to the target’s rotation axis and is directed towards its center
(b = 0 and δ = 90◦).

For oblique impacts, the impact parameter b �= 0. The impact
parameter has a significant effect on the collision outcome
because the total mass of the projectile may not completely
intersect the target when the impact is oblique (e.g., Yanagisawa
& Hasegawa 2000; Canup 2008; Leinhardt & Stewart 2012).
Thus, when the projectile is large enough compared to the
target, a portion of the projectile may shear off and only the
kinetic energy of the interacting fraction of the projectile will be
involved in disrupting the target. For any given collision speed,
an oblique impact will erode less mass than a head-on collision.
In this study, four values of b were used, ±0.5 and ±0.7. For
b < 0, the projectile impacts the target on the hemisphere that
rotates towards the projectile, which we define as the retrograde
hemisphere. For b > 0, the projectile impacts the target on
the hemisphere that is rotating away from the projectile, the
prograde hemisphere (see Figure 1(a)). Hence, if the collision
outcome is sensitive to initial rotation, then it is expected that the
sign of b will also affect the amount of mass that is dispersed.

For non-equatorial impacts, the polar angle δ < 90◦ (see
Figure 1(b)). If the collision outcome is sensitive to the target’s
pre-impact rotation, then material from the target’s equator may
preferentially be dispersed due to its lower specific binding
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energy. However, it is uncertain whether the projectile more
efficiently transfers its energy to the target’s equator or to its
poles upon impact. Hence, this study tests the effect of three
different polar impact angles: δ = 90◦ (collisions directed at the
target’s equator), δ = 45◦, and δ = 0◦ (collisions directed at the
target’s pole). In reality, most collisions will have a combination
of non-zero values for both b and δ.

3. RESULTS

The collision of two rubble-pile objects typically results in
either net accretion, where the largest remnant has a net gain
in mass compared to the mass of the target, or net erosion,
where the target has lost mass. Alternatively, a collision could
result in no appreciable net accretion or erosion (Leinhardt &
Stewart 2012). These latter types of collisions, called hit-and-run
events, typically occur for grazing impacts that have an impact
parameter, |b|, that is greater than a critical impact parameter bcrit
(Asphaug 2010), where bcrit = Rtarg/(Rproj +Rtarg). In this paper,
we focus on the dispersive regime, where impact velocities, vimp,
are greater than the escape speed from the surface of the target,
vesc (assuming no rotation). The impact speeds in our simulation
range from 4–30 vesc, where vesc ∼ 1 m s−1 is the escape speed
from a spherical object with mass Mtot = Mproj + Mtarg and
density ρ1 = 1 g cm−3. At impact speeds of 4–30 vesc, the
mass of the largest remnant in each simulation, MLR, ranges
between 0.2–0.8 Mtot. The amount of mass loss at the end
of a simulation is found by measuring the final mass of the
largest remnant and all material gravitationally bound to it
(material with instantaneous orbital energy �0). Furthermore,
we analyze the mechanics behind rotation-dependent mass loss
by comparing the number of escaping particles that originate
from different regions of the target. The result of each simulation
is summarized in Table 1.

3.1. Head-on Equatorial Collisions

For the nominal case of an equatorial-plane head-on collision,
b = 0 and δ = 90◦. Figure 2 shows that the amount of
mass dispersal increases monotonically with collision speed,
and that, for head-on equatorial collisions, the amount of mass
dispersal is sensitive to initial rotation, as cases with shorter spin
periods systematically result in more mass loss. Furthermore,
the collision outcomes for the target with an initial period of
6 hr approach the outcomes where the rubble pile initially
has no spin. Since the spin limit for cohesionless rubble piles
of this size and density is ∼2.3 hr, these results are fairly
representative of all possible head-on collisions with initial
spin (for μs = 0.5). Through a simple linear regression of
the mass loss as a function of impact speed, we find that the
catastrophic disruption threshold Q�

D decreases by a range of
∼10%–30% for the cases with pre-impact spin studied here.
Since the transition from merging to catastrophic disruption
may occur over a difference in energy of ∼30% (Leinhardt &
Stewart 2012), our results show that pre-impact spin can play a
crucial role in the formation of planetesimals and protoplanets.

In order to obtain a better understanding of the underlying
mechanics of rotationally enhanced mass loss, we considered
the geometrical effects associated with a collision. By tracking
the provenance of escaping particles originating from the target,
we studied the likelihood of a particle’s escape as a function
of its initial longitudinal and latitudinal point of origin on the
target. Figure 3(a) shows a mass-loss map for the case of a head-
on collision with specific impact energy close to catastrophic

Figure 2. Mass loss for head-on equatorial impacts (b = 0, δ = 90◦) is sensitive
to pre-impact rotation. The amount of mass that is gravitationally dispersed is
proportional to the impact speed. Magenta triangles, orange stars, and black
squares represent impacts where the target has a pre-impact spin period of 6 hr,
4.5 hr, and 3 hr, respectively. Cyan filled circles represent impacts where the
target has no pre-impact spin. For head-on equatorial collisions, we derive the
dependence of the reduced mass catastrophic disruption threshold, Q�

RD, on the
target’s pre-impact rotation rate in Section 4.2.

(A color version of this figure is available in the online journal.)

disruption (vimp = 9 m s−1). The collision creates an extended
impact region proportional to the projectile’s size (Rproj ∼
0.5 km), shown in Figure 3(a) as the black region in the middle
of the map. Material within this region is retained by the largest
remnant as it is enclosed between the incoming projectile and the
target’s antipodal region (material 180◦ from the impact point).
The escaping material originates from a nearly symmetrical
ring about the impact region. Closer inspection of this escaping
material reveals that the enhancement in mass loss is due
to a preferential escape of material from prograde (positive)
longitudes (Figure 3(b)) (a similar result was found by Takeda
& Ohtsuki 2009). For this analysis, particles in the initial rubble-
pile target were binned into 30◦ longitudinal spherical wedges.
Since the target is nearly spherically symmetric, we consider
longitudinal bins of equal size. Figure 4 shows the number and
sign convention that is used. The 0◦ longitude point is defined as
the meridian of the target aligned with the impactor’s velocity
vector at the beginning of the simulation. Figure 3(b) shows
the mass distribution of the largest post-impact remnant as a
function of the particle origin. For no pre-impact spin, the largest
post-collision remnant is composed of a near-equal amount of
material from prograde and retrograde hemispheres. This is
reflected in the symmetry of the longitudinal mass-distribution
profile shown in Figure 3(b) (cyan circles). When a target has
pre-impact spin, more material in the retrograde longitudes
(negative values) is retained by the largest remnant, while
more material located in the prograde longitudes escape. This
is due to retrograde material having tangential velocities that
are anti-aligned with the impact velocity vector, and prograde
material having tangential velocities that are aligned. This can
be seen in the increase in the asymmetry of the mass-distribution
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(a) (b)

Figure 3. Panel (a) shows a cylindrical equi-distant map projection of the areas of mass loss from the head-on equatorial impact with vimp = 9 m s−1, and Pspin = ∞
(no rotation). For an impactor of finite size, the regions near the impact point [coordinates (0◦, 0◦)] do not experience mass loss as they are confined between the
antipodal material and the incoming projectile during the collision. Rather, a ring of material surrounding the extended impact region is ejected (here shown as a
rectangular region due to the distortion of the map projection). Panel (b) shows the provenance of material that make up the largest remnant for simulations with
a near-catastrophic impact speed, vimp = 9 m s−1, and for Pspin = ∞, 6, 4.5, and 3 hr (cyan circles, magenta triangles, orange stars, and filled black squares,
respectively). Mλ is the mass in the largest remnant originating from a given longitude range (30◦ bin size) of the target. The open black squares connected by the
dash-dotted line represent the initial longitudinal mass distribution of the target. Deviations from a constant value (∼1/12) are due to the slight asphericity of the target.
The sensitivity of mass loss to pre-impact rotation exists due to an enhancement in the amount of escaping material from the prograde hemisphere (Longitude > 0◦),
which more than compensates for a corresponding greater retention of material from the retrograde hemisphere (Longitude < 0◦).

(A color version of this figure is available in the online journal.)

Figure 4. In order to determine the longitudinal origin of escaping particles,
the target is divided into equal-size bins of longitudes. Following the right-hand
rule, negative values of the longitude correspond to negative values along the
y-axis when spin-angular momentum vector is aligned with the positive z-axis.

profiles for increasing spin rate (magenta triangles, orange
stars, and black squares in Figure 3(b)). However, there is an
imbalance between mass retention and mass escape in opposite
hemispheres for cases with pre-impact spin. Relative to the
case with no rotation, the troughs of the mass distributions
(30◦ < |Longitude| < 60◦) exhibit an extra ∼20%–50% of
mass retention on the retrograde hemisphere; but, an extra
∼35%–85% of mass escapes on the prograde hemisphere. This
phenomenon is observed in all cases of pre-impact spin. It is this
process that eventually determines the total net enhancement in
mass loss as a function of increasing pre-impact spin seen in
Figure 2.

However, head-on collisions are not the most likely collision
geometry; rather, a collision with b ∼ 0.7 (θ ∼ 45◦) is the most
common on average (Love & Ahrens 1996). Furthermore, the
mechanics of mass loss enhancement due to pre-impact spin
appears to be linked directly with the manner in which loading
on the target occurs. Therefore, we extend our analysis to study
the dependence of mass loss with the combined effects of non-
zero b and δ by studying each in isolation.

3.2. Oblique Equatorial Collisions

Previous studies have shown that the catastrophic disruption
criterion is highly sensitive to the impact parameter (Leinhardt
et al. 2000; Leinhardt & Stewart 2012). For oblique impacts, the
energy of the projectile may not completely intersect the target.
For certain values of b, a segment of the projectile may be able
to shear off, and, consequently, this material does not interact
with the target, effectively lowering the specific impact energy.
Hence, a greater impact speed is required to reach catastrophic
disruption compared to a head-on collision. Previous studies
used a simple geometric model to determine the fraction of
interacting projectile mass (Canup 2008; Leinhardt & Stewart
2012). The revised mass is then used in scaling the catastrophic
disruption criteria (Leinhardt & Stewart 2012).

We find that mass dispersal is only sensitive to pre-impact
rotation when b > 0, for the range in b values considered (see
Table 1). For b < 0, the projectile impacts the target on its
retrograde hemisphere; hence, the tangential velocities of ro-
tating particles are either anti-aligned or perpendicular to the
impact velocity vector. Figure 5 shows the mass distribution
as a function of longitudinal origin for vimp = 15 m s−1. The
solid and dotted curves are for b±0.5 and b±0.7, respectively.
Figure 5(a) shows that, for collisions onto the prograde hemi-
sphere, pre-impact rotation systematically increases mass loss
(less material is retained at each longitude bin). This is similar to
the results found for head-on collisions in Section 3.1. However,
for the cases with b = +0.5 (solid lines), there is a slight inver-
sion in mass retention between spin and no-spin cases retrograde
at longitudes (as expected, based on the results from the pre-
vious section). This inversion is more apparent in Figure 5(b),
which shows that collisions onto the retrograde hemisphere re-
sult in a rough balance between mass retention and mass-loss en-
hancement when pre-impact spin is introduced. Rotation causes
increases in mass retention at longitudes westward of the im-
pact point, and an equal decrease at longitudes eastward of the
impact point. Hence, the net effect is that, for retrograde im-
pacts, pre-impact spin does not enhance mass loss very much.
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(a)

(b)

Figure 5. Mass-loss distribution for oblique equatorial impacts with vimp = 15 m s−1. Panel (a) shows the distribution for impacts onto the prograde hemisphere
(positive b), where the solid lines are for collisions with b = +0.5, and dotted lines are for b = +0.7. Panel (b) shows the distribution for impacts onto the retrograde
hemisphere (negative b), where the solid lines are for collisions with b = −0.5, and dotted lines are for b = −0.7. See text for discussion.

(A color version of this figure is available in the online journal.)

Furthermore, for the oblique impacts considered here, the rubble
pile is efficient at dissipating the impact energy such that grav-
itational dispersal is localized to the hemisphere of the target
that was impacted, rather than being a global effect.

3.3. Head-on Collisions with δ < 90◦

Since the effective acceleration of a particle on a rotating
body is a function of its colatitude, we would expect that the
amount of mass loss a rubble pile experiences is a strong function
of the latitude of impact. The effect of varying the latitude
of impact was also discussed in Takeda & Ohtsuki (2009),
who studied the effects on the post-impact spin rate. Figure 6
shows the mass dispersal as a function of impact speed for
two different values of the polar impact angle, δ. Contrasting
with the head-on equatorial case, for low collision speeds, pre-
impact rotation does not systematically increase the amount of
mass loss. However, for near- and super-catastrophic speeds,
the amount of mass loss is greatly enhanced. For such energetic
collisions, a target with a 3 hr pre-impact spin period experiences
∼25% (for δ = 45◦) and ∼50% (δ = 0◦) more mass loss than
a non-spinning target. On average, a pole-on impact onto a
spinning target requires ∼15% less specific impact energy to
reach catastrophic disruption compared to an equatorial head-
on impact (δ = 90◦, b = 0).

The enhancement in mass loss for near-polar impacts is
due to the escape of equatorial surface particles. As discussed
in Section 3.1 and shown in Figure 4(a), the material that
escapes originates from a ring about the extended impact
region. For the case of pole-on and near-pole-on impacts, this
dispersal region extends to the equator, where the effective pre-
impact acceleration of particles is greatest. Unlike equatorial
impacts (δ = 90◦), material at the equator is not confined by
impacting projectile material. Instead, polar material is trapped
by the merging projectile material, and the collisional wave
disperses material outside the immediate polar region. For
highly energetic collisions, this mechanical wave extends to
the equator, where particles are unhindered and more readily
escape. Hence, for the cases of near- and super-catastrophic
collisions, the vertical transfer of impact energy (from the

(a)

(b)

Figure 6. Mass of the largest remnant as a function of impact speed for cases with
δ < 90◦. Significant enhancements in mass loss only occur for near-catastrophic
and super-catastrophic collisions. See text for discussion.

(A color version of this figure is available in the online journal.)

pole to the equator) leads to the ejection of low-latitude
particles. Experiencing a lower effective gravitational potential
at higher rotation rates, these particles escape more easily. This is
demonstrated in Figure 7, which shows the mass distribution of
the largest remnant as a function of the absolute latitudinal origin
of particles from the target for a pole-on impact (δ = 0◦). The
absolute latitude is used since the target is near-symmetric about
the equator. In order to make insightful comparisons, the target’s
northern and southern hemispheres are sub-divided into six
equal-mass regions, which correspond to the following latitude
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Table 1
Summary of Collision Geometries and Mass Loss Outcomes

b δ Pspin vimp MLR/Mtot

(◦) (hr) (m s−1)

0 90 ∞ 6.0 0.831089
0 90 ∞ 7.0 0.764666
0 90 ∞ 8.0 0.683734
0 90 ∞ 9.0 0.607632
0 90 ∞ 10.0 0.517345
0 90 ∞ 11.0 0.428664

0 90 6 6.0 0.811708
0 90 6 7.0 0.742641
0 90 6 8.0 0.661843
0 90 6 9.0 0.579304
0 90 6 10.0 0.494084
0 90 6 11.0 0.389184

0 90 4.5 6.0 0.800477
0 90 4.5 7.0 0.728418
0 90 4.5 8.0 0.649403
0 90 4.5 9.0 0.567309
0 90 4.5 10.0 0.464814
0 90 4.5 11.0 0.351837

0 90 3 6.0 0.760627
0 90 3 7.0 0.696922
0 90 3 8.0 0.599811
0 90 3 9.0 0.514277
0 90 3 10.0 0.421599
0 90 3 11.0 0.305056

0 45 ∞ 5.0 0.876133
0 45 ∞ 6.0 0.807526
0 45 ∞ 7.0 0.739923
0 45 ∞ 8.0 0.652526
0 45 ∞ 9.0 0.575735
0 45 ∞ 10.0 0.496087

0 45 6 5.0 0.877857
0 45 6 6.0 0.805796
0 45 6 7.0 0.725621
0 45 6 8.0 0.634082
0 45 6 9.0 0.554188
0 45 6 10.0 0.485355

0 45 3 5.0 0.846789
0 45 3 6.0 0.767449
0 45 3 7.0 0.684930
0 45 3 8.0 0.565474
0 45 3 9.0 0.441618
0 45 3 10.0 0.378795

0 0 ∞ 5.0 0.881670
0 0 ∞ 6.0 0.817889
0 0 ∞ 7.0 0.734517
0 0 ∞ 8.0 0.649638
0 0 ∞ 9.0 0.562160
0 0 ∞ 10.0 0.472488

0 0 6 5.0 0.874406
0 0 6 6.0 0.812157
0 0 6 7.0 0.724058
0 0 6 8.0 0.627248
0 0 6 9.0 0.531327
0 0 6 10.0 0.433020

0 0 3 5.0 0.865095
0 0 3 6.0 0.777822
0 0 3 7.0 0.684112
0 0 3 8.0 0.481345
0 0 3 9.0 0.347406
0 0 3 10.0 0.206721

Table 1
(Continued)

b δ Pspin vimp MLR/Mtot

(◦) (hr) (m s−1)

+0.5 90 ∞ 5.0 0.855201
+0.5 90 ∞ 10.0 0.694707
+0.5 90 ∞ 15.0 0.513617
+0.5 90 ∞ 20.0 0.299089

+0.5 90 6 5.0 0.834180
+0.5 90 6 10.0 0.671891
+0.5 90 6 15.0 0.490690
+0.5 90 6 20.0 0.312836

+0.5 90 3 5.0 0.797677
+0.5 90 3 10.0 0.638241
+0.5 90 3 15.0 0.445009
+0.5 90 3 20.0 0.289541

−0.5 90 ∞ 5.0 0.852571
−0.5 90 ∞ 10.0 0.699535
−0.5 90 ∞ 15.0 0.540372
−0.5 90 ∞ 20.0 0.327492

−0.5 90 6 5.0 0.865060
−0.5 90 6 10.0 0.702961
−0.5 90 6 15.0 0.511956
−0.5 90 6 20.0 0.326386

−0.5 90 3 5.0 0.860442
−0.5 90 3 10.0 0.690634
−0.5 90 3 15.0 0.481739
−0.5 90 3 20.0 0.315096

+0.7 90 ∞ 5.0 0.876840
+0.7 90 ∞ 10.0 0.796897
+0.7 90 ∞ 15.0 0.715336
+0.7 90 ∞ 20.0 0.619042
+0.7 90 ∞ 25.0 0.532207
+0.7 90 ∞ 30.0 0.424618

+0.7 90 6 5.0 0.863776
+0.7 90 6 10.0 0.786793
+0.7 90 6 15.0 0.695417
+0.7 90 6 20.0 0.601023
+0.7 90 6 25.0 0.504266
+0.7 90 6 30.0 0.414065

+0.7 90 3 5.0 0.840861
+0.7 90 3 10.0 0.750761
+0.7 90 3 15.0 0.656733
+0.7 90 3 20.0 0.551418
+0.7 90 3 25.0 0.462672
+0.7 90 3 30.0 0.386483

−0.7 90 ∞ 5.0 0.874388
−0.7 90 ∞ 10.0 0.795250
−0.7 90 ∞ 15.0 0.712159
−0.7 90 ∞ 20.0 0.628877
−0.7 90 ∞ 25.0 0.534306
−0.7 90 ∞ 30.0 0.432360

−0.7 90 6 5.0 0.880263
−0.7 90 6 10.0 0.804069
−0.7 90 6 15.0 0.720063
−0.7 90 6 20.0 0.628323
−0.7 90 6 25.0 0.525654
−0.7 90 6 30.0 0.390580

−0.7 90 3 5.0 0.884772
−0.7 90 3 10.0 0.787585
−0.7 90 3 15.0 0.702943
−0.7 90 3 20.0 0.599283
−0.7 90 3 25.0 0.477597
−0.7 90 3 30.0 0.359355
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(a) (b) (c)

Figure 7. Latitudinal origin of material from the target that constitutes the
largest remnant for pole-on impacts (δ = 0◦). Mφ is the mass in the largest
remnant originating from a given range in absolute latitude (six equal-mass
bins) of the target. Solid cyan, dashed magenta, dot-dashed orange, and dotted
black lines represent impact speeds of 5, 7, 8, and 10 m s−1, respectively. The
open black squares connected by the dotted lines represent the initial latitudinal
mass distribution of the target. Panel (a) shows that, for a non-rotating target,
higher impact speeds cause more mass to escape from the equator rather than
the poles. As Panels (b) and (c) show, this effect is magnified for faster spin
rates, leading to large enhancements in global mass loss, as shown in Figure 6.

(A color version of this figure is available in the online journal.)

boundaries: 0◦, 6◦, 13◦, 20◦, 28◦, 39◦, and 90◦. At low impact
speeds, most of the mass loss originates from high latitudes.
At sufficiently high impact speeds, more mass loss originates
from low latitudes (compare solid cyan curve and dotted black
curve in Figure 7(a)). For faster spin rates, mass loss from lower
latitudes is even more enhanced (contrast dotted black curves in
Figures 7(a) and (c)), and the impact speed threshold to move
from high-latitude mass-loss to low-latitude mass loss decreases
(contrast dot-dashed orange curves in Figures 7(a) and (c)). The
overall effect is the enhancement in global mass loss at high
impact speeds seen in Figure 6.

4. DISCUSSION

4.1. The “Universal” Law for Catastrophic Disruption

In order to account for the dependence of mass ratio on
catastrophic disruption criteria, Leinhardt & Stewart (2009)
introduced new variables into their formulation for predicting
collision outcomes: the reduced mass μ ≡ MprojMtarg/Mtot,
the reduced-mass specific impact energy QR ≡ 0.5μv2

imp/Mtot,
and the corresponding reduced-mass catastrophic dispersal limit
Q�

RD. Through this new formulation, Leinhardt & Stewart (2009)
showed that the outcome of any head-on collision, regardless
of projectile-to-target-mass ratio, can be described by a single
equation that they call the “universal” law:

MLR/Mtot = −0.5(QR/Q′∗
RD) + 0.5, (2)

where the prime (′) notation in Q′�
RD was introduced by Leinhardt

& Stewart (2012) to denote a collision that could have a non-
zero impact parameter. Leinhardt & Stewart (2009) verified

Figure 8. Mass-loss outcomes for all simulations are plotted as a function of the
specific impact energy in units of the catastrophic disruption criterion. Head-on
collision outcomes are described well by the “universal” law for catastrophic
disruption, Equation (2) (dotted line). Most head-on collisions (cyan circles)
show <1% deviations from the universal law. Non-equatorial impacts (δ < 90◦)
onto rotating targets, show deviations of up to ∼10% due to non-linear effects
present when collisions are near- and super-catastrophic (see text for discussion).
Oblique impacts (filled triangles) systematically deviate from the universal law.

(A color version of this figure is available in the online journal.)

that, for head-on impacts (b = 0), Equation (2) agrees well
with results from both laboratory experiments and numerical
simulations of binary collisions with a range of mass ratios and
material properties. Leinhardt & Stewart (2012) found that their
numerical simulations showed deviations in MLR/Mtot of ∼10%
for near-normal impacts (b = 0 and b = 0.35), and larger and
more varied deviations for more oblique impacts.

In order to compare our results (summarized in Table 1) to
those of Leinhardt & Stewart (2012), the outcomes of each group
of collisions (MLR as a function of QR) were fit with a linear
function to determine empirically the value of Q′�

RD (collision
groups are uniquely identified by single values of b, δ, and Pspin.)
For most collision scenarios the results are well described by
the linear fit. In these cases, deviations from the model were less
than 1%. For non-equatorial collisions (δ < 90◦) onto a rotating
target, we showed in Section 3.3 the existence of two different
mass loss outcome regimes. For near- and super-catastrophic
collisions, enhanced mass dispersal from the equator causes a
non-linear increase in mass loss. Hence, for these cases, a single
linear fit to determine Q′�

RD leads to deviations of ∼10%.
The results of our simulations are presented in Figure 8,

superimposed on the universal law for catastrophic disruption.
For collisions with b = 0, we observe that the law predicts
accurately the mass of the largest remnant (deviations <10%).
Furthermore, varying the polar-impact angle, δ, or the spin
period, Pspin, does not affect the mass of the largest remnant
if the specific impact energy is normalized by Q′∗

RD.
Cases of b = ±0.5,±0.7 seem to be better fit by a

shallower slope. For oblique impacts, Leinhardt & Stewart
(2012) introduced a parameter α ≡ mint,proj/Mproj, which
accounts for the mass of the projectile that interacts with the
target, such that the appropriate reduced mass is

μα ≡ αMprojMtarg

αMproj + Mtarg
. (3)

For the case of a 1:10 mass ratio and b = ±0.5, we find α ∼ 1.0.
Yet, we observe in our experiments that the specific impact
energy required for catastrophic disruption is much greater than
that for a head-on collision. Therefore, there must be some
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(a)

(b)

Figure 9. Using a χ2 analysis, we determined the best values of α and A that
adjust the catastrophic disruption variables such that oblique impacts are well
modeled by the universal law for catastrophic disruption. The white dashed line
is the geometric constraint placed by αgeom. For b = ±0.7, αgeom = 0.44. The
χ2 analysis shows that the geometric model may be underestimating the fraction
of interacting projectile material (see text for discussion).

other mechanism that accounts for this discrepancy in required
specific impact energy.

During a collision, a compressive wave travels through
the projectile, and upon encountering the projectile’s edge, is
reflected as a tensile wave that travels through the contact points
and disrupts and disperses target (as well as projectile) material
(Ryan 2000). The width of this wave depends on a number of
physical parameters such as the strain loading rate, the type
of material, and the size ratio of the projectile and target. We
hypothesize that the size of this wave determines what fraction
of the target interacts in the collision. For cases with non-
zero b, we observe that the particles that are able to escape
are mostly localized to the same hemisphere of the collision;
hence, some of the material in the opposite hemisphere of the
target shears off and is not involved in the collision. For head-on
collisions, the dispersive wave would originate near the center
and propagate symmetrically through the target, maximizing
the amount of material affected by the collision. The exact
wave mechanics involved in computing the fraction of the target
that does interact during the collision is difficult to determine
accurately analytically. For now, we attempt to find an empirical
determination of this interacting target mass by adjusting the
disruption criteria variables to include this effect. Hence, we
introduce a further revised reduced mass:

μA ≡ αMprojAMtarg

αMproj + AMtarg
, (4)

where A ≡ mint,targ/Mtarg, the fraction of the mass of the target
that interacts in the collision. Thus, the equivalent head-on
specific impact energy is QA

R = 0.5μAv2
imp/Mtot. Furthermore,

the mass of the largest remnant is now normalized by a total
interacting mass, MA

tot ≡ αMproj+AMtarg. Using these new
variables, we rescale the oblique impacts into equivalent head-
on impacts. By using a χ2-minimization routine, we determined
the best-fit values for α and A (Figure 9) that rescale the oblique
impact results such that they fit the universal law for catastrophic

Table 2
Summary of χ2 Analysis: Best-fit Interacting Mass Fractions

b α A χ2 αgeom

±0.5 0.85 0.94 0.61 0.85
±0.7 0.745 0.845 0.68 0.44

disruption. We consider two cases, b = ±0.5 and b = ±0.7.
Since the effect is considered to be purely geometric, it is
independent of the sign of b. For both cases of b, we find single
1/χ2 peaked regions in the parameter space. Possible values of
A are well constrained between 0.8 and 0.9 for both cases of
b. The best-fit values of α differs for the two |b| cases, with
b = ±0.5,±0.7 peaked at α ∼ 0.7, 0.75, respectively.

In order to constrain the possible values of α and A, we also
determined the interacting mass fraction of the projectile, which
we will call αgeom, through a simple geometric model. Following
Leinhardt & Stewart (2012), we determine αgeom by considering
the volume of the projectile whose cross section intersects with
the target. The volume of a spherical cap can be expressed as:

Vint,proj = πl2

3
(3r − l), (5)

where l is the height of the spherical cap, and r is the radius of
the sphere. For an oblique impact, l is the projected length of
the projectile overlapping the target, and can be expressed as

l = (1 − b)(Rtarg + Rproj). (6)

Therefore,

αgeom = mint,proj

Mproj
= Vproj

Vint,proj
= 3rl2 − l3

4r3
. (7)

The value of αgeom gives a lower boundary to the possible
value of α, since it is expected that the minimum amount
of interacting material would be the mass that overlaps the
target geometrically. We determined the best values of α and
A as constrained by the geometric model, and find that as |b|
increases, α and A decrease (Table 2). This trend is expected,
since more projectile and target material can shear off when the
impact is close to grazing. For the cases with b = ±0.7, we
find that the best-fit value of α (0.745) is much greater than
αgeom (0.44). This suggests that the simple geometric model
underestimates the value of α. A fraction of the projectile
whose cross section does not overlap with the target does
not completely shear off; rather, it is involved in the collision
process, contributing to the impact energy delivered to the target.

For the cases with b = ±0.5, we find that the best-fit values
for α and A are excluded when α is imposed to be greater than or
equal to αgeom. If the geometric constraint is not considered, then
a combination of α = 0.685 and A = 0.845 gives the minimum
χ2. However, this would imply that the cases of b = ±0.5 have a
lower value for α than the cases of b = ±0.7 (α = 0.745). This
is unlikely, as a larger fraction of projectile material is expected
to interact when a collision is closer to head-on.

Hence, while our χ2 analysis does a good job of fitting
the data to the universal law, the results are unphysical unless
they are constrained by a geometric model. Therefore, more
work must be done in order to verify whether the energetics
of oblique impacts are affected by the interacting fractional
mass of both the target and the projectile as we suggest
here. In Figure 10, we show that oblique impacts follow the

9



The Astrophysical Journal, 789:158 (12pp), 2014 July 10 Ballouz et al.

Figure 10. Adjusting our results for the correct interacting projectile and target
produces a better fit for oblique impacts, for low QA

R/Q�
RD (cf. Figure 8). The

corrected interacting mass fractions are summarized in Table 2.

(A color version of this figure is available in the online journal.)

linear universal law if the axes are changed to our rescaled
catastrophic disruption variables. However, we find that for
super-catastrophic collisions, the data points seem to tail-off
rather than follow a linear relationship. Laboratory experiments
(Matsui et al. 1982; Kato et al. 1995) and disruption simulations
(Korycansky & Asphaug 2009; Leinhardt & Stewart 2012),
have shown that the mass of the largest remnant follows a
power law with QR for super-catastrophic collisions. At these
high energies, mass dispersal results in the formation of a
large number of fragments of roughly equal size, rather than a
single large remnant, such that for incrementally higher impact
energies, the largest remnant remains constant. This may explain
the discrepancy that we see between the high-energy collision
outcomes and the universal law.

4.2. Rotation Dependence of Catastrophic Disruption for
Head-on Equatorial Collisions

Since rotation decreases the effective gravitational binding
energy of a body, we first describe the size-dependence of
catastrophic disruption so that we may be able to formulate an
analytic description of the dependence on pre-impact rotation.
The catastrophic disruption criterion is a function of radius,
with two regimes: a strength-dominated regime and a gravity-
dominated regime (Housen & Holsapple 1990). For rocky
bodies, the transition from strength to gravity occurs at a radius
of ∼100 m (Leinhardt et al. 2008). In the strength regime,
the catastrophic disruption criterion decreases with increasing
radius; this is due to multiple factors, such as the increase in the
size of the largest internal crack and the total number of flaws
with target size. In the gravity regime, disruption increases as
the radius increases since disruption requires shattering and
gravitational dispersal, and the gravitational binding energy of
a body, U, is proportional to the square of the body’s radius.
For a binary collision, the gravitational binding energy can be
approximated as,

U = 3GMtot

5RC1
= 4

5
πρ1GR2

C1, (8)

where G is the gravitational constant and RC1 is the spherical
radius of the combined projectile and target masses at a density
of ρ1 = 1 g cm−3. Leinhardt & Stewart (2009) introduced RC1
in order to compare collisions of different projectile-to-target-
mass ratios.

By determining the dependence of mass ratio on the catas-
trophic disruption criterion, Leinhardt & Stewart (2012) found
that, in the gravity regime, the disruption criterion for equivalent
equal-mass impacts, Q�

RD, of different materials all fall along
a single curve that scales as the radius squared. Since catas-
trophic disruption and the gravitational binding energy scale
similarly with radius, the authors define a principal disruption
curve, where Q�

RD is a scalar multiple of U. They defined a di-
mensionless material parameter, c�, that represents this offset,
such that

Q�
RD = c�U. (9)

For bodies with a diverse range of material properties (strength-
less hydrodynamic targets, rubble piles, ice, and strong rock
targets) and with 0.5 km < RC1 < 1000 km, Leinhardt & Stew-
art (2012) found that the threshold for catastrophic disruption is
defined by a single principal disruption curve with c� = 5 ± 2.
They find that a similar curve can describe the disruption of
planet-size bodies (RC1 > 3000 km) with c� = 1.9 ± 0.3.

In order to formulate a description of the dependence of
catastrophic disruption on rotation, we first consider a rotating
fluid body that has an effective specific gravitational binding
energy, Ueff , given by

Ueff = U − |ω × r|2
2

, (10)

where ω is the constant angular velocity of the body, and r
is the position vector of a particle relative to the center of the
target. Similarly, we propose that in a binary head-on equatorial
collision with pre-impact rotation the catastrophic disruption
criteria, Q�

RD,rot, is a function of the angular speed of the target,
ωtarg. For a head-on equatorial collision with pre-impact rotation
(collision geometry with no dependence on b and δ), this is
represented by a subtraction of a latitude-averaged centrifugal
term as in Equation (10) such that

Q�
RD,rot = Q�

RD,norot − ω2
targR

2
targ, (11)

where Q�
RD,norot is the catastrophic disruption criterion without

pre-impact spin. For non-equatorial or oblique impacts, we
expect that the change in the catastrophic disruption criterion is
a more complicated function of collisional angular momentum
and the efficiency of its transfer. For the purposes of this
paper, we restrict our analysis to the simpler equatorial head-on
collisions. Dividing Equation (11) by Q�

RD,norot, and substituting
from Equation (9), we find

Q�
RD,rot

Q�
RD,no-rot

= 1 − K

(
ωtarg

ωcrit

)2

;

K ≡ 5

3

RC1

Rtarg

Mtarg

Mtot

1

c�
, (12)

where ωcrit ≡ (GMtarg/R
3
targ)1/2 is the spin break-up limit of

the target. We fit Equation (12) with the empirically derived
catastrophic disruption values (described in Section 4.1) for the
three different pre-impact spin cases normalized by the spinless
case (Figure 11). We find a best-fit value of K = 0.3814
(maximum deviations were ∼3%), corresponding to a value
of c� = 4.83. Our value of c� falls within the range for small
bodies (R < 1000 km in size) that Leinhardt & Stewart (2012)
find.

Equation (12) predicts that for pre-impact rotations close to
break-up, the catastrophic disruption criterion can decrease by
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Figure 11. Head-on equatorial impacts have catastrophic disruption thresholds
that are sensitive to pre-impact spin. We develop a semi-analytic description of
Q�

RD as a function of the pre-impact spin-rate of the target, ωtarg (see text), and
find that our data imply a value of c� = 4.83 for the dimensionless material
parameter of the principal disruption curve. The dashed curve is the best-fit
function (of the form described by Equation (12)) to the catastrophic disruption
thresholds with pre-impact rotation normalized by the case with no rotation
(circles).

a factor of ∼40%. In reality, a spherical target spinning close
to break-up would reach a new fluid-equilibrium shape, and the
nature of its ellipsoidal shape will likely affect the catastrophic
disruption criterion. In our simulations, the impacts occur
quickly enough that the target does not reach a fluid equilibrium
before disrupting. Future work will study the dependence of
catastrophic disruption on the pre-impact shape of the target
body.

5. CONCLUSIONS AND FUTURE WORK

We have studied the effect of initial rotation on the outcome of
rubble-pile collisions by analyzing the properties of the largest
remnant and material that is gravitationally bound to it. By
simulating different collision geometries and speeds, we have
begun to explore a parameter space that is wide enough that
we can formulate a phenomenological description of collision
outcomes. Our main conclusion is that mass dispersal is a
function of initial rotation period, with faster-rotating rubble-
pile targets dispersing more mass. By analyzing the initial spatial
distribution of the gravitationally bound masses, we have shown
that there is an enhancement of mass loss when the impact
energy is efficiently transferred to the prograde hemisphere of
a rotating rubble pile. For head-on impacts onto regions near
the pole, the collision efficiently disperses equatorial material
for near- and super-catastrophic collisions, and fast rotation
increases mass loss by factors of up to 50%. The mass of the
largest remnant of head-on impacts is well described by the
“universal law” for catastrophic disruption first put forward
by Leinhardt & Stewart (2009), independent of initial pre-
impact rotation. Hence, for a given impact speed, pre-impact
rotation decreases MLR/Mtot, and the corresponding decrease
in Q′�

RD can be described by the universal law. However, oblique
impacts follow a linear relationship with a shallower slope than
the universal law. When the interacting mass fraction of the

projectile and target are factored into the catastrophic disruption
variables, the outcomes for oblique impacts can be rescaled for
a better match to the universal law.

By subtracting a centrifugal term from the catastrophic
disruption criterion of the case with no pre-impact rotation,
we developed a prescription that describes the change in the
catastrophic disruption criteria of head-on equatorial impacts
onto a rotating target. We independently find a dimensionless
material parameter, c� = 4.83, that agrees with the principal
disruption curves of Leinhardt & Stewart (2012) for small
bodies. Our simplified description does not take into account
the effects of angular momentum transfer in oblique impacts
or the mechanism for enhanced mass loss from near- and
super-catastrophic polar impacts described in Section 3.3. These
effects will have to be further studied so that the change in
the catastrophic disruption criterion can be determined for any
impact trajectory.

In the future, we will explore a wider parameter space in
order to strengthen the conclusions drawn here. In particular, the
effectiveness of rotation in enhancing mass loss must be studied
for different projectile-to-target-mass ratios. Since mass loss is
sensitive to rotation, the spin-up or spin-down of the post-impact
largest remnant plays an important role in the size evolution of
a population of km-size bodies. Furthermore, the change in spin
likely has an effect on the reaccumulation process, changing
the final mass. In some cases, spin-up may lead to a remnant
crossing the rotational disruption threshold (Pspin ∼ 2.3 hr, for
ρ ∼ 2 g cm−3). In order to understand how rotation affects
the long-term size, shape, and spin evolution of a population
of SSSBs, a semi-analytic description of the dependence of
Q′�

RD on the parameters explored here must be formulated, such
that MLR can be determined for any given collision. Therefore,
future work will also need to study the sensitivity of mass loss
on rotation for larger (>1 km) bodies. It is unclear whether
the collisional dynamics explored here scales to larger bodies.
This will help inform future planet-formation studies by giving
a more accurate prescription for collision outcomes, a necessary
component for models that study the collisional growth of
planetesimals.

Lastly, our study focused on a single set of SSDEM parame-
ters, corresponding to a single type of material. However, there
is a diversity of asteroid types, and their exact material properties
are uncertain. Future space missions, in particular sample-return
ones such as Hayabusa 2 (JAXA) to be launched in 2014–2015,
and OSIRIS-REx (NASA) to be launched in 2016, will shed
some light on the physical and dynamical properties of aster-
oids that will help constrain the plausible SSDEM values. Until
then, we are able to perform simulations that vary SSDEM val-
ues so that we can explore the range of possible outcomes.
Furthermore, the SSDEM code is capable of simulating gravi-
tational aggregates made up of a size distribution of particles.
Walsh & Richardson (2008) and Walsh et al. (2012) found that
the Mohr–Coulomb internal angle of friction (φ), effectively a
rubble pile’s shear strength, depends on the particle size dis-
tribution. Therefore, in order to accurately describe collisional
processes in the solar system, future work will explore the de-
pendence of impact outcomes on the different possible combi-
nations of material properties of asteroids.
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