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ABSTRACT
Binary near-Earth asteroid (65803) Didymos is the target of the proposed NASA Double
Asteroid Redirection Test (DART), part of the Asteroid Impact & Deflection Assessment
(AIDA) mission concept. In this mission, the DART spacecraft is planned to impact the
secondary body of Didymos, perturbing mutual dynamics of the system. The primary body is
currently rotating at a spin period close to the spin barrier of asteroids, and materials ejected
from the secondary due to the DART impact are likely to reach the primary. These conditions
may cause the primary to reshape, due to landslides or internal deformation, changing the
permanent gravity field. Here, we propose that if shape deformation of the primary occurs, the
mutual orbit of the system would be perturbed due to a change in the gravity field. We use a
numerical simulation technique based on the full two-body problem to investigate the shape
effect on the mutual dynamics in Didymos after the DART impact. The results show that under
constant volume, shape deformation induces strong perturbation in the mutual motion. We find
that the deformation process always causes the orbital period of the system to become shorter.
If surface layers with a thickness greater than ∼0.4 m on the poles of the primary move down
to the equatorial region due to the DART impact, a change in the orbital period of the system
and in the spin period of the primary will be detected by ground-based measurement.

Key words: methods: numerical – space vehicles – celestial mechanics – minor planets,
asteroids: individual: 65803 Didymos.

1 IN T RO D U C T I O N

The proposed NASA Double Asteroid Redirection Test (DART)
mission, part of the Asteroid Impact & Deflection Assessment
(AIDA) mission concept, plans to launch spacecraft in 2021 March
to target the binary near-Earth asteroid (65803) Didymos in 2022

� E-mail: thirabayashi@purdue.edu
† Present address: Auburn University, 211 Davis Hall, Auburn, AL 36849,
USA.

October (Cheng et al. 2015, 2016, 2017). In this mission, the DART
spacecraft will impact the secondary of Didymos. The primary goal
of this mission is to demonstrate a measurable deflection of the orbit
of the secondary. If possible, the momentum transfer coefficient, β,
(Holsapple & Housen 2012) will also be estimated.

Radar and light-curve observations have shown the physi-
cal properties of Didymos (see details in Michel et al. 2016;
Naidu et al. 2016). The reported total mass of this system is
5.278 ± 0.54 × 1011 kg, and the bulk density is 2100 ± 630 kg m−3.
For the primary, the mean diameter is 0.780 ± 0.078 km, and the
spin period is 2.26 h. The shape looks like a spherical body with an
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Table 1. Physical properties used in our numerical exercises. We do not
describe the spin period of the secondary because this quantity does not
appear in our analysis. Also, the orbital distance described in the last row is
the distance of the centres of mass between the primary and the secondary.

Primary Secondary

Mass kg 5.12 × 1011 4.76 × 109

Bulk density kg m−3 2100 2100
Volume km3 2.44 × 10−1 2.26 × 10−3

Mean radius km 3.87 × 10−1 8.15 × 10−2

Spin period h 2.26 –
Orbital distance km – 1.183

equatorial ridge, which is a so-called top-shape. For the secondary,
the mean diameter is 0.163 ± 0.018 km. The distance between the
centres of mass of these two objects is 1.18 + 0.04/−0.02 km. The
eccentricity of the mutual orbit is less than 0.03, and the orbital
period is 11.920 h. Further details of the physical properties of this
system are referred to tables 4 and 5 in Michel et al. (2016). In the
following discussions, we adopt the nominal values of the estimated
properties above for our numerical calculations (Table 1).

Based on the current spin period, the primary appears to be spin-
ning near its spin limit, which is about 2.2 h (Warner, Harris &
Pravec 2009). Possible failure modes may be landslides (Walsh,
Richardson & Michel 2008; Scheeres 2015) or shape deformation
(Hirabayashi & Scheeres 2014). Hirabayashi (2015) and Zhang
et al. (2017) argued that these failure modes depend on different
internal structures. After the DART impact on the secondary, some
materials ejected from the impact site eventually reach the primary.
Yu et al. (2017) showed that the majority of the primary’s surface
may be overlaid with the ejecta because the motion of the ejecta is
sensitive to the primary’s gravity (Dell’Elce et al. 2016). Scheeres
(2017) stated that shape deformation1 induces energy transfer from
the self-potentials of the bodies into orbital energy. This process
causes a change in the orbital elements of the system. Therefore,
if a cluster of ejecta landing on the primary has enough kinetic
energy, the particles landing on (or hitting with high speed) the sur-
face may induce structural failure, causing the primary to deform
permanently.

In this study, we investigate possible responses of the mutual
motion in the system to shape deformation of the primary after
the DART impact. We develop a numerical model for simulating
the mutual motion in the Didymos system by using a radar shape
model of the primary (Naidu et al. 2016). We show that shape
deformation of the primary causes a change in the gravity field,
perturbing the mutual motion in the system. Note that this work was
originally presented at the Lunar Planetary Science Conference in
2017 (Hirabayashi et al. 2017) and is extended to strengthen our
discussion in this paper.

This paper consists of two parts. First, we review the deforma-
tion modes of a top-shape asteroid rotating near its spin limit and
hypothesize a possible deformation process of the primary after
the DART impact (Section 2). Secondly, we introduce a numer-
ical model based on the full two-body problem (Scheeres 2006)
and show how the mutual motion is perturbed due to differently
deformed shapes of the primary (Section 3).

1 He used ‘reshaping’ to describe the same sense of ‘shape deformation’ in
our study.

2 PO S S I B L E S T RU C T U R A L B E H AV I O U R O F
T H E PR I M A RY A F T E R T H E DA RT IM PAC T

2.1 Sensitivity to shape deformation of the primary due to
rotation

The primary structurally fails due to fast rotation when its material
strength is not strong enough to hold the shape of the original body.
The current spin period of the primary (2.26 h) is close to the spin
barrier of asteroids, ∼2.2 h, (Warner et al. 2009). It is top-shaped
with flat poles and an equatorial ridge (Naidu et al. 2016). Zhang
et al. (2017) used a Soft Sphere Discrete Model to conduct compre-
hensive analyses for the failure mode of the primary of Didymos
under the assumption that it is cohesionless. Taking into account
possible structural configurations of the primary, they investigated
the failure condition and deformation mode of the primary. They
concluded that the current shape might be close to its failure con-
dition, depending on the bulk density and size within observation
error. If the bulk density were to be lower than the nominal value,
even higher values of either one or both the angle of friction or
cohesion would be required to maintain the current shape (Zhang
et al. 2017).

Here, we use a plastic finite element model (FEM) technique
developed by Hirabayashi et al. (2016) to show an example of the
failure mode of the primary due to fast rotation for the case when
the material distribution in the primary is uniform. The detailed
descriptions for mesh development, boundary conditions, and load-
ing settings are described in Hirabayashi et al. (2016). We use the
radar shape model developed by Naidu et al. (2016). Fig. 1 shows
the failure mode of the primary. For the physical properties, see
Table 1. To derive this stress solution, we also use shear strength
parameters for geological materials, the friction angle and cohesive
strength. The friction angle is an angle describing friction, while
the cohesive strength is shear strength at zero pressure (Lambe &
Whitman 1969). The friction angle and cohesive strength are fixed
at 35◦ and 25 Pa, respectively, implying that the actual values of
these quantities should be higher because its shape is not failing at
present.

The spin axis aligns vertically, and the centrifugal forces always
act on the body in the horizontal direction. The contour describes the
ratio of the actual stress state to the yield stress state, which is called
the stress ratio. If this ratio becomes unity, the elements structurally
fail. Fig. 1(a) indicates the stress ratio on the surface, while Fig. 1(b)
displays that of a vertical cross-section through the pole. It is found
that the unity stress ratio spreads over the internal region, meaning
that internal failure induces the primary’s deformation.

For this case, the failure mode is composed of horizontally out-
ward deformation on the equatorial plane and inward deformation in
the vertical direction (see the arrows in Fig. 1b). These two modes
result from an interior that is more sensitive to structural failure
than the surface region, making the primary more oblate. The fail-
ure mode of this body is comparable to that of Bennu (Scheeres
et al. 2016). The settings of the friction angle and cohesive strength
show that the shear resistance of the primary is comparable to that
of 1950 DA (Hirabayashi & Scheeres 2014; Rozitis, MacLennan &
Emery 2014), implying that the primary might be close to its failure
condition. Also, while in this study we consider the primary to have
cohesion, the obtained failure mode is consistent with that derived
in Zhang et al. (2017).

Other deformation modes may be possible. A landslide has been
proposed to be a deformation mechanism (Walsh, Richardson &
Michel 2008, 2012; Scheeres 2015). For this case, the primary’s
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Figure 1. Failure mode of the primary at the present spin period (2.26 h). The spin axis is along the vertical direction. The contour colour shows the stress
ratio. When the stress ratio is unity, the region should fail. Panel (a): the stress ratio distribution on the surface. Panel (b): the stress ratio distribution across the
cross-section. The arrows describe the total deformation vectors.

structure should have a strong interior. As the spin period be-
comes shorter, the internal structure can still remain intact, while
the surface layer structurally fails due to stronger centrifugal forces
(Hirabayashi 2015; Hirabayashi, Sánchez & Scheeres 2015; Zhang
et al. 2017). Statler et al. (2014) also proposed that the Coriolis
force may cause deflection of a landslide flow towards the longi-
tude direction, enhancing asymmetric features of the shape. On the
other hand, if the interior is structurally weak, the failure mode is
characterized by substantial deformation in which the surface layer
squashes the internal region, possibly causing a bilobate structure
(Sánchez, Scheeres & Hirabayashi 2015).

2.2 Possible deformation path after the DART impact

If there is no disturbance to the Didymos system, the shape of
the primary should not change. However, since the primary may
be sensitive to structural failure, perturbations due to added kinetic
energy may trigger shape deformation. The DART impact generates
materials ejected from the secondary’s surface, some of which arrive
at the primary (Yu et al. 2017). If the ejected particles have enough
kinetic energy, it is possible that impacts of these particles on the
primary induce shape deformation of the primary at any possible
scales. Seismic shaking may be a possible factor that could change
the surface topography (Richardson, Melosh & Greenberg 2004;
Richardson et al. 2005), although wave attenuation might be critical
in highly porous media. Murdoch et al. (2017) propose that low-
energy impacts fluidize more granular materials in a low-gravity
environment than those in a terrestrial environment.

Answering whether or not the DART impact causes the primary’s
shape deformation requires sophisticated investigation tools for
analysing the impact processes of multiple particles in a low-gravity
environment. We leave this investigation as our future work. Here,
we consider a possible deformation path of the primary, assuming
that the primary deforms due to the process described in Section 2.1.
If granular materials in the primary are fluidized by impacts, strong
centrifugal forces may contribute to the deformation process. The
primary deforms until the configuration settles into a new equilib-
rium under constant angular momentum (Holsapple 2010).

Fig. 2 shows a derived deformation path of the primary (the
dashed line) and equilibrium curves with different friction angles
for an oblate cohesionless body, which are given by Holsapple
(2001) (the solid curves). The x-axis is the aspect ratio, i.e. the ratio
of the semiminor axis to the semimajor axis of the primary, and the

Figure 2. A possible deformation path of the primary. The x-axis is the
aspect ratio, while the y-axis is the spin period. The deformation path under
constant angular momentum (the dashed line) is plotted on the equilibrium
shape map of Holsapple (the solid lines). To create the equilibrium shape
map, we assume that the shape is perfectly oblate and the structure is cohe-
sionless. For the solid lines from the top to bottom, the friction angles are
0◦, 35◦ and 90◦. Location O is the current aspect ratio at the present spin
period. Locations A, B and C describe the aspect ratios at the intersections
between the deformation path and the equilibrium shape curves.

y-axis is the spin period. To compute the equilibrium shape curves,
we use the defined physical properties (Table 1). The friction angles
of the equilibrium shape curves are 0◦ for the top curve, 35◦ for the
intermediate curve and 90◦ for the bottom curve (see the details in
Holsapple 2001).

We derive the deformation path by considering how oblate the
original shape becomes under constant volume and angular mo-
mentum. Depending on the magnitude of the deformation process,
the primary’s shape configuration moves on the deformation path
towards a lower friction angle. The current aspect ratio is 0.939,
which is located at O in Fig. 2, and is computed based on radar-
derived dimensions with a 3σ uncertainty of 10 per cent. The aspect
ratios on the deformation path at friction angles of 90◦, 35◦ and 0◦

are 0.9, 0.7 and 0.4, respectively. These locations are denoted as A,
B and C, respectively. Fig. 3 displays the deformed shapes. Note
that the case of a friction angle of 0◦ may be extreme. Also, for
real soils, dilatancy increases the volume due to shear, given the
initial condition of porosity (Holsapple 2010). Thus, our volume-
constant assumption would give conservative results of the orbital
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Figure 3. Deformed shapes of the primary. The contour displays the distance of the surface element from the centre of mass and the dots show the original
shape. Panel (a): deformed shape at location A in Fig. 1. Panel (b): deformed shape at location B. Panel (c): deformed shape for location C.

perturbation of Didymos; in other words, because our predicted
oblateness would be less than the actual one, our derived orbital
perturbation might be underestimated.

These figures show that if the primary is cohesionless, the current
configuration has to be supported by an extremely high-friction an-
gle; however, a smaller volume within observation error may allow
the primary to keep the original shape without cohesion (Zhang
et al. 2017). The deformed shapes on the path will be used to eval-
uate the perturbation of the mutual orbit due to shape deformation
of the primary in the following sections. Since it is unknown how
the aspect ratio evolves on the deformation path, we choose these
four aspect ratio, i.e. 0.939, 0.9, 0.7 and 0.4, as sample cases.

3 DY NA M I C A L B E H AV I O U R O F T H E SY S T E M

3.1 Modelling of dynamical motion

We model the mutual interaction between the primary and the sec-
ondary using the full two-body problem technique developed by
Scheeres (2006). We use the radar shape model (Naidu et al. 2016)
for the primary and assume the secondary to be spherical. Note that
while full interactions between irregular bodies have been mod-
elled (Werner & Scheeres 2005; Fahnestock & Scheeres 2006;
Hirabayashi & Scheeres 2013; Naidu & Margot 2015; Hou,
Scheeres & Xin 2016; Davis & Scheeres 2017), ours may be a
reasonable assumption as radar observations have given few con-
straints on the secondary’s shape.2 Fig. 4 describes the system. The
origin, denoted as CM, corresponds to the centre of mass of the
system. The position vectors of the primary and the secondary are
denoted as rp and rs, respectively. The relative position of the sec-
ondary with respect to the primary is given as rps = rs − rp. The
mass and the volume are defined as Mi and Vi, respectively, where
i = (p, s). The dot–dashed line indicates the path of the DART
spacecraft, which is supposed to approach the secondary from di-
rection P. The trajectory of the DART spacecraft projected on to the
secondary’s orbital plane is given as the dashed line. We use ψ and

2 Taking into account tidal forces, Michel et al. (2016) assumed the shape
of the secondary to be an ellipsoidal shape.

Figure 4. Description of the Didymos system. The primary is modelled
using the radar shape model, while the secondary is assumed to be a spherical
body. The dot–dashed line shows the path of the DART spacecraft, while the
dashed line describes that projected on to the secondary’s orbital plane. CM
is the centre of mass of the system. P indicates the direction from which the
DART spacecraft approaches the secondary. θ is the phase angle between
the approaching path projected on the secondary’s orbital plane and the line
along the two objects, and ψ is the out-of-plane angle between the velocity
vector of the DART spacecraft and the orbital plane. v is the incident velocity
vector, while vh is the velocity vector projected on to the secondary’s orbital
plane.

θ to define the impact location. ψ is the angle between the velocity
vector of the DART spacecraft and the secondary’s orbital plane,
while θ is the phase angle indicating the secondary’s location on its
orbital plane at time of impact.

We describe the mutual gravity force acting on the secondary
from the primary as (Scheeres 2006)

f ps = −GMs

∫
Vp

rps − δrp

‖rps − δrp‖3
dMp = −Ms

∂U

∂rps
, (1)

where G is the gravitational constant and δrp is the position vector
of an element in the primary relative to the primary’s centre of mass.
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We obtain the equation of motion as

r̈ps + 2Ωp × ṙps + Ω̇p × rps + Ωp × (Ωp × rps)

= −
(

1 + Ms

Mp

)
∂U

∂rps
, (2)

where Ωp is the spin vector of the primary, and the dots on letters
define time-derivatives in the frame rotating with the primary. We
also describe the attitude motion of the primary. The torque acting
on the primary is given as

τ p = Msrps × ∂U

∂rps
. (3)

Then, the attitude motion of the primary is given as

IpΩ̇p + Ωp × IpΩp = τ p. (4)

Note that the secondary is spherical, its attitude motion can be
decoupled from the mutual dynamics considered here.

To describe the rotation of the primary, we use Euler parameters
(Schaub & Junkins 2003)

β0 = cos
φ

2
, (5)

β1 = e1 sin
φ

2
, (6)

β2 = e2 sin
φ

2
, (7)

β3 = e3 sin
φ

2
, (8)

where e = (e1, e2, e3)T is the principal rotation vector and φ is the
principal angle. These parameters should satisfy

β2
0 + β2

1 + β2
2 + β3

3 = 1. (9)

The rates of Euler parameters are given as
⎡
⎢⎢⎣

β̇0

β̇1

β̇2

β̇3

⎤
⎥⎥⎦ = 1

2

⎡
⎢⎢⎣

β0 −β1 −β2 −β3

β1 β0 −β3 β2

β2 β3 β0 −β1

β3 −β2 β1 β0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
	1

	2

	2

⎤
⎥⎥⎦. (10)

Here, Ωp = (	1, 	2, 	3)T is described in the rotating frame. Then,
the transformation matrix from the inertial frame into the rotating
frame, A, is given as

A =
⎡
⎣ β2

0 +β2
1 −β2

2 −β2
3 2(β1β2+β0β3) 2(β1β3−β0β2)

2(β1β2−β0β0) β2
0 −β2

1 +β2
2 −β2

3 2(β2β3+β0β1)
2(β1β3+β0β2) 2(β2β3−β0β1) β2

0 −β2
1 − β2

2 +β2
3

⎤
⎦.

(11)

For this system, there are four integrals (Scheeres 2006). The first
integral is the total energy of the system, which is given as

E = 1

2

MpMs

Mp + Ms
(ṙps + Ωp × rps) · (ṙps + Ωp × rps)

+1

2
Ωp · IpΩp + MsU. (12)

The other integrals are defined by the total angular momentum, for
which the vector expression is

H = A

[
IpΩp + MpMs

Mp + Ms

{
rps × ṙps + rps × (Ωp × rps)

}]
. (13)

Figure 5. Mutual motion of the Didymos system that is given in the rotating
frame fixed to the primary. The origin is identical to the centre of mass of
the primary. The coordinate frame is fixed to the primary. The body drawn
at the centre is the primary. The thick circle is the secondary’s orbit, which
is perturbed by the primary.

3.2 Results

In this section, we explore how the deformed primary changes the
mutual motion of Didymos after the DART impact. The integra-
tor used is an eighth-order Runge–Kutta scheme (Montenbruck &
Gill 2000) with a fixed step size of 432 s. We assume that the initial
mutual orbit between the primary and the secondary has zero incli-
nation and zero eccentricity. We also consider that the DART impact
is at 27.5◦ out of the secondary’s orbital plane (Cheng et al. 2016),
i.e. ψ = 27.5◦. Again, the physical property used are given in Ta-
ble 1.

We first compute the nominal case in which the primary does not
deform. Fig. 5 shows the orbit of the secondary relative to that of
the primary in the coordinate frame fixed to the primary. The ξ , η

and ζ axes are defined along the primary’s minimum, intermediate
and maximum moment of inertia axes, respectively. This figure
plots the motion in the ξ–η plane. The thick, circular orbit indicates
that the shape of the primary perturbs the mutual orbit between the
primary and the secondary. Next, we investigate the perturbation of
the mutual orbit caused by the DART impact. We consider that at
t = 0 the impact process instantaneously changes the velocity of the
secondary. For simplicity, we consider that the momentum transfer
coefficient is at one; in order words, we do not account for added
momentum transfer from ejecta in this analysis. Given the linear
momentum conservation, we compute the change in the velocity of
the secondary as

vs = mv

M2
, (14)

where m is the mass of the DART impactor and v is the incident
velocity vector (Fig. 4). To model the DART impact, we fix m and
‖v‖ at 500 kg and 6 km s−1, respectively.3 We obtain the change in
the speed of the secondary, ‖vs‖, as 6.3 × 10−4 m s−1. Because
of the DART impact angle, the velocity change of the secondary on
the orbital plane is 6.3 × 10−4 cos (27.5◦) = 5.6 × 10−4 m s−1.

In this study, we consider the currently planned impact location
and an additional test location to show how the initial location
affects the orbital evolutions (see panel a in Figs 6 and 7). The
currently planned impact location is at θ = −90◦. Note that the exact
location may be slightly different from our defined location. The test

3 Theses values are current as of 2017 February 17.
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Figure 6. Panel (a): currently planned DART impact location. The phase angle, θ , is −90◦. The directions of the velocities of the secondary and the DART
impactor are opposite. Panel (b): The secondary’s orbital perturbation from its nominal orbit after the DART impact. The bold line shows the case when the
primary does not deform at all. The narrow dotted, dot–dashed, and solid lines describe the cases at aspect ratios of 0.4, 0.7 and 0.9, respectively. AR in the
legend stands for ‘aspect ratio’.

Figure 7. Panel (a): hypothesized impact location. The directions of the velocities of the secondary and the DART impactor are perpendicular to each other.
Panel (b): the secondary’s orbital perturbation from its nominal orbit after the DART impact. The styles of the lines are the same as given in Fig. 6.

location is fixed at θ = 0◦. This location is less likely to be selected
as the impact site because it is difficult to observe the effect of
momentum transfer. However, we consider this case to demonstrate
that the DART impact at this site may trigger orbital perturbation
not by addition of momentum by the DART impact but by shape
deformation. In addition, while materials on the secondary would
be ejected in the direction opposite to the location of the primary,
low-velocity ejecta might be trapped by the primary’s gravity, and
some of them would still reach the primary. With these initial impact
locations, we investigate the effect of the deformed shapes on the
perturbation of the mutual orbit, considering the four aspect ratios
defined in Section 2.2.

We calculate the orbital perturbation within 10 orbital periods,
equivalent to 4.97 Earth days, for these cases. Panel (b) in Figs 6
and 7 show the secondary’s orbit relative to its nominal orbit (see

Fig. 5). The x-axis defines the orbital perturbation from the nominal
case in the radial direction, and the y-axis gives the deviation in
the tangential direction. In other words, these two axes rotate with
the nominal location of the secondary. We omit the descriptions of
the motion in the out-of-plane direction. Because of this coordinate
frame setting, the maximum distance between the nominal loca-
tion and the perturbed location in the x-axis should be two times
the orbital radius, i.e. ∼2.36 km, at y ≈ 0 km, while that in the
y-axis should be identical to the orbital radius, i.e. ∼1.18 km, at x
≈ −1.18 km. These features are seen in these plots. Each orbit of
the secondary is differently affected by the primary’s shape defor-
mation. The bold line shows the secondary’s orbit influenced by the
DART impact without the primary’s deformation. For this case, the
aspect ratio of the primary is 0.939. The narrow solid, dot–dashed,
and dotted lines describe the orbital motion of the secondary after
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Table 2. Changes in the orbital period after the DART impact. The units
are in seconds. The negative values describe that the orbital period becomes
shorter than that in the nominal case. For the definition of θ , see Fig. 4.

Aspect ratio
0.939 0.9 0.7 0.4

θ = −90◦ −357.6 −595.8 −1872 −5004
θ = 0◦ 0 −238.2 −1488 −4530

the DART impact with aspect ratios of 0.9, 0.7 and 0.4, respectively.
The origin of the frame is identical to the location of the secondary
in the nominal case at a given time.

The results show that the deformed primary changes the gravity
field in the system, affecting the mutual interaction between the
primary and the secondary. We first discuss the orbital perturba-
tion after the DART impact at the currently planned location, i.e.
θ = −90◦ (Fig. 6). If the primary does not deform at all (bold black
line), the orbital energy of the system decreases due to the kinetic
energy of the DART impact, and the distance between the primary
and the secondary becomes shorter. Because of this process, the or-
bital period is 357.6 s (=5.96 min) shorter than that for the nominal
case (Table 2).4 If the primary deforms, the orbit of the secondary
is perturbed by the change in the gravity field (the narrow lines).
Since the deformation process always makes the primary’s aspect
ratio smaller, the gravity force in the radial direction increases on the
equatorial plane, pulling the secondary inwards. Therefore, similar
to the no-deformation case, the orbital period becomes shorter. De-
pending on an aspect ratio after the deformation process, a change
in the orbital period may become significant (Table 2). For the cases
of θ = 0◦, we find that the orbital perturbation due to the primary’s
deformation is consistent with the case of θ = −90◦ (Fig. 7). In
conclusion, the DART impactor makes the orbital period shorter;
likewise, the deformation process of the primary also shortens the
orbital period.

So far, we studied the orbital perturbation, given fixed aspect
ratios of the primary’s shape. However, since the magnitude of the
deformation process is unknown, it is difficult to determine the level
of the orbital perturbation. Therefore, we also consider how large
the deformation should be to affect ground-based measurement. The
mission requirement for measurement accuracy of a change in the
orbital period is 7 s. We determine the aspect ratio of the primary
such that the orbital period is 7 s shorter than that for the case of
no deformation. We obtain that the aspect ratio at this condition
is 0.938, which could happen if the surface layers with a thickness
thicker than ∼0.4 m at the poles move down to the equatorial region.

While a change in the orbital period should be measured accu-
rately, our results imply that if shape deformation occurs at such a
small scale or larger, it is likely to influence momentum transfer es-
timation planned on the DART mission. Thus, it is vitally important
to separate the effect of shape deformation from that of the DART
impact. One way of observing this effect might be to observe a
change in the spin period of the primary. As shown in Fig. 3, under
constant angular momentum, the spin period may change due to
the deformation process. We write the spin period change of the

4 Our result is 87.6 s shorter than the value derived by Cheng et al. (2016).
This slight difference comes from the use of the updated spacecraft config-
urations and the radar shape model.

Table 3. Changes in the spin period of the primary after the deformation
process. T is defined in equation (15). The units are in seconds. Note that
the original aspect ratio is 0.939.

Aspect ratio
0.938 0.9 0.7 0.4

T 5.781 233.4 1760 6235

primary as

T =
(

Ipz

Ipz0
− 1

)
T0, (15)

where Ipz0 and Ipz are the maximum moment of inertia components
of the primary before and after the DART impact, respectively,
and T0 is the original spin period of the primary, i.e. 2.26 h. Since
Ipz > Ipz0, T > 0; that is, the new spin period is always slower than
the original spin. Table 3 shows how T depends on the final shape.
If we observe the spin period change, it is possible to decouple the
DART impact effect and the shape deformation effect. Importantly,
even if the deformed aspect ratio is 0.938, the spin period change
is 5.781 s (=0.0016 h), which is still detectable.5 However, since
mutual dynamics of the system is likely to provide critical effects on
the primary’s spin condition, it is necessary to develop sophisticated
analysis tools and observation techniques.

4 D I S C U S S I O N A N D C O N C L U S I O N

We investigated how the mutual orbit in binary near-Earth asteroid
Didymos would change due to shape deformation of the primary.
The primary is currently rotating with a spin period of 2.26 h, which
may be close to its critical spin condition. Since some materials
ejected from the secondary by the DART impact reach the primary
(Yu et al. 2017), they may affect the sensitivity of the primary to
structural failure. Assuming that such a process changes the shape
of the primary, we conducted numerical simulations to compute dy-
namical interaction in the Didymos system after the DART impact.
Specifically, we analysed how mutual motion between the primary
and the secondary would evolve due to the primary’s deformation.
We showed strong perturbation in the system due to the gravity field
of the deformed primary under constant volume. As the aspect ratio
of the primary decreases due to deformation, the gravity force in the
radial direction became larger, making the orbital period shorter.

We explain the critical assumptions made in this study. First, the
shape of the secondary was assumed to be spherical. At present,
ground observations have not detected the shape of the secondary.
Thus, in this study, it is reasonable to assume the secondary to be a
sphere. However, if the secondary is non-spherical, the secondary’s
orbit is coupled with its attitude motion. Early studies showed the
coupled motion of binary near-Earth asteroid 1999 KW4 (Scheeres
et al. 2006; Fahnestock & Scheeres 2008; Hou et al. 2016). Specif-
ically, accurate description of the mutual motion may require con-
siderations of up to the fourth order of the inertia integrated tensors
(Davis & Scheeres 2017).

Secondly, we simplified the deformation mode of the primary in
this study. A recent work demonstrated that even if an asteroid has a
symmetric shape, the internal heterogeneity could cause asymmet-
ric deformation (Sánchez & Scheeres 2016). Even if the structure

5 A currently reported observation error of the primary’s spin period is
0.0001 h (Michel et al. 2016).

MNRAS 472, 1641–1648 (2017)



1648 M. Hirabayashi et al.

is homogeneous, the Coriolis force may change the direction of a
landslide flow towards the longitude direction, causing the shape
to become asymmetric (Statler et al. 2014). Also, as mentioned
by Yu et al. (2017), the materials ejected from the secondary after
the DART impact may reach the majority of the primary’s surface
with a range of impact velocities. In such a case, some regions
may be unaffected by ejecta while other regions may have local de-
formation modes, causing asymmetric deformation in the primary.
In addition, particles that depart from the primary may reach the
secondary. Landslides possibly add additional energy to moving
particles (Scheeres 2015). For the Didymos system in which the
primary is rotating at a spin period of 2.26 h, this process may pro-
vide them enough energy to arrive at the secondary, which makes
the present problem more complex.

We emphasize that we did not conclude that shape deformation of
the primary must happen due to collisions of materials ejected from
the secondary by the DART impact. Didymos experiences high-
speed impacts from micrometeorites frequently, which supports the
hypothesis that the current shape is structurally strong enough to
resist such impacts. However, the impact flux should significantly
increase after the DART impact (Yu et al. 2017), and it is uncertain
if the original shape can remain under such a severe condition. We
also note that the effect of the momentum transfer on the secondary,
i.e. the case of a momentum transfer coefficient being greater than
one, is not considered in this study, and it is necessary to quantify
this effect. These are open questions, and further investigation is
necessary to quantify a possibility of the primary’s deformation.
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