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Abstract

The orbit of any one planet depends on the
combined motion of all the planets, not to men-
tion the actions of all these on each other. To
consider simultaneously all these causes of motion
and to define these motions by exact laws allow-
ing of convenient calculation ezceeds, unless I am
mastaken, the forces of the entire human intellect.
—TIsaac Newton 1687

Epochal surveys are throwing down the gauntlet for cosmo-
logical simulation. We describe three keys to meeting the
challenge of N-body simulation: adaptive potential solvers,
adaptive integrators and volume renormalization. With
these techniques and a dedicated Teraflop facility, simula-
tion can stay even with observation of the Universe.

We also describe some problems in the formation and
stability of planetary systems. Here, the challenge is to per-
form accurate integrations that retain Hamiltonian proper-
ties for 102 timesteps.

1 COSMOLOGICAL N-BODY SIMULATION
Simulations are required to calculate the nonlinear fi-
nal states of theories of structure formation as well as
to design and analyze observational programs. Galaxies
have six coordinates of velocity and position, but obser-
vations determine just two coordinates of position and
the line-of-sight velocity that bundles the expansion of
the Universe (the distance via Hubble’s Law) together
with random velocities created by the mass concentra-
tions (see Figure 1). To determine the underlying struc-
ture and masses, we must use simulations. If we want
to determine the structure of a cluster of galaxies, how
large must the survey volume be? Without using simu-
lations to define observing programs, the scarce resource
of observing time on $2Billion space observatories may
be mispent. Finally, to test theories for the formation
of structure, we must simulate the nonlinear evolution
to the present epoch.

This relationship to observational surveys defines
our goal for the next decade. The Sloan Digital Sky
Survey (SDSS) (Gunn and Knapp 1992) will produce
fluxes and sky positions for 5 x 107 galaxies with red-
shifts for the brightest 106. Our ambitious observational
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Figure 1: Gains in hardware and algorithms are com-
pared for the N-body simulations. Algorithms are
shown as filled points with the scale to the left, while
hardware is open points with the sclale on the right. The
final algorithmic point should be considered a hopeful
projection for 1999.

colleagues have cut steel and ground glass to survey
a “fair volume” that we must simulate, but we need
N = 10'? to do this. Direct summation of the grav-
itational forces using fixed timesteps would take 1010
Teraflop-years.

We will explain why this is a unique time to survey
the Universe as well as describing the technical break-
throughs required to create a better survey of the cos-
mos. We will then present the three keys to a realistic
float count: 1) spatially adaptive potential solvers, 2)
temporally adaptive integrators and 3) volume renor-
malizations. Another goal of this paper is to define
“high quality simulations” and the niche science that
can be done with N ~ 102.

2 THE PROGRESS OF SIMULATIONS

Over the last 20 years, the N of our simulations has
increased as: logioN = 0.3 x (Year — 1973). Figure
1 shows the relative contributions of hardward and
algorithms. We can’t wait to simulate 10'2 particles,



we have to invent the algorithms that are a thousand
times faster! The power of computers has doubled every
8 months (open circles, log scale to the right) with
algorithmic advances keeping the same pace (closed
circles, log scale to the left). Together, the doubling
time in power is 8 months, accumulating to a trillion-
fold increase in less than 3 decades. We can’t wait to
simulate 10'2 particles, we have to invent the algorithms
that are a thousand times faster!

There are two constraints on our choice of N.
The cost of computing a full cosmological simulation
is ~ 10%7N*/3 floats (the scaling with N*/3 arises
from the increased time resolution needed as inter-
particle separation decreases). The memory needed
to run a simulation is ~ 102N bytes. If we fix N
by filling memory, the time to run a simulation is
10 days x (bytes/flop rate(N/30Million)'/?). Current
machines are well balanced for our Grand Challenge
simulations. With Gigaflops and Gigabytes, we can per-
form simulations with N ~ 107-°. With Teraflops and
Terabytes, we can simulate 10'° particles. Simulations
with N ~ 10'? lie in the nether world of Petaflops and
Petabytes.

There are a variety of problems where N ~ 10°
represents a minimum ante. For example, clusters
of galaxies are extremely important for determining
cosmological parameters such as the density of the
Universe. Within a cluster, the galaxies are 1-10% of
the mass, and there are roughly 10® of them. If the
galaxies have fewer than 103 particles, they dissolve
before the present epoch owing to two-body relaxation
in the tidal field of the cluster. To prevent this, we need
N > 107 per cluster. Scaling to the Sloan Volume yields
N ~ 10'2.

There are ~ 1020 solar masses within the SDSS
volume, so even 10'? is a paltry number as each particle
would represent 10® solar masses. We nead a ten-fold
more to represent the internal structure of galaxies.
N will always be far smaller than the true number
of particles in the Universe and will compromise the
physics of the system at some level. We can only
make sure that: 1) the physics being examined has
not been compromised by discreteness effects owing to
N-deprivation and 2) gravitational softening, discrete
timesteps, force accuracy and simulation volume don’t
make matters even worse. N is not the figure of merit
in most reported simulations—it should be! The N-
body Constitution (Lake et al. 1995) provides a set
of necessary but not sufficient guidelines for N-body
simulation.

The main physical effect of discreteness is the en-
ergy exchange that results from two body collisions.
Gravity has a negative specific heat owing to the nega-

tive total energy (sum of gravitional binding and kinetic
energy) of a bound ensemble, like a star cluster. As
a star cluster evolves, stars are scattered out by colli-
sions leaving with positive energy. The remaining stars
remaining have greater negative energies, the cluster
shrinks, the gravitational binding energy increases and
the stars move faster. In galaxies and clusters of galax-
ies, the timescale for this to occur is 103 to 10° times the
age of the Universe. In many simulations, the combina-
tion of discreteness in mass, time and force evaluation
can make the timescale much shorter leading to grossly
unphysical results. So, we must use N sufficient that
physical heating mechanisms dominate over numerical
or the numerical heating timescale is much longer than
the time we simulate. We inventoried all the physical
heating mechanisms experienced by galaxies in clusters
and discovered a unique new phenomena we call “galaxy
harassment” .

3 PARALLEL SPATIALLY/TEMPORALLY
ADAPTIVE N-BODY SOLVERS WITH
“VOLUME RENORMALIZATION”

Performance gains of the recent past and near future

rely on parallel computers that reduce CPU—years to

wall-clock—days. The challenge lies in dividing work
amongst the processors while minimizing the latency
of communication.

The dynamic range in densities demands that spa-
tially and temporally adaptive methods be used. Our
group has forsaken adaptive mesh codes to concentrate
on tree—codes (Barnes and Hut 1986) that can be made
fully spatially and temporally adaptive. The latter use
multipole expansions to approximate the gravitational
acceleration on each particle. A tree is built with each
node storing its multipole moments. Each node is re-
cursively divided into smaller subvolumes until the final
leaf nodes are reached. Starting from the root node
and moving level by level toward the leaves of the tree,
we obtain a progressively more detailed representation
of the underlying mass distribution. In calculating the
force on a particle, we can tolerate a cruder repre-
sentation of the more distant particles leading to an
O(N log N) method. We use a rigorous error criterion
to insure accurate forces.

As the number of particles in a cosmological simu-
lation grows, so do the density contrasts and the range
of dynamical times (o< 1/+/density). If we take the fi-
nal state of a simulation and weight the work done on
particles inversely with their natural timesteps, we find
a potential gain of of ~ 50.

The leapfrog time evolution operator, D(7/2)



K(7)D(7/2), is the one most often used:
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where r is the position vector, v is the velocity, a is
the acceleration, and 7 is the timestep. This operator
evolves the system under the Hamiltonian

HN = HD + HK + Her'r = %Yz + V(L) + Her'r‘;
where H.,, is of order 72 (Saha and Tremaine 1994).
The existence of this surrogate Hamiltonian ensures
that the leapfrog is symplectic—it is the exact solution
of an approximate Hamiltonian. Errors explore the
ensemble of systems close to the initial system rather
than an ensemble of non-Hamiltonian time evolution
operators near the desired one.

Leapfrog is a second-order symplectic integrator re-
quiring only one costly force evaluation per timestep and
only one copy of the physical state of the system. These
properties are so desirable that we have concentrated
on making an adaptive leapfrog. Unfortunately, simply
choosing a new timestep for each leapfrog step evolves
(r,v, 7) in a manner that may not be Hamiltonian, hence
it is neither symplectic nor time-reversible. The results
can be awful (Calvo and Sanz-Serna 1993). Time re-
versibility can be restored (Hut, Makino and McMillan
1994) if the timestep is determined implicitly from the
state of the system at both the beginning and the end
of the step. This requires backing up timesteps, throw-
ing away expensive force calculations and using auxil-
iary storage. However, we can define an operator that
“adjusts” the timestep, A, yet retains time reversibility
and only calculates a force if it is used to complete the
timestep (Quinn et al. 1997). This is done by choosing A
such that it commutes with K, so that DAK D is equiv-
alent to DK AD. Since K only changes the velocities, an
A operator that depends entirely on positions satisfies
the commutation requirement. The “natural definition”
of timestep, o 1/+/density, is ideal but it is difficult to
define when a few particles are close together. Synchro-
nization is maintained by choosing timesteps that are
a power-of-two subdivision of the largest timestep, 7.
That is, 7; = 5=, where 7; is the timestep of a given
particle. We are currently experimenting with this ap-
proach and encourage others to look at variants.

“Volume Renormalization” uses a large scale simu-
lation with modest resolution to identify regions of par-
ticular interest: sites of galaxy/QSO formation, large
clusters of galaxies, etc. Next, initial conditions are

reconstructed using the same low-frequency waves but
adding higher spatial frequencies. We have achieved a
resolution of we can achieve 103 parsec resolution within
a cosmological volume of size 10® parsec to study the
origin of quasars (Katz et al. 1994).

4 SIMULATING THE SLOAN VOLUME
Our proposed program to simulate the Sloan Volume
before the millenia is as follows:
e Simulate the entire volume (800 Mpc)® with N =
1019, each with a mass of 101%-5M,.

¢ “Renormalize” dozens of groups, clusters, etc. and
simulate with 108-10° particles.
The total cost for the first simulation is roughly a
Teraflop-year and requires a machine with a Terabyte
of memory. The second sequence of simulations should
be designed to have roughly equal computational cost,
but will require less memory.

5 THE FATE OF THE SOLAR SYSTEM
Advances in hardware and numerical methods finally
enable us to integrate the solar system for its lifetime.
Such an integration is a 1,000 fold advance on the best
longest accurate integration ever performed (Laskar,
Quinn and Tremaine 1992) and can address numerous
questions:

Is the Solar System stable? Do all the planets re-
main approximately in their current orbits over the life-
time of the Solar System, or are there drastic changes,
or perhaps even an ejection of a planet?

What is the affect of orbital changes on the
planetary climates? According to the Milankovich
hypothesis, climate variations on the Earth are caused
by insolation changes arising from slow oscillations
in the Earth’s orbital elements and the direction of
the Earth’s spin (Berger et al. 1984). Remarkably,
the geophysical data (primarily the volume of water
locked up in ice as determined by the 80 /180 ratio
in seabed cores) covers a longer time than any accurate
emphemeris.

How does weak chaos alter the evolution of the
Solar System? Why does the solar system appear
stable if its Lyapunov time is so short?

What is the stability of other planetary sys-
tem? How are the giant planets related to terrestrial
planets in the “inhabitable zone” between boiling and
freezing of water by the central star? Without such
a cleansing of planetesimals from the solar system by
giant planets (Duncan and Quinn 1993), the bombard-
ment of the Earth by asteroids would be steady and fre-
quent throughout the main sequence lifetime of the Sun
(Wetherill 1994). The chaos produced by the Jupiter
and Saturn may have played a role in insuring that plan-



etesimals collided to form the terrestrial planets !, but
too much chaos will eject planets in the habitable zone.
While a search for giant planets is the only technically
feasible one today, it may be the ideal way to screen
systems before searching for terrestrial planets.

6 INTEGRATING NINE PLANETS FOR 10!!
DYNAMICAL TIMES

When Laplace expanded the mutual perturbations of
the planets to first order in their masses, inclinations
and eccentricities, he found that the orbits could be ex-
pressed as a sum of periodic terms—implying stability.
Poincaré (1892) showed that these expansions don’t con-
verge owing to resonances. Using the KAM theorem,
Arnold (1961) derived contraints on planet masses, ec-
centricities, and inclinations sufficient to insure stability.
The solar system does not meet his stringent conditions,
but this does not imply that it is unstable.

Laskar (1989) tested the quasi-periodic hypothesis
by numerically integrating the perturbations calculated
to second order in mass and fifth order in eccentricities
and inclinations, ~150,000 polynomial terms. Fourier
analysis of his 200 million year integration reveals that
the solution is not a sum of periodic terms and implyies
an instability that is surprisingly short, just 5 Myr.

The second method for attacking the stability prob-
lem is to explicitly integrate the planets’ orbits (Table
1). As early as 1965, Pluto’s behaviour was suspicious.
In the last ten years, it has become clear that the solar
system is chaotic. However, the source of the chaos is
unclear as the system of resonances is complex and the
the Lyapunov exponent appear to be sensitive to fine
details of initial conditions.

Nonetheless, the Solar System is almost certainly
chaotic. Laskar (1994) looked at the fate of Mercury
and estimates the chance of ejection in the next few
billion years approaches 50%. Our belief in the apparent
regularity of the solar system may owe to our inability
to know that before the last few ejections, there were
10, 11 or even 12 planets a few billion years ago. At
the very least, the chaotic motion leads to a horizon of
predictability for the detailed motions of the planets.
With a divergence timescale of 4-5 Myr time, an error
as small as 107'? in the initial conditions will lead to a
100% discrepancy in 100 Myr. Every time that NASA
launches a rocket, it can turns winter to spring in a mere
10 Myr.2.

TIn Ancient Greek, chaos was “the great abyss out of which

Gaia flowed”.

2Don’t let this go beyond this room, environmental impact
statements are already tough enough! Are the integrations
meaningful given this sensitivity to the initial conditions? We
investigate Hamiltonian systems that are as close to the solar
system as possible. KAM theory tells us that the qualitative

We have started a 9 Gyr integration—4.5 Gyr into
the past when the solar system was formed and 4.5 Gyr
into the future when the Sun becomes a red giant. One
basic requirement is a computer with fast quad precision
to overcome roundoff problems. The IBM Power 2
series is the current machine of choice, evolving the solar
system at ~ 10° times faster than “real time”, this is 1-
3 orders of magnitude faster than other available cpus.
To understand any chaoitic, we will need to see it by an
independent means and devise methods to determine its
underyling source.

Table 1: Solar System Integration History

Year Ref Length  # GR? Earth’s

(Myr)  Planets Moon?
1951 Eckert... 0.00035 5 no no
1965 Cohen... 0.12 5 no  no
1973 Cohen... 1. 5 no  no
1986 Applegate...  217. 5 no  no

3. 8 no no
1986 Nobili 100. 5 yes no
1988 Sussman... 845. 5 no no
1989 Richardson... 2. 9 no no
1991 Quinn... 6. 9 yes yes
1992 Sussman... 100. 9 yes yes
1999 us 10,000 9 yes yes

A Parallel Method doesn’t seem promising since
there are only nine planets to distribute among pro-
cessors. We employ a different form of parallelism—
the “time-slice concurrency method” (TSCM) (Saha,
Stadel and Tremaine 1997). In this method, each pro-
cessor takes a different time—slice; processor 2’s initial
conditions are processor 1’s final conditions and so on.
The trick is to start processor 2 with a good prediction
for what processor 1 will eventually output, and iter-
ate to convergence. This is analogous to the waveform
relaxation technique used to solve some partial differ-
ential equations (Gear 1991). However, Kepler ellipses
are a good guess to the orbits for a timescale that is
proportional to the ratio of the Sun’s mass to Jupiter’s.
Tests show that it is extremely efficient to iterate to
convergence in double precision (typically 14 iterations
each costing 10-15% of a quad iteration), then peform
just two iterations to get convergence in quad. In this
way, the total overhead pf the full 16 iterations can be
less than a factor of 4. There are still many algorithmic
issues to be addressed.

For long-term integrations, TSCM has been formu-
lated in a way that preserves the Hamiltonian structure

behavior of nearby Hamiltonians should be similar. While the
exact phasing of winter and spring is uncertain after millions of
years, the severity of winter or spring owing to changes in the
Earth—Sun distance and the obliquity are predictable.



and exploits the nearness to an exactly soluble system;
otherwise errors grow quadratically with time. TSCM
will enable us to integrate ~ 0.5 Gyr per day on a 512
node SP2—a speed—up over real-time of 10'!. This will
make it feasible to study the stability of other solar sys-
tems. Detailed development and implementation will
be much more challenging than for previous methods,
and our high quality serial integration will be required
for comparison and validation.

Finally, we will use a new technique to gauge the
origin of instabilities (the “tangent equation method”)
(Saha 1997). In the past, it was common to integrate
orbits from many slightly different initial conditions.
While that works, it is more rigorous and also more
economical to integrate the the linearized or tangent
equations—the equations for differences from nearby
orbits. We will integrate the tangent equations along
with the main orbit equations.

7 COSMOLOGY MEETS COSMOGONY:
PLANETARY SYSTEM FORMATION
Theories of Solar System formation are traditionally di-
vided into four stages (Lissauer 1993): collapse of the lo-
cal cloud into a protostellar core and a flattened rotating
disk (Nebular Hypothesis); sedimentation of grains from
the cooling nebular disk to form condensation sites for
planetesimals; growth of planetesimals through binary
collision and mutual gravitational interaction to form
protoplanets (Planetesimal Hypothesis); and the final
assembly to planets with the remaining disk cleansed

by ejections from chaotic zones.

Our cosmology code is ideal for the third stage of
Solar System formation, particularly in the inner regions
where gas was not a primary component and gravita-
tional interactions dominated the evolution. The first
stage entails magnetohydrodynamics, the complicated
small-particle physics and gas dynamics of the second
stage is still not well understood, and the fourth is the
purview of long-term stability codes.

All that is required for a detailed simulation of
the third stage is a model of the collisional physics
and a code capable of dealing with a large number
of particles. However, previous direct simulations of
the planetesimal stage (summarized in Table 1) fall
far short of capturing the full dynamic range of the
problem. Our cosmology code has the potential to
treat as many as 107 particles simulataneously for
107 dynamical times, a ten-million-fold improvement
that makes us enthusiastic! Only statistical methods
(Wetherill and Stewart 1989) employing prescriptions
for the outcomes of gravitational encounters have been
used to peek at this regime.

We reach an important threshold at N ~ 107 in

ref N t (yr) Aa (AU) Col? G?
Lecar.... 200 6 x 104 0.5-1.5 a n
Beauggé... 200 6 x10° 0.6-1.6 abcf n
Ida... 800 5000 0.3 - n
Aarseth... 400 1.2 x 104 0.04 ab n
Chambers... 100 108 0.5-2.0 a y
Kokubo... 5000 2 x 10* 0.4 a n
Richardson... 10 10® 1.2-3.6 a y
goal 107 107 0.52.0 abef y

Table 1: Highlights of advances in direct simulations of
the formation of the inner planets. N is the maximum
number of planetesimals used in the simulation, ¢ is the
longest integration time, and Aa is either the width
of the simulation region at 1 AU or the actual range
in orbital distance. If collisions are included in the
simulations, details are noted by: a=agglomeration;
b=bouncing; c=cratering; f=fragmentation. The final
column shows whether perturbations from one or more
giant planets are included.

our ability to follow planetesimal evolution. At early
times, the relative velocities between planetesimals are
small and inelastic physical collisions lead to “runaway”
growth of planetary embryos (Beaugé and Aarseth
1990). Eventually gravitational scattering increases
the planetesimal eccentricities to such an extent that
collisions result in fragmentation, not growth. The
embryos will continue to grow owing to their large
mass, but at a slower rate as their “feeding zones”
are depleted (Ida and Makino 1993). The total mass
of our planetary system is 448 Mg or 3.6 x 10* Miynar,
while the inner planetismal disk amenable to simulation
had a mass ~ 102Mjynq,. To capture both growth and
fragmentation (Wetherill and Stewart 1989) requires a
minimum particle mass of 1075 Mjynar, leading to our
target N ~ 107.

A detailed direct simulation of planet formation
can address a variety of important questions, includ-
ing: Was there runaway growth of a few embryos, or a
continuously evolving homogeneous mass distribution?
How does the primordial surface density alter the evolu-
tion? What fixes the spin orientation and period of the
planets—uniform spin-up from planetesimal accretion
(Lissauer and Safronov 1991), or a stochastic process
dominated by the very last giant collisions (Dones and
Tremaine 1993)7 Is it feasible that the Earth suffered
a giant impact late in its growth that led to the forma-
tion of the Moon (Benz et al. 1986)? How much radial
mixing was there and can it explain observed composi-
tional gradients in the asteroid belt (Gradie, Chapman
and Tedesco 1989)? Finally, what is the dominant phys-
ical mechanism that drives the late stages of growth—



Figure 2: Mass density of a 10°-particle simulation after
250 yr. Bright shades represent regions of high density.
The dot at the top right is Jupiter. The disk extends
from 0.8 AU, just inside Earth’s present-day orbit, to
3.8 AU, near the outer edge of the asteroid belt. The
gaps and spiral structures in the disk are associated with
Jupiter mean-motion resonances.

are intrinsic gravitational instabilities between embryos
sufficient, or are perturbations by the giant gas plan-
ets required? This last point is of key importance to
future searches for terrestrial planets. We strongly sus-
pect that the end result of our research may be the
assertion that one should concentrate searches for ter-
restrial planets in those systems that have giant planets.
We have begun to address these issues with a
modified version of the cosmology code. Collisions
are detected (rather than “softened away”) and the
outcomes are determined by the impact energy, the
lowest energies generally leading to mergers and the
highest energies leading to fragmentation (presently
merging and bouncing are implemented). Integrations
are carried out in the heliocentric frame and may include
the giant planets as perturbers. Auxilliary programs
are used to generate appropriate initial conditions and
to analyze the results of the simulation, but the main
work is performed by the modified cosmology code.
Figures 2 and 3 show the mass density and a vs.
e, respectively, at the end of a 250-yr run that began
with 108 identical cold planetesimals in a disk from 0.8
to 3.8 AU with surface density proportional to r3/2.
The present-day outer planets were included in the
calculation. The simulation took 60 hours to finish
on a Cray T3E with 128 dedicated processors using a
fixed timestep of 0.01 yr. The effect of Jupiter on the
disk, which extends well into the present-day asteroid
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Figure 3: Plot of semi-major axis a wvs. eccentricity
e for the 108-particle simulation, showing only every
100" particle to prevent overcrowding. The peaks in
e correspond to mean-motion resonances with Jupiter;
there are similar features in plots of a ws. inclination
i (not shown). The circles are scaled by mass for
emphasis.

belt, can be seen clearly in the density plot: there is a
large density gap at the 2:1 resonance at 3.2 AU and
a narrow groove at the 3:1 at 2.5 AU along with spiral
wave patterns and other telltale features. There are
corresponding features in Fig. 3 which show how Jupiter
stirs up planetesimals at the mean-motion resonances.
Note that conservation of the Jacobi integral accounts
for the slight bending of the e peaks toward smaller
a. Meanwhile, planetesimal growth has proceeded
unmolested in the inner region of the disk (under
the assumption of perfect accretion). The largest
planetesimal at the end of the run is 8 times its starting
size. As far as we are aware, this is the largest simulation
of a self-gravitating planetesimal disk that has ever been
attempted.

The figures show however that to get to the regime
of runaway growth (~ 10*-10° yr), a new timestepping
approach is needed. We are currently developing a tech-
nique to exploit the near-Keplerian motion of the plan-
etesimals. For weakly interacting particles, we divide
the Hamilonian into a Kepler component, implemented
using Gauss’ f and g functions, and a perturbation com-
ponent owing to the force contributions of all the other
particles. In this regime, timesteps can be of order the
dynamical (i.e. orbital) time, resulting in compuational
speedups of 10-100. For strongly interacting particles
(defined as particles with overlapping Hill spheres), the
Hamiltonian is factored into the standard kinetic and



potential energy components, with the central force of
the Sun as an external potential. In this regime, par-
ticles are advanced in small steps, which allows for the
careful determination of collision circumstances. It also
allows the detection of collisions in the correct sequence
even if a single particle suffers more than one collision
during the interval.

The challenge is to predict when particles will
change between the regimes of weak and strong inter-
action. One method we are considering is to construct
a new binary tree ordered by perihelion and aphelion.
Those particles with orbits separated by less than a Hill
sphere are flagged for further testing. This screening
has a cost of Nlog N and is only performed once per
long Kepler step. Flagged pairs of particles with phases
that are certain to stay separated over the integration
step are reset. The remaining particles are tested by
solving Kepler’s equation in an elliptical cylindical co-
ordinate system to determine the time of actual Hill
sphere overlap. Switching between Hamiltonians is not
strictly symplectic, but it occurs infrequently enough for
any given particle that it is not a concern. Dissipating
collisions are inherently non-symplectic anyway. Once
particles separate beyond their Hill spheres (or merge),
they are returned to the Kepler drift scheme.

Although much work remains to be done, the
reward will be the first self-consistent direct simulation
of planetesimals evolving into planets in a realistic disk.
The results can be used to study related problems,
such as the formation of planetary satellites, orbital
migration of giant planets in a sea of planetesimals,
and ultimately the ubiquity and diversity of extra-solar
planetary systems.

8 Summary: Virtual Petaflops

Past planetesimal simulations used codes with an algo-
rithmic complexity that would be similar to the point
labeled “full tune” in Fig. 1 and computers with speeds
of ~ 10 Mflops. (Special purpose “GRAPE” hardware
of ~ 10% Mflops has been used, but such implemen-
tations involve sums over all interactions so they are
closer to the direct sum case in floating point cost [cf.
Kokubo and Ida 1998].) Our algorithms result in a col-
lective speed-up 2 108 for simulations with N ~ 107
(with rough accounting for the reduction in N over the
course of the simulation). It must be emphasized that
to attain the desired performance, both hardware and
algorithm improvements are required. Figure 1 shows
that the speed-up factor from algorithms vastly exceeds
that of the hardware. It is not sufficient to simply wait
for computers to get better, nor does it seem to pay to
build special hardware. McMillan et al. (1997) asserted
that if Grape-6 is built, it could use its Petaflop speed to

follow 10° planetesimals by the year 2000. They claimed
that this would be a seven-year advantage over General
Purpose Computers that would only be able to follow
10* particles by the year 2000. Our test simulations
without the new integrator are already 10 years ahead
of their projections. We argue that our approach will
beat efforts that rely on special purpose hardware with
encoded algorithms for at least the next decade.

Sir Isaac would love to see the enhancement of “the
entire human intellect” by high performance computing.
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