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ABSTRACT

When a source of constant luminosity moves behind a gravitational lens composed of
compact objects, its flux is observed to change due to the varying amplification
of the images produced by different components of the lens. A new method is
presented to calculate such microlensed light curves for any given field of point
masses. The method is sufficiently efficient and fast to allow one to calculate any
desired statistical property of the light curves for a large number of models in a
reasonable time, with present computers. We compare the light curves generated by
this method with those produced by the ray-shooting method, and find good

agreement.
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1 INTRODUCTION

The effect of a galaxy acting as a gravitational lens on a back-
ground source can usually be described, to a first approxima-
tion, by a smooth potential created by a continuous mass
distribution which varies only on the scale of the galaxy.
However, the individual stars and other compact objects
introduce a graininess into the potential, and this causes each
image of a point source produced by the smooth potential to
be split into many images. Although these multiple images
cannot be resolved with current instrumentation, since they
are separated by only ~ 1076 arcsec, the total summed flux
varies with the position of the source, so that, if the source is
moving relative to the lens as seen by the observer, its flux
will be observed to vary. This effect, first described by Chang
& Refsdal (1979), is usually termed microlensing,

Observations of the four images of the lensed quasar
2237+0305 (Irwin et al. 1989; Corrigan et al. 1991),
indicating variability on different time-scales, have proved
the existence of this phenomenon. The observed variability
in 2237+ 0305 cannot simply be intrinsic to the quasar in
the absence of microlensing, since it is different and uncorre-
lated in each of the four images, and the time delay between
the different images for this particular lens is very short, of
order one day.

It then becomes of interest to find particular features or
statistical properties of the observed light curves that, when
compared to theoretical calculations, might enable one to
derive some conclusion on either the source being lensed or
the compact objects producing the microlensing. The main
applications up to now have been constraint of the size of the
source (Nemiroff 1988; Rauch & Blandford 1991), and the

proposal that colour variations of the images can be a probe
of the structure of the source (Wambsganss, Paczyriski &
Schneider 1990; Wambsganss & Paczyriski 1991). In order
to address this theoretically, one needs to compute a
sufficiently large sample of light curves for many different
models. This objective has proved elusive so far, due to the
computational requirements to calculate the microlensing
light curves.

The main difficulty is that the only way to calculate the
amplification of a point source is to find all its images and
add up all the amplifications. Until now, there has been no
known algorithm to find all the images of a point source, or
even to be sure that all of them have been found, other than a
two-dimensional search with a sufficiently fine grid, which is
computationally expensive (Paczyriski 1986). An enormous
improvement was achieved with the ray-shooting method
(Kayser, Refsdal & Stabell 1986; Schneider & Weiss 1987;
Wambsganss 1990), in which one does not attempt to find
the images of point sources, but instead calculates rays on a
grid in the lens plane, obtaining a map of the magnification in
the source plane. The main disadvantage of this method to
calculate light curves is that only a very small fraction of the
calculated values of the magnification over the source plane
are used to construct the light curves, and it is only possible
to obtain a light curve with finite resolution (i.e. not for a
point source, but for an extended source). What is needed is
a method to find all the images of many points along a
straight line in the source plane. In this paper, we present
such an algorithm.

The basic idea is that it is easier to find the images of a
straight line in the source plane than the images of a point.
As microlensing by point masses changes only the shear, and
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not the surface density, the image of a straight line consists of
one curve of infinite length, plus many closed loops, all of
which are connected to a star. The infinite line can easily be
followed once a point is found, and the loops can simply be
found by starting at each star and following them. Once the
image curve going through every star has been found, we can
be sure that all the images of all the points in the straight line
have been found.

Thus the problem of constructing the light curve is
reduced to a series of one-dimensional searches, where we
follow the image curves by finding subsequent points along
them. In this paper, we will discuss the method and present
some examples of light curves. We will compare our results
and the efficiency of our method to the ray-shooting
algorithm mentioned above (Wambsganss 1990).

Witt (1993) has also thought independently of a very
similar solution, based on the parametric representation of
caustics (Witt 1990) to the problem of light curves of point
sources. He presents alternative proofs of the basic proper-
ties of the image of a straight line. His conclusions are in
basic agreement with ours.

This paper is organized as follows. In Section 2, it is
proved that all the images of a straight line are in the infinite
line, and loops connected to stars. In Section 3, a description
of the numerical code used to implement the method is
given; the inclusion of a tree code to calculate the deflection
angle produced by a large number of point masses is
described in the Appendix. In Section 4, we present
examples of light curves, and compare our results with those
obtained with the ray-shooting method. In Section 5 we
discuss future applications to the microlensing observations.

2 THE IMAGE OF A STRAIGHT LINE

Let us consider a lens in the single-screen approximation,
described by a smooth surface density Z(x,), where x; is the
coordinate in the image plane. The surface density varies
only on scales typical of the ‘macrolens’ (for example, the
smooth potential of a galaxy). When examined with very high
resolution, there is a certain fraction of the surface density,
3 4(x;), which is not smooth and is composed of individual
point masses. The total effect of the lens is then described by
the superposition of a smooth lens with surface density Z(x,),
and the effect of all the individual point masses, plus a
negative surface density — Z,(x;). This second component
(point masses and corresponding negative smooth matter)
has no effect on the macrolens properties, since the sum of
the surface mass density on large scales cancels, but it
introduces a granularity on small scales.

The surface density Z(x;)—Z,(x)) is presumed to corre-
spond to a smooth form of dark matter. In real galaxies, the
dark matter may also be clumpy on a wide range of scales.
However, in this paper we will assume that the only small-
scale variations of the lens potential are due to individual
point masses (which change only the local shear, not the
surface mass density), and that their positions are uncorre-
lated [this is true, to a very good approximation, for the
projected positions of stars in a galaxy, except for the effects
of binary and multiple systems, and star clusters (Gilmore,
Reid & Hewett 1985)].

Our objective is to find the amplification at all the points
along a straight line in the source plane. This gives the

observed light curve, for a point source emitting a constant
flux, moving with constant velocity along such a line, if the
motions of the individual point masses in the lens plane are
neglected (see Kundic & Wambsganss 1993 for a study of the
effects of star motions).

We consider a region in the lens plane which is small
compared to the scale of variation of the smooth surface
density, Z(x,). If the lens consists entirely of smoothly distri-
buted matter, the image of the straight line is simply another
straight line within this small region, since the convergence
and the shear are approximately constant; the curvature of
the unperturbed image of the line (where ‘unperturbed’
means that only a smooth component is considered) is only
noticeable on the scales of variation of the smooth surface
density. Let us now take a circle within this small region, with
the centre lying on an arbitrary point along the unperturbed
image line. Consider next the effect of introducing the point
masses, plus the negative surface density, — 2 .(x;), within
this circle; outside the circle, the unperturbed lens is left
unmodified. The image of the source line will now be a set of
complicated curves. An example of the image curves of the
straight line produced by a field of point masses is shown in
Fig. 1. Any curve which is an image of the infinite source line
cannot have an edge, so it must either have infinite length, or
be a closed curve. However, far away from the edge of the
circle, the influence of the point masses will become small,
and the image of the line will asymptotically tend to the
unperturbed image line. Therefore there is one and only one
image of the source line which is an infinite curve, and this
one tends asymptotically to the unperturbed image. All the
other images of the source line are closed curves (Petters
1992).

Numerically, it is simple to find all the images of points
along the source line which are on the image curve of infinite
length: we simply find one point of this curve far away from
the edge of the circle, where the curve is close to the unper-
turbed image line, and then we follow this curve as it wanders
around inside the circle, until it comes out at the other end,
and it again approaches asymptotically the unperturbed
image. However, we still need to find all the closed curves as
well. These closed curves could in principle be difficult to
find, requiring two-dimensional searches. However, they
have a property that allows them to be easily found: they are
all connected to at least one star (see the example of Fig. 1).
We now prove this property of the closed curves.

Let x, be the Cartesian coordinates in the source plane, in
a frame where the source line is parallel to the y-axis. Each
point in the lens plane with coordinates x; (in a frame in the
lens plane having the same orientation) is mapped on to a
point in the source plane, and we can consider the coordin-
ate x, of the mapped point as a function of x, We call this
function f(x,). The image of the source line is then a contour
of this function at a given height, and if we move the source
line parallel to itself, its images will be the contours of f at
different heights. The lens equation specifies that the func-
tion f is given by f=xs=x,—ax=x,—0y/dx, where a, is
the x-component of the deflection angle, and v is the two-
dimensional gravitational potential (cf. Schneider 1984).
Taking the Laplacian of this equation, we obtain V2f=
—20k/ox, where x=Z2/Z_ and X is the critical surface
density. For the type of lens that we are considering, the
surface density x only varies on scales of the smooth lens,
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Figure 1. A sample of the image plane for a particular source line. Note the infinite curve which enters from the left and makes its way to the
other side of the field, crossing a number of stars. Also note the image loops which start and end on stars. A number of these, namely those near
the infinite curve and those which pass through a number of stars, are not simple in form. Those far from the infinite image curve, and far from
the influence of other stars, are found to be very close to circular. The distances are in units of Einstein radii for a solar-mass star.

and we can neglect these variations. The Laplacian of f is
therefore equal to zero, except on point masses, where it is
equal to the derivative of a Dirac delta function.

Since a closed image curve is a contour of the function fs
the gradient of fis always perpendicular to the contour, and
is always directed either to the interior or to the exterior of
the contour. If we integrate the gradient along the closed
image curve (multiplied by the unit vector perpendicular to
the curve), the integrand is always either positive or negative,
so the result of the integral is not zero. However, using Gauss’s
theorem, this integral is equal to the integral of the Laplacian
of fover the area enclosed by the contour, which is equal to
zero unless one of the point masses is exactly on the contour.
This shows that there is no closed image curve that does not
Cross a point mass.

Thus all the closed image curves can be found by search-
ing about every star. It is simple to show that only one curve
can go through any point mass. In fact, if there were two, then
a critical line should lie between the two image curves
arbitrarily close to the point mass, and therefore the critical
line would also go across the point mass, which is impossible,
since the shear is infinite on the point mass. It is also true that
every point mass has an image curve going across it, since, at
a sufficiently close distance to the point mass, the deflection
angle can become arbitrarily large, and it is always possible
to choose a position angle for a point in the lens plane with

respect to the point mass, so that its mapping to the source
plane will lie on the source line. Notice, however, that it is
possible for a closed image curve, and for the infinite image
curve, to go across more than one point mass.

3 NUMERICAL METHOD
3.1 Basic equations

For this analysis we employ the standard, dimensionless
microlensing equation (Wambsganss 1990), which, when
rotated into a coordinate system parallel to the external
shear, can be written as

) X— K X~ Z* —mi(xl—?) , (1)
i-1 (%—x)

where x; is the real position in the source plane and x, is the
apparent position observed in the image plane, x; are the
positions of the stars in the image plane, and m; are their
masses in solar units. All distances are expressed in units of
the angular Einstein radius of a solar-mass star in the source
and lens planes. The angular Einstein (or critical) radius by,
of a solar-mass star is given by

zcrnb%)Dc%:MO’ (2)
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where D is the observer-lens angular diameter distance. The
critical surface density, =, is defined as

s = c? D,
“ 475G DDy’

(3)

where D, and D, are the observer-source and the lens-
source angular diameter distances.

The local effects of the macromodel are expressed as two
parameters: the convergence, k., which describes the local
smoothly distributed matter in units of the critical surface
density, and the shear, y, which describes the effect of the
overall matter distribution in the lens external to the micro-
lensing region. The effect of compact bodies in the light path
(e.g. stars, planets and black holes: henceforth just stars) is
seen in the final term. Equation (1) maps a position in the
image plane to a position in the source plane.

The calculation of the deflection angle and the amplifica-
tion has to be done at many points in the lens plane in order
to calculate a light curve, and this takes most of the CPU time
in a calculation. We have combined our method with a tree
code, which speeds up the calculation significantly (the time
needed to calculate a ray with the tree code grows as log (Ny)
instead of N, for direct summation, where Ny is the number
of point masses, when the tree code is used). A description of
the tree code, and the changes we made for this particular
application, can be found in the Appendix.

3.2 Definition of the star field

Consider a circular field cut out of the macromodel, which
contains a smooth, background mass distribution, a shear
term, and a distribution of stars with average surface density
K, expressed in units of the critical surface mass density. A
point source will, in general, produce at least one image for
each star in the field. However, the images at a distance R
from the unperturbed image (the image that would be seen if
all the mass in stars were smoothed out) have flux decreasing
as R~*, for large R (Paczyriski 1986). Using various prob-
abilistic arguments (Katz, Balbus & Paczynski 1986;
Schneider & Weiss 1987) it is possible to determine the
average number of stars, Ny, over whose images we need to
sum to collect a particular fraction of the total image flux. We
use

(m®) Ku
(m) [(1— e — 2.} ="

N, =300 (4)

which collects over 99 per cent of the total flux. (m?) and
{m)? are expectation values of the mass function. These stars
are distributed within a circle of radius R, where

Ry= (M)m . (5)

Kx

This radius defines the minimum region over which the stars
can be distributed about the unperturbed image to achieve
collection of (almost) all the flux in the final macroimage. In
our case, where the source is a line, the unperturbed image is
also a line. Therefore this radius defines the distance from
either side of the unperturbed image line within which we
need to consider image fluxes. The contribution to the light

curve from images outside this region is neglected. To
generate a long light curve the total star field is taken to be of
radius R,y =3R4, and therefore Ny, =9Ns. The light
curve is effectively deduced in the region —2Ry— 2Ry,
ensuring that there are enough stars around the initial and
final points of the light curve to collect about 99 per cent of
the flux. Light curves of any length can be generated by
altering these parameters.

3.3 Following the line images
3.3.1 Theinfinite line

First, the trajectory of the source is chosen. This is the source
line. Then, using the mapping (1), a scalar function f(x)),
which is the separation of the associated source plane
position and the source line, can be calculated over the image
plane. The function f(x;)=0 defines the set of curves which
are the images of the source line. These curves are also the
set of all images at all times for the passage of the source
behind the star field.

To find the initial point on the infinite line, a root search is
undertaken at a radius of 1.1 Rg,,, of the function f(x)),
effectively outside the star field, where the perturbed image
line is close to the unperturbed one. The root is found by
making an angular search about the central point of the star
field at this radius.

From the first point, more points along the image curve
are subsequently found, starting with a stepsize of 0.01
Einstein radii (for a solar-mass star). At every point, we
evaluate the tangent to the image curve, which can be calcu-
lated from the amplification matrix. We use this to find a first
guess for the position of the next point along the image curve.
If the root is not found within an angle of (7t/15) radians of
this initial guess, we divide the stepsize by a factor of two. On
the other hand, if the step is completed without this division,
and the root lies within (7x/30) radians, the stepsize is
doubled for the next point, in order to move fast through
smooth regions of the image curve. The maximum allowed
stepsize is 0.2 Einstein radii for a solar mass.

The infinite curve can pass through stars. A list of the stars
that are crossed is kept, and is used later when the loops have
to be followed.

The infinite line travels right across the star field and exits
opposite to the side that it enters. We stop following this line
at a distance of 1.1 Ry, outside the region of the segment of
the light curve we are calculating in the source plane. At this
radius the infinite line is returning to its unperturbed form.

3.3.2 The loops

Once the infinite curve has been followed we start to follow
the loops. Stars at a distance more than Ry away from the
unperturbed image line, whose flux contribution is con-
sidered negligible, and those already crossed by the infinite
line, are ignored. Each remaining star is then taken in turn,
the initial point of the loop being the stellar position. The
direction of the image curve very close to the star is the same
as the orientation of the infinite image line far from the star
field. This is used to find a first guess of position for the first
point on the loop. The loops are then followed in the same
way as the infinite curve..
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It can be easily shown that for a particular star, far from
the infinite image line, the size of the loop crossing this star is
of order b%/y,, where by is the Einstein radius of the star and
y; is the separation from the star to the source line. As these
loops have rapid directional changes, the initial stepsize is
weighted with this factor to avoid many attempts of bracket-
ing and stepsize halving to find the first point.

Again, more than one star can lie on a particular loop.
When a star, other than the star used as the initial point, is
crossed, it is flagged as crossed to ensure that no loop is
traversed twice. The following of the loop is halted when we
have returned to the position of the initial point star.

3.4 The light curves

As our numerical code follows all the image curves, with the
method outlined above, we calculate the amplification A(x,))
at each point found in the lens plane. This amplification is

Microlensing light curves 651

the contribution from a particular image to the flux from the
mapped source positions of the points found in the lens
plane.

To generate the light curve, we divide the source line into a
number of bins. For any two subsequent points along the
image curve, we calculate the two corresponding source
positions and the amplifications at those points, and we inter-
polate the amplification for all the bins between these two
positions. The values of the interpolated amplifications at the
centre of each bin are added to that bin (for the initial and
final bin, the amplifications are multiplied by the fraction of
the bin filled by the segment joining the two source
positions).

The interpolation of the amplifications is done differently
in three different regimes.

(1) If the amplifications of the two points are both less
than 0.2, we assume that we are close to a point mass, and we
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Figure 2. The light curve for x, =0.5, over the range of — 25 to 25 Einstein radii in the source plane, using both the method of this paper (a)
and the ray-shooting method of Wambsganss (1990) (b). The x,-axis represents the magnitude difference between an unlensed source and the
images observed through the gravitational lens. The dotted, horizontal line is the astronomical magnitude difference between the unlensed
source and the image produced if all the mass in compact bodies is smoothed out. For this case this is A;= —1.51 mag. In Fig. 2(b), the light
curves are from a magnification pattern with pixel size equal to 0.1 Einstein radii. The two light curves illustrated are for Gaussian source
profiles of 1 (solid line) and 5 (dashed line) pixel half-widths.
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interpolate linearly the quantity A ~!/4, which varies linearly
with the source position for an image close to a point mass.

(2) If at least one of the two amplifications is larger than 5
A, where A is the amplification produced by the smooth
lens, then we interpolate linearly the quantity A~2, which
varies linearly with source position close to a caustic.

(3) If neither of the two conditions above is true, then we
interpolate the amplification directly.

In order to obtain an accurate light curve, one needs to
make sure that the error made in interpolating the amplifica-
tion is small. The simplest requirement is that the fractional
change in the amplification is small: if (0 A )/A > ¢, where ¢ is
a parameter that can be varied depending on the accuracy
that is needed for the light curve, then the stepsize in the lens
plane is divided by two, and the calculation is repeated until
the points in the lens plane are sufficiently close that the
amplification varies slowly enough. However, close to point
masses and caustics, the amplification goes to zero and
infinity respectively, so this requirement cannot be main-
tained in order to go across point masses and critical lines in

a finite number of steps. To solve this problem, we have
adopted the criterion that a step is sufficiently small when the
amplifications A, and A, at the two points obey the follow-
ing conditions in the same three regimes given above:

(1) |A,—A,|<0.2¢;
(2) AT = A7 <e/(5A,);
(3) 1(A;=A,)/min(A,, A,)|<e.

In the calculations presented in this paper, we have
adopted £=0.2. These conditions are combined with the
angular criteria in Section 3.3.

When a step crosses a caustic the sign of one of the eigen-
values of the amplification matrix changes. We then find the
exact position of the caustic in the source plane. The addition
of amplifications to the bins in the light curve is then done in
two steps. First, the amplification is interpolated as A~2
between the initial point of the step and the caustic, where
A72=0. The amplification is then similarly interpolated
between the caustic and the final point of the step.
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Figure 3. Enlarged central part of Fig. 2 (range — 5 to 5 Einstein radii in the source plane). (a) is just an amplified version of the central region
of Fig. 2(a), while (b) is a different light curve obtained from a magnification pattern with pixels of 0.02 Einstein radii. The two light curves
illustrated are for Gaussian source profiles of 1 (solid line) and 5 (dashed line) pixel half-widths.
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4 RESULTS

As an illustrative example of the application of this method,
we present light curves for the case where all compact
objects have the same mass, and their average surface density
is equal to 0.5 times the critical value (x4=0.5). No
additional smooth surface density and no large-scale shear
are added (i.e. x,=0 and y=0 in equation 1). We generate
the star field as described in Section 3.2. The total number of
stars in this case was 2700.

In Fig. 1 we illustrate a small section of the star field. The
large dots indicate the positions of the stars, and the small
dots are the subsequent points along the images of the
straight line found by our code. The infinite line, passing
from the left to the right of the field, and the loops crossing
the stars can be seen. Some loops, namely those crossing
more than one star, or those near the infinite line, are seen to
be of quite complicated form, while stars far from the infinite
line have loops which are very close to circular. This result
can be proved analytically. Points are not uniformly spaced
along the curves, reflecting our adaptive stepsize (Sections
3.3and 34).

Microlensing light curves 653

In Figs 2, 3 and 4 we present light curves. Figs 2(a), 3(a)
and 4(a) show the light curve for a point source, generated
using the method outlined in this paper. The light curve
required a total of 206 832 calculations of the bending angle
and the amplification at different positions in the lens plane
as points along the image curves were found. The light curve
in Fig. 2(a) consists of 50 000 bins to provide sufficient reso-
lution. Figs 3(a) and 4(a) are enlargements, at different scales,
of the central part of Fig. 2(a).

Figs 2(b), 3(b) and 4(b) are light curves obtained as one-
dimensional cuts through two-dimensional magnification
patterns. In this method, a region of the source plane is
divided into many pixels. The deflection angle is calculated
on a grid in the lens plane, and one counts the number of rays
that reach each pixel. The size of the pixel is the limiting
resolution of the two-dimensional magnification pattern
obtained. Thus the light curves can only be obtained for
extended sources, with a size comparable to or larger than
the pixel size (for full details of this method see Wambsganss
1990). Three magnification patterns, consisting of 500 x 500
pixels, of side length 49, 10 and 2.5 Einstein radii in the
source plane, were calculated. This gives a pixel size of 0.1,
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Figure 4. Enlarged central part of Fig. 2 (range —1.7 to 1.7 Einstein radii in the source plane). (a) is just an amplified version of the central
region of Fig. 2(a), while (b) is a different light curve obtained from a magnification pattern with pixels of 0.005 Einstein radii. The two light
curves illustrated are for Gaussian source profiles of 1 (solid line) and 5 (dashed line) pixel half-widths.
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0.02 and 0.005 Einstein radii. The two light curves illus-
trated in each plot are for Gaussian sources of 1 (solid line)
and 5 (dashed line) pixel half-widths. Each pair of light
curves was generated from a different calculation of the two-
dimensional magnification pattern, with increasing resolu-
tion. Note that the light curves obtained from the
magnification patterns are for extended sources, whereas our
method obtains them for point sources.

In Fig. 5 we present the two-dimensional magnification
pattern used to generate the light curve illustrated in Fig.
3(b). The track indicates the path of the source. The events

seen in the light curve in Fig. 3(a) can be identified with the
features seen in the pattern, such as the sharp boundaries
outlining caustics. ‘

As can be seen, there is very good qualitative agreement
between the light curves obtained using the two different
methods.

5 DISCUSSION

In this paper we have presented an efficient and fast method
for the generation of microlensing light curves. Our method

1.5 1.0 0.5 0.0

-0.5 -1.0 -15

Magnitudes

Figure 5. The magnification pattern produced with the ray-shooting method, used to obtain the light curve in Fig. 3(b).
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is most efficient for point sources, but light curves for small
extended sources can also be obtained by simply computing
several light curves separated by a short distance and pos-
sibly calculating the derivative of the amplification in a direc-
tion perpendicular to the source trajectory. For a large
enough source, some combination of the ray-shooting
method and the method presented here should be most
efficient.

The calculations of Wambsganss (1990) with the ray-
shooting method indicate that, with a modern vector
machine, a calculation of the bending angle takes of order
100 ps. This time does not grow very much with the number
of point masses in the lens plane, if a tree code is being used,
as in our case. Thus a calculation involving 10° rays can be
done in about one day of CPU time, which is feasible. A
calculation of 10'° rays would already involve enough CPU
time to cause a significant slowing of the normal pace of a
scientific project (usually, numerical calculations have to be
repeated several times before one obtains the desired result).
The magnification patterns can provide, in principle, a large
number of light curves ( = few hundred) for each calculation,
by taking several cuts. However, these light curves would not
be statistically independent: they cross the same groups of
caustics, and maxima are correlated.

With our method, we have needed 2 X 10° rays to calcu-
late the light curve presented here. If this is considered as a
typical light curve, then one can calculate 5000 light curves
with the computation of 10° rays. Even if the number of rays
needed to generate a light curve is larger for some models
than in the example presented in this paper, we see that the
problem of numerically evaluating the probability distribu-
tion of any observable quantity in a microlensing system
from a large enough number of simulated light curves, for
many different models of the lens and the source, should no
longer present a computational difficulty.

In future work, we plan to examine the constraints one can
place on the lens and the source in the 2237 + 0305 lens,
where flux variations produced by microlensing have been
observed, and to investigate the observational strategy in this
and other lenses that would be most likely to lead to
additional results.
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APPENDIX A: THE HIERARCHICAL TREE
CODE

In order to use the tree code, we need an expression for the
multipole expansion of a 1/r law. For any given box of lenses
with total mass

my=2. m,
1
and centre-of-mass position x;, the bending angle due to any

lens / in the box can be expanded about x;, in a Taylor series
given by

Jda(x 1
a(x)= a(xb)+z Xy [ a)E 1)} +§ 2 X%,
i Li Je=x, ij
d*a(x)
X | ————— + ... Al
[axl.iaxl,j x=x, ’ (A1)
where
Xo— X
a(x)=m, |——L (A2)
l) 1(|x0_x/|2)

is the deflection of a light ray at x, due to lens / from
equation (1). Note that all distances are in the lens plane and
the subscript / here pertains to an individual lensing mass.
When summed over all masses in the box, the first term
becomes the monopole contribution, the second term
(dipole) vanishes, and the third term becomes the quadru-
pole contribution. The result is most conveniently expressed
in the following form:

x, 1 i
Qp=m, |x|2 3 ,Z, (Qqu), (A3)

where for the two-dimensional case

x=(X, X)) =Xy — X, (A4)
Qij= 2 ml(3x1,ix1,j_x%6ij)a (A5)
!
p _ 1 X =3x,%5 3xix,—x) (A6)
17 .6 2. _ .3 3_ 3]
|x]” \3x1x,— x5 3x,x3—x;
p _ 1 3xix,—x3 3x, 65— X, (A7)
2716 2_ 3 3_ 4.2 .
|x]” \3x,x5—x7 x;—3x7x,

We use only the quadrupole term to calculate the deflection
angle from cells. Note that Q, P,, and P, all contain sym-
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metries that can be exploited for improved efficiency. In fact,
0=(Qy;) is the quadrupole moment tensor and has the re-
cursive property (Hernquist 1987)

Niubbox Niubbox

0= 2 Q,+ 2 m,(3R,R,—RI), (A8)

that is, Q for any given box of lenses can be written in terms
of the quadrupole moments of its constituent subboxes. Here
R, is the displacement vector x, —x between the centre of
mass of subbox b and the centre of mass of the parent box,
and | is the unit matrix. To obtain the light curves, we also
need to calculate the amplification at any point in the lens
plane, apart from the deflection angle. This is obtained from
the derivatives of the deflection angle, which can be calcu-
lated using the tree code in the same manner as a, and the
necessary formulae are obtained by taking the appropriate
derivatives of the monopole and quadrupole terms.

A problem encountered in the implementation of the tree
code is related to the discontinuities in the deflection angle,
produced by changes in the tree structure as one moves
around the lens plane: when a cell is substituted by smaller
subcells, the error made in approximating the contribution
from each star in the cells, using the quadrupole moments

given above, changes. Normally, in a tree code, a cell is used
to calculate the force if it subtends an angle 6 smaller than a
critical value 0,; if 6> 6, smaller cells are used. This
procedure introduces a discontinuity at the positions where a
cell subtends an angle 6= 6,;. The images of the straight
line, calculated with the tree code, are therefore also discon-
tinuous at these positions. Since our code follows the image
curves by requiring a smooth change of the tangent vector
along them, the presence of such discontinuities would
prevent the image curves being followed. The solution we
have adopted is to introduce a region 6_;, — 60 <6< 6, + 06,
inside which the contribution to the bending angle from a cell
is calculated first as though 6<8_; (where the multipole
expansion of the cell is used), and then as though 6> 0,
(where the immediately smaller cells down the tree hierarchy
are used). The two results are weighted and added together
according to

(ocrit+60)_o 0_(0crit—60)
a= YT O (0<6,) T 280 (6> 6,)
(A9)

We have generally used 6,,=0.5, and 66=0.05. The
method has worked well with negligible CPU expense.
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