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ABSTRACT
Out of the handful of asteroids that have been imaged, some have distributions of blocks that
are not easily explained. In this paper, we investigate the possibility that seismic shaking leads
to the size sorting of particles in asteroids. In particular, we focus on the so-called Brazil nut
effect (BNE) that separates large particles from small ones under vibrations. We study the
BNE over a wide range of parameters by using the N-body code PKDGRAV, and find that the
effect is largely insensitive to the coefficients of restitution, but sensitive to friction constants
and oscillation speeds. Agreeing with the previous results, we find that convection drives the
BNE, where the intruder rises to the top of the particle bed. For the wide-cylinder case, we also
observe a ‘whale’ effect, where the intruder follows the convective current and does not stay
at the surface. We show that the non-dimensional critical conditions for the BNE agree well
with previous studies. We also show that the BNE is scalable for low-gravity environments
and that the rise speed of an intruder is proportional to the square root of the gravitational
acceleration. Finally, we apply the critical conditions to observed asteroids, and find that the
critical oscillation speeds are comparable to the seismic oscillation speeds that are expected
from non-destructive impacts.
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1 IN T RO D U C T I O N

Asteroids are small rocky bodies left over from the planet formation
era. Although their internal structure is not well constrained, the
images of a handful of asteroids have provided us with the clues to
the origins of their surface features (e.g. Asphaug, Ryan & Zuber
2002; Chapman 2004). Perhaps the most prominent feature is craters
that indicate the history of impacts by other objects. However, there
are other surface features that are more subtle and need explanations.

For example, Asphaug et al. (2001) pointed out that the blocks
on (433) Eros do not obey any obvious dynamical distribution such
as association with potential source craters or sweep-up correlated
with the asteroid rotation. These blocks are likely ejecta fragments,
but most of them are not seen with pits that would indicate collisions
at metres per second into the low-gravity regolith. They proposed
that size sorting in asteroid regolith could explain such a distribution
of blocks.

Another potential example of this size sorting is (25143) Itokawa,
where smooth and rugged regions are observed. Miyamoto et al.
(2007) proposed that the substantial vibrations and the resulting
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granular convection could explain such a difference in distributions
of particles. Besides the abundance of boulders, Itokawa is also
characterized by a lack of major craters (Fujiwara et al. 2006).
Since the total volume of boulders on Itokawa is larger than the
available volume in the identified craters, all the boulders cannot
be from these craters. This may further support the size-sorting
scenario on Itokawa. Alternatively, the absence of large fresh craters
might be explained if the most recent impact erased its own crater
(e.g. Michel et al. 2009). Furthermore, the boulders on Itokawa
could also be explained by assuming that Itokawa was made by
the reaccumulation of fragments from a catastrophically disrupted
parent body (Michel & Richardson 2013). In this paper, we explore
whether the size sorting due to global oscillations is possible on
asteroids such as Eros and Itokawa.

Asphaug et al. (2001) identified two phenomena in granular sys-
tems that might have direct relevance to asteroids. One of them is
the inelastic segregation that could form regions of granular solid
via the aggregation of inelastically colliding objects. The other is
the size segregation via the so-called Brazil nut effect (BNE) that
describes the rise of a particle embedded in an oscillating system
of smaller particles in a confined environment (e.g. Rosato et al.
1987). We focus on this latter effect in this paper. The BNE has
been studied in many different set-ups, but rarely in the low-gravity
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environments that are relevant to asteroids. There are some recent
exceptions, such as Tancredi et al. (2012) and Güttler et al. (2013),
and we compare our results with theirs in Sections 3.4 and 3.5.

There are two distinct models of the BNE – one of them is the in-
truder model, where the number of large particles is small compared
to the number of smaller ones, and the other is the binary mixture
model, where both small and large particles occupy comparable
volumes. These models behave differently under vibrations, partly
because interactions between large particles become significant for
the latter (e.g. Sanders et al. 2004). The internal structure of asteroids
is not well known, and has so far been only guessed at through the-
oretical and numerical works (e.g. Asphaug et al. 2002; Richardson
et al. 2002). Because of this lack of knowledge, we assume in this
paper that the intruder model is appropriate for asteroids.

The behaviour of the intruder model differs depending on the os-
cillation speeds (e.g. Kudrolli 2004). When the oscillation is weak,
the particles are in the dense limit, where the contacts between par-
ticles last for a long time. As the oscillation speed increases, the
system can become vibrofluidized, where the particles behave like a
fluid and their interactions can be treated as binary collisions. In the
vibrofluidized limit, the intruder’s behaviour depends on the size
ratio and the density ratio of the constituent particles. The intruder
rises to the surface when its density is lower than that of the sur-
rounding smaller particles, and sinks when its density is larger (e.g.
Ohtsuki et al. 1995; Hsiau & Yu 1997; Shishodia & Wassgren 2001;
Breu et al. 2003; Huerta & Ruiz-Suárez 2004). In the dense limit,
the intruder rises independent of the density ratio (e.g. Liffman et al.
2001; Huerta & Ruiz-Suárez 2004). All of our simulations are likely
to be in the dense limit most of the time, because most particles have
a number of neighbouring particles in contact. As we describe in
the next section, we use a version of the N-body code PKDGRAV that
can handle systems with long-lasting contacts.

In this paper, we investigate the BNE as a potential mechanism to
sort particles in asteroids and to explain distributions of boulders on
asteroids’ surfaces. The efficiency of the BNE depends on many dif-
ferent parameters; furthermore, those corresponding parameters in
asteroids are unknown. Therefore, we first investigate the efficiency
of the BNE through a wide range of initial conditions and then ap-
ply the model to the low-gravity environments that are suitable for
asteroids. In Section 2, we introduce our numerical methods and the
choice of initial conditions. In Section 3, we study the dependence
of the BNE on various parameters including the coefficients of resti-
tution, the friction constants, the oscillation speeds, and the depth
of particle beds (Sections 3.1–3.3). We also compare our models
with previous studies and find good agreements (Sections 3.3 and
3.4). The BNE in low-gravity environments is investigated in Sec-
tion 3.5, and we apply the critical conditions to observed asteroids.
Finally in Section 4, we discuss and summarize our study.

2 M E T H O D

In this section, we introduce our numerical code PKDGRAV (Sec-
tion 2.1) as well as the initial conditions used for our simulations
(Section 2.2).

2.1 Numerical method: PKDGRAV

PKDGRAV is a parallel N-body gravity tree code (Stadel 2001) adapted
for particle collisions (Richardson et al. 2000, 2009, 2011). Origi-
nally, collisions in PKDGRAV were treated as idealized single-point-
of-contact impacts between rigid spheres. However, such an instan-
taneous collision assumption is not appropriate for a dense system

like a particle bed, where particle contacts can last many time steps.
Recently, Schwartz, Richardson & Michel (2012) added a soft-
sphere option to PKDGRAV that handles long-lasting contacts with
reaction forces dependent on the degree of overlap (a proxy for
surface deformation) and contact history. We use this version of
the code for our study of the BNE. The code uses a second-order
leapfrog integrator, with accelerations due to gravity and contact
forces recomputed each step. Various types of user-definable con-
fining walls are available that can be combined to provide complex
boundary conditions for the simulations. For example, we use an
infinitely tall cylinder and box as our container, as described in the
following subsection. The code also includes an optional variable
gravity field based on a user-specified set of rules. This allows us to
change the magnitude and a direction of gravity in the simulation
(see Section 3.5 for details).

The spring/dash-pot model used in PKDGRAV’s soft-sphere imple-
mentation is described fully in Schwartz et al. (2012). Briefly, a
(spherical) particle overlapping with a neighbour or confining wall
feels a reaction force in the normal and tangential directions deter-
mined by spring constants (kn, kt), with optional damping and ef-
fects that impose static, rolling, and/or twisting friction. The damp-
ing parameters (Cn, Ct) are related to the conventional normal and
tangential coefficients of restitution used in hard-sphere implemen-
tations, εn and εt. The static, rolling, and twisting friction compo-
nents are parametrized by dimensionless coefficients μs, μr, and
μt, respectively. Plausible values for these various parameters are
obtained through comparison with laboratory experiments. Careful
consideration of the soft-sphere parameters is needed to ensure in-
ternal consistency, particularly with the choice of kn, kt, and time
step – a separate code is provided to assist the user with con-
figuring these parameters correctly. For most of our simulations,
kn = 2.261947 × 109 g s−2 and time step 1.851201 × 10−6 s are
adopted, which permit a maximum particle speed of 200 cm s−1

with no more than 1 per cent overlap between spheres. As a con-
servative estimate, we consider a maximum particle speed that is
larger than the maximum oscillation speed of our default case of
93.9 cm s−1. For other parameters, μt is set to zero all the time for
simplicity, while εn, εt, μs, and μr are varied over wide ranges. We
will investigate the effect of μt in future work.

The numerical approach has been validated through comparison
with laboratory experiments; e.g. Schwartz et al. (2012) demon-
strated that PKDGRAV correctly reproduces experiments of granular
flow through cylindrical hoppers, specifically the flow rate as a func-
tion of aperture size, and Schwartz, Michel & Richardson (2013)
demonstrated successful simulation of laboratory impact experi-
ments into sintered glass beads using a cohesion model coupled
with the soft-sphere code in PKDGRAV. Most recently, Schwartz et al.
(2014) applied the code to low-speed impacts into regolith in order
to test asteroid sampling mechanism design.

2.2 Initial conditions

Unless noted otherwise, we use the same particle distributions
in an infinitely tall cylinder with a diameter of 10 cm as the ini-
tial condition for all our simulations. In our intruder model, there
are 1800 small particles and one larger particle, where the diam-
eters of small and large particles are ds = 1 cm and dl = 3 cm,
respectively. Both types of particles are assumed to have the same
mass density of 2.7 g cm−3, which corresponds to the density of
aluminium. For our default simulation, we adopt the coefficients
of restitution εn = εt = 0.5, static friction μs = 0.7, and rolling
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friction μr = 0.1.1 The choices of parameters are rather arbitrary.
However, as we see below, the BNE is relatively insensitive to the
exact choice of the coefficients of restitution. The BNE is sensitive
to the choice of the friction constants, so we choose the values that
result in the occurrence of BNE as default values. In terms of real
materials, these constants nearly correspond to the oxidized Al that
was used in the experiments of Clément, Duran & Rajchenbach
(1992), where they studied a vibrationally excited pile of beads and
observed spontaneous heaping and convection. Besides particle–
particle interactions that are described above, PKDGRAV also handles
particle–wall interactions. We use the same coefficients of restitu-
tion and friction constants as the particles for all of the cylinder
walls.

The simulations are divided into two stages – the filling of the
cylinder with particles, and the oscillation of the filled cylinder. In
the first stage, the large particle is initially placed at the floor of
the cylinder (whose centre is the origin of the coordinate), while
small particles are suspended in the air, 10–130 cm above the bot-
tom panel. The free-fall simulation is done under Earth gravity
g = 980 cm s−2, and the cylinder is filled with small particles in
∼0.5 s. For the low-gravity simulations in Section 3.5, this stage
is done under the corresponding gravitational environment. Un-
der the influence of Earth gravity, particles fill to a height of just
under 22 cm. The schematic figure of our system at the end of
the first stage is shown in Fig. 1. In the second stage, the entire
cylinder is vertically shaken in a sinusoidal manner with a given
amplitude A and frequency ω as z = A sin (ωt), where z is the
height of the base of the cylinder relative to an arbitrary zero-
point. The default amplitude and frequency are A = ds = 1 cm
and ω = 3

√
ag/A = 93.9 rad s−1. Here, ag is a gravitational ac-

celeration, and ag = g is assumed for most cases except for
Section 3.5. Thus, the maximum speed for the default shake is
vmax = ωA = 93.9 cm s−1. Most of our simulations are done on a
single core of a modern CPU such as Intel Xeon and AMD Opteron.
For the simulations in this paper, the runtime varied from ∼10 h to
∼10 d for 150 cycles, depending on the number of particles as
well as the choice of parameters such as oscillation frequencies.
In general, low-oscillation frequency simulations take longer than
high-frequency ones, because a longer time is required to complete
150 cycles of oscillation.

3 R ESULTS

In this section, we present the results of our simulations. First, we
vary several parameters and investigate how they affect the BNE.

3.1 Dependence on coefficients of restitution

In this subsection, we study the dependence of BNE on normal and
tangential coefficients of restitution (εn and εt, respectively). For
all the simulations in this subsection, we assume that the static and
rolling friction constants are μs = 0.7 and μr = 0.1, respectively,
and that the oscillation amplitude and frequency are A = ds = 1 cm
and ω = 3

√
g/ds = 93.9 rad s−1, respectively.

1 We note that εt used here is not the true tangential coefficient of
restitution which is difficult to specify in soft-sphere simulations (see
Schwartz et al. 2012). Still, εt has a one-to-one mapping to a dimen-
sionless quantity Ct as mentioned in Section 2.1 and is defined as Ct ≡
−2 ln εt

√
ktμ/(π2 + (ln εt)2).

Figure 1. Schematic diagram of a cross-section of the experiment after an
infinitely long cylindrical container (with a diameter of 10 cm) is filled up
with small particles (up to ∼22 cm from the origin), but before shaking
begins. The large cyan particle (the intruder) is initially located at the floor.

Figure 2. Height evolution of the intruder (solid line) compared with evo-
lution of the median height of the small particles (dashed line). Here,
εn = εt = 0.5, μs = 0.7, and μr = 0.1 are assumed. The intruder rises
from the bottom of the cylinder to the surface of the particle bed in ∼90
cycles.

The height evolution during the oscillation simulation for our
default case is shown in Fig. 2. The intruder’s height is compared
to the median height of small particles z̄s. After ∼90 cycles of the
oscillations, the intruder rises to the top of the particle bed. Since the
height of the particle beds is constantly changing due to oscillations,
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The BNE and its application to asteroids 3371

Figure 3. Height evolution of the intruder (solid line) for εn = 0.5 and
εt = 0.1–0.9. All of the rise cycles are consistent with the mean rise cycle
determined from the default case within ∼3σ , where σ is the default case’s
standard deviation that is defined in text. The line colours of red, magenta,
orange, yellow, green, cyan, blue, navy, and purple correspond to εt = 0.1–
0.9 in an increasing order.

we define that the intruder arrives at the surface when zl > 2z̄s. To
estimate the variation in our oscillation simulations, we generate
10 independent particle distributions with 1800 small particles and
one intruder, and perform oscillation simulations by using the same
parameters for all of them. For the default parameter set, we find
that the average rise cycle (number of oscillations needed for the
intruder to rise to the top) is τ̄cyc = 92.0 and the standard deviation
is σ = 6.7.

Now we explore the different sets of restitution coefficients. We
change normal and tangential coefficients of restitution from 0.1
to 0.9 with �ε = 0.1, and find that the BNE occurs in all of the
81 cases. Moreover, we find that the rise time of an intruder seems
relatively independent of the choices of coefficients of restitution.
In Fig. 3, we compare simulations with εn = 0.5 and εt = 0.1–0.9
as an example.

To understand this similarity further, we estimate the variations
in oscillation simulations by using 10 different particle distribu-
tions for nine different combinations of restitution coefficients

εn = εt = 0.1–0.9. The mean rise cycle and the standard devia-
tion for each set is compared in the left-hand panel of Fig. 4. The
mean rise cycle decreases from εn = εt = 0.1 to εn = εt = 0.6 and
then slightly increases from εn = εt = 0.6 to εn = εt = 0.8. The rise
cycle for εn = εt = 0.9 increases very sharply from εn = εt = 0.8.
In fact, the variations of the rise cycles are consistent within 2σ for
all the cases except for εn = εt = 0.9.

The right-hand panel of Fig. 4 shows the rise cycle estimated for
each combination of εn and εt by using the same particle distribu-
tion. We also plot the mean cycle and the variations estimated from
80 simulations with εn = εt = 0.1–0.8. The rise cycles of many
combinations appear within 1σ from the mean cycle, and most ap-
pear within 2σ . A clear exception is the εn = 0.9 cases that tend to
have shorter rise cycles than the others for small values of εt. There
is an indication that the rise time might become shorter for εn = 0.9
and longer for εt = 0.9. It is unclear whether this represents poor
sampling or a true trend. However, we should note that the BNE
does not occur when the collisions are perfectly elastic either in
normal or in tangential direction (i.e. either εn or εt is 1.0). It is pos-
sible that systems with bouncier particles behave differently from
those with less elastic ones, because such systems could transit from
the dense system to the vibrofluidized system at a lower oscillation
frequency. Since our goal here is to understand the overall trend of
the BNE, we defer a more detailed investigation on high values of
coefficients of restitution for future work.

The coefficients of restitution for asteroid constituents are not
well constrained. Recently, Durda et al. (2011) performed head-on
collision experiments between two granite spheres with diameters
of 1 m, and estimated that the coefficient of restitution is εn = 0.83 ±
0.06 for collision speeds up to ∼1.5 m s−1. This normal coefficient
of restitution value is relatively large, but is still expected to lead to
a general BNE behaviour, independent of the value of εt.

In summary, our results indicate that the BNE is largely inde-
pendent of the exact choices of coefficients of restitution, except in
the most elastic cases. Thus, for the rest of the paper, we assume
εn = εt = 0.5 unless it is noted otherwise.

3.2 Dependence on friction

In this subsection, we study the dependence of BNE on static
and rolling friction constants (μs and μr, respectively). For all

Figure 4. Left: the mean rise cycle (circles) and the standard deviation σ estimated from 10 simulations each for εn = εt = 0.1–0.9. The blue and orange
regions correspond to 1σ and 2σ , respectively. Except for εn = εt = 0.9, all of these sets have variations in the rise cycles that are consistent within 2σ . Right:
the rise cycles for simulations with various εn and εt. The red, magenta, orange, yellow, green, cyan, blue, navy, and purple lines correspond to εn = 0.1–0.9 in
an increasing order. The black solid, dashed, and dotted lines indicate the mean rise cycle, 1σ , and 2σ estimated from 80 simulations with εn = εt = 0.1–0.8.

MNRAS 443, 3368–3380 (2014)

 at U
niversity of M

aryland on A
ugust 11, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


3372 S. Matsumura et al.

Figure 5. Final intruder heights after 150 oscillations as a function of μs

and μr. Each rectangular region represents a specific choice of μs and μr

and is colour coded by the final intruder height (see colour legend to the
right of the plot). For all the simulations, coefficients of restitution are set to
εn = εt = 0.5 . There is a sharp transition from no-BNE to BNE regions. A
threshold static friction is necessary for the BNE to occur, but high static or
rolling friction diminishes the BNE.

the simulations in this subsection, we assume that the normal and
tangential coefficients of restitution are εn = εt = 0.5, and that
the oscillation amplitude and frequency are A = ds = 1 cm and
ω = 3

√
g/ds = 93.9 rad s−1, respectively.

We change the static friction over μs = 0.0–1.0 and rolling friction
over μr = 0.0–0.2. We note that, for cohesionless materials, the
static friction coefficient is related to the angle of repose of the loose
material by tan φ = μs. Thus, μs = 1.0 corresponds to material with
a relatively high (45◦) angle of repose, and sampling from μs = 0.0
to 1.0 covers a good range of plausible material properties. The
rolling friction does not have as nice a physical correspondence as
μs, but the friction comes in as a torque due to the normal force
acting at a contact point of two particles (Schwartz et al. 2012).

In Fig. 5, we plot the instantaneous heights of intruders after 150
oscillations for each simulation. We find that the efficiency of the
BNE depends steeply on the friction constants. The figure indicates
that the BNE requires a high enough μs � 0.5 and a low enough μr

� 0.2. The difference between non-BNE and BNE regions is illus-
trated in Fig. 6. By dividing the initial distributions of particles into

11 layers (i.e. each layer is ∼2 cm thick), we plot the height evolu-
tion of particles which are initially in the uppermost and lowermost
layers, along with that of the intruder particle. There is little vertical
mixing of particles when there is no BNE (left-hand panel), while
particles are well mixed when the BNE is observed (right-hand
panel). Convection of particles is observed in all the simulations
with the BNE, where particles descend along the wall and ascend
in the central region. More precisely, small particles follow gradual
rise and fall cycles throughout the entire particle distribution while
the intruder rises but does not fall. Our results agree with many
previous works that have observed convection along with the BNE
(e.g. Knight, Jaeger & Nagel 1993; Pöschel & Herrmann 1995).
Furthermore, the trend seen in Fig. 5 agrees with the implications
of Clément et al. (1992). They experimentally investigated a two-
dimensional pile of equal-sized beads under a vertical sinusoidal
oscillation, and found that the convection is not observed for pol-
ished aluminium beads with μs = 0.2, but is observed for oxidized
ones with μs = 0.8. In their experiments, both kinds of beads have
a normal restitution coefficient of 0.5, which is comparable to our
default value. In our simulations, for μs = 0.2, the BNE was not
observed for any value of μr, while for μs = 0.8, the BNE was seen
for all the values of μr we tested.

Convection depends both on particle–particle and on particle–
wall frictions. Fig. 7 shows cases where particle–particle (left) and
particle–wall (right) friction constants are set to zero for our default
case. In both cases, convection does not occur and the BNE is
severely suppressed compared to the default case in Fig. 2, where
both of these friction constants have the default values. These figures
indicate that kinetic friction (which is related to εn and εt) alone is
not enough to initiate the BNE.

Fig. 5 also indicates that high rolling friction diminishes the BNE.
The higher rolling friction means that it is more difficult for particles
to rotate with respect to each other. Let us consider three particles
lined up side by side. If we move the middle particle upward, then the
two neighbouring particles start rotating. For higher rolling friction,
the energy loss in this process is greater and thus particles tend to
lock to each other, which in turn slows down the convection. The
slower rise of the intruder in the high-static-friction region is also
due to the difficulty of the particles to move relative to one another.

The friction constants of asteroids are even less constrained than
the coefficients of restitution. Recently, Yu et al. (2014) performed
avalanche experiments of similar size gravels that were collected

Figure 6. Height evolutions of small particles in the uppermost layer (red) and the lowermost layer (blue) are compared with the corresponding evolution of
the intruder (black). All the parameters are the same except that μs = 0.3 and 0.7 in the left- and right-hand panels, respectively. When the BNE does not
occur (left), particle layers are well separated throughout the simulation. On the other hand, when the BNE occurs (right), particle layers are well mixed due
to convection.
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The BNE and its application to asteroids 3373

Figure 7. Comparison of the height evolution of the intruder with the median height of the small particles. Left- and right-hand panels show the cases where
particle–particle frictions are set to zero (left) and particle–wall frictions are set to zero (right), respectively. The other parameters are set to the usual default
values.

from a stream bed, and estimated the restitution coefficients and
static constants by using numerical simulations on PKDGRAV. They
found εn = εt = 0.55, μs = 1.31, and μr = 3.0 reproduced their ex-
periments well. These values are not necessarily unique for gravels,
but the restitution coefficients are comparable to our default values
while the static and rolling frictions are beyond the values we have
investigated in this study (see Fig. 5). If such gravels represent small
particles in asteroids of interest, it would be very difficult to have
convection and thus the BNE, because the particles will be simply
locked to each other. However, their studies approximate gravels
with spheres, and therefore could overestimate these values. More
realistic modelling of particles would be necessary in the future.
In the rest of the paper, we assume μs = 0.7 and μr = 0.1 as
our default values. Again, μs = 0.7 is comparable to the friction
constant estimated by Clément et al. (1992) for oxidized Al. Yu
et al. (2014) also considered two other types of material: smooth
(μs = μr = 0.0) and glass (μs = 0.43 and μr = 0.1). Our default
case has the higher static friction than glass but not as high as that
of gravel.

3.3 Dependence on oscillation speeds and bed depths

In this subsection, we study the dependence of the BNE on os-
cillation amplitude and frequency. For all the simulations in this
subsection, we assume εn = εt = 0.5, μs = 0.7, and μr = 0.1. The
oscillation speeds are varied for three different bed depths and two
different cylinder widths. The default case of 1800 + 1 particles
in a cylinder with a diameter of 10 cm has a bed depth of ∼22 cm.
The shallower case of 900 + 1 particles has a depth of ∼13 cm, and
the deeper case of 3600 + 1 particles has a depth of ∼47 cm in the
same cylinder. We also performed one set of simulations in a wider
cylinder with a diameter of 20 cm. That case is composed of 3600
+ 1 particles and a depth of ∼13 cm; it can be compared with the
shallow-bed case described above. The final heights of the intruders
are plotted for the dimensionless oscillation amplitude Ã = 0.5−3.0
and the dimensionless oscillation frequency ω̃ = 0.5−4.0 in Fig. 8,
where

Ã ≡ A

ds
, ω̃ ≡ ω√

g/ds
. (1)

Figure 8. Final intruder heights after 150 oscillations as a function of ω̃ and Ã. Each rectangular region represents a specific choice of ω̃ and Ã and is colour
coded by the final intruder height (see colour legend to the right of the plot). For all the simulations, εn = εt = 0.5, μs = 0.7, and μr = 0.1 are assumed. Left-
and right-hand panels are the cases with Ns = 1800 and 900, respectively. Interior to the black curve is the BNE region estimated from the 2D simulations
by Godoy et al. (2008). The dashed part corresponds to the region beyond their investigation. Open and filled symbols are taken from fig. 6 of Godoy et al.
(2008) and represent BNE and no-BNE cases, respectively. The circles correspond to the pseudo-2D experiments by Duran et al. (1994), while the downward
triangles correspond to the 3D experiments by Knight et al. (1993). The upward triangles and the diamonds are both 2D simulations by Saez, Vivanco & Melo
(2005) and Pöschel & Herrmann (1995), respectively. Orange and red curves are 	̃ = 1 and ṽ = ṽc, respectively, and the convection is expected above the
solid portions of these curves.
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Table 1. Model parameters and set-ups.

Reference Ns ρl/ρs dl/ds Restitution coefficients Friction constants Type Shake

Default case of present work 1800 1 3 εn = εt = 0.5 μs = 0.7, μr = 0.1 3DS Sinusoidal
Hejmady et al. (2012) 0.30–2.34 8.5–11.3 2DE Sinusoidal
Godoy et al. (2008) 1200 1 8 εn = εt = 0.98 μs = μd = 0.7 2DS Parabolic
Duran et al. (1994) 1 12.9 0.5 0.8 2DE Sinusoidal
Knight et al. (1993) 1 3–12.5 3DE Sinusoidal taps
Saez et al. (2005) 3300 13 0.6 0.97 2DS Sinusoidal
Pöschel & Herrmann (1995) 950 1 3.5–4.7 0.5 2DS Sinusoidal
Tancredi et al. (2012) 1000 1 3 εn = 0.8–0.9, εt = 0.95a μd = 0.6 3DS Displacements

Note: Column 1: references; column 2: number of small particles; column 3: density ratio of large to small particles; column 4: diameter ratio of
large to small particles; column 5: restitution coefficients; column 6: friction constants; column 7: dimension of simulations (S) or experiments
(E); column 8: oscillation type.
aValue estimated from fig. 4 in Tancredi et al. (2012).

Since the diameter of a small particle is ds = 1 cm in our simulations,
our default case corresponds to Ã = 1 and ω̃ = 3. The left-hand
panel of Fig. 8 shows our default case with 1800 + 1 particles and
the right-hand panel shows the shallower bed case with 900 + 1
particles. The result for the deepest bed with 3600 + 1 particles
(not shown here) looks similar to the default case. All of these
simulations indicate that the BNE occurs for cases with sufficiently
large amplitudes and frequencies. The figure also compares our
results with the previous works listed in Table 1. Since every work
uses different set-ups, it is difficult to make a direct comparison.
One of the difficulties lies in a density dependence of the BNE. In
the vibrofluidized regime, a high-enough density ratio ρl/ρs could
lead to the reverse BNE, where an intruder sinks to the bottom
(e.g. Ohtsuki et al. 1995; Shishodia & Wassgren 2001), while in
the dense limit, when particles experience enduring contacts, an
intruder appears to rise independent of the density ratio (e.g. Liffman
et al. 2001; Huerta & Ruiz-Suárez 2004). Since we are interested in
the standard BNE, we compare our models with previous works that
assume comparable densities for small and large particles so that
an intruder rises for both the vibrofluidized regime and the dense
limit.

Godoy et al. (2008) selected several investigations that assume
the same density for large and small particles, and showed that they
all follow similar transition lines that separate BNE and no-BNE
regions. These works are also plotted using different symbols in
Fig. 8. The distribution of open (BNE) and filled (no BNE) symbols
agrees well with the general trend of our simulations.

Duran et al. (1994) experimentally studied the BNE in a quasi-
two-dimensional bed of aluminium beads, and identified two seg-
regation mechanisms depending on accelerations: arching (1.0 �
	̃ � 1.5) and convection (	̃ � 1.5), where 	̃ = Ã ω̃2 is the di-
mensionless acceleration. The orange line in Fig. 8 corresponds to
	̃ = 1; the BNE is expected to take place to the right of this line.
The agreement is particularly good for a shallower bed case. The
default bed case, however, indicates that 	̃ � 1 is not a sufficient
condition for the BNE.

Hejmady et al. (2012) also experimentally studied the BNE by
using a large acrylic disc embedded in a quasi-two-dimensional
bed of mustard seeds. They showed that 	̃ > 1 is not a sufficient
condition for bulk convection to occur, and proposed that the oscil-
lation speed also needs to exceed some critical value vosc > vc. We
estimate the critical oscillation speed for our simulations in Fig. 9,
where the rise speed of an intruder is plotted as a function of the
scaled maximum oscillation speed ṽosc = Ã ω̃ for three different
bed depths and two different cylinder widths. Here, the rise speed
is defined as the bed depth (defined as 2z̄s) divided by the rise time

Figure 9. Rise speed compared with the maximum oscillation speed.
Blue circles, orange down-pointing triangles, and green up-pointing tri-
angles correspond to the default case (N = 1800 + 1), a shallow-bed case
(N = 900 + 1), and a deep-bed case (N = 3600 + 1), respectively. Red
squares represent a shallow bed in a wider cylinder with N = 3600 + 1. All
of these cases have a similar critical oscillation speed of ṽc ∼ 1. From the
best-fitting lines, the critical oscillation speeds are ṽc ∼ 0.97, 0.84, 0.91,
and 1.04 for each case, respectively. See discussion in Section 3.3.

(determined from the rise cycle defined in Section 3.1). Different
from Hejmady et al. (2012), we plot the rise speed instead of the
rise time so that ṽc is clearly determined from the oscillation speed
that corresponds to the zero rise speed. We find that all of these
cases have comparable critical speeds. For our default bed depth,
we find ṽc ∼ 0.97, while for shallower and deeper bed cases, we
find ṽc ∼ 0.84 and 0.91, respectively. For the case of a shallow
bed in a wide cylinder, we find ṽc ∼ 1.04. These are comparable
to the critical value found in Hejmady et al. (2012) (ṽc ∼ 1.26 for
vc = 16.5 cm s−1). The estimated critical speeds are plotted using
red lines in Fig. 8. From these figures, we conclude that both 	̃ � 1
and ṽosc � ṽc need to be satisfied for the BNE to take place.

An important indication from Fig. 9 is that the rise speed is
proportional to the oscillation speed. We will come back to this
point in Section 3.5. Furthermore, Fig. 9 indicates that there is an
optimal bed depth for the BNE, since the rise speed increases from
Ns = 900 to 1800, and then decreases from Ns = 1800 to 3600.
Such a depth dependence of the rise time agrees with the recent
experimental result by Güttler et al. (2013).
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Comparison of the shallow-bed case in the default cylinder to
that in the wide cylinder (i.e. orange and red lines, respectively)
indicates that the BNE may take place slower in a wider cylinder.
For the wide-cylinder cases, we find that the convection direction
is the same as the default cylinder cases – the particles descend
along the wall and ascend near the central region. For the high end
of oscillation speeds, however, we find that the intruder also shows
a ‘whale’ effect, where the intruder does not necessarily stay at
the top of the cylinder but keeps moving up and down with the
convective current. This indicates that the region of the convection
roll along the wall is thick enough to pass the intruder downward in
the wide-cylinder cases.

We would like to pay a particular attention to the compar-
ison of our work with Godoy et al. (2008). They numerically
studied the BNE by using the molecular dynamics code devel-
oped by Risso et al. (2005). In their simulations, the size ratio of
the intruder and surrounding discs is dl/ds = 8, restitution coeffi-
cients εn = εt = 0.98, and static and dynamic friction coefficients
μs = μd = 0.7. Here, μd follows the Coulomb’s law of friction
where the magnitude of kinetic friction is independent of speed of
slippage. There are 1200 small particles with one intruder, and the
2D box has a width of 40 ds. Their oscillations are not sinusoidal, but
are given in a periodic vertical parabolic movement with the base
acceleration of ± 8

π2 Aω2. Since their acceleration is proportional
to the maximum acceleration of the sinusoidal oscillation A ω2, we
expect that our results can be compared to theirs reasonably well.

Instead of changing oscillation amplitude and frequency like we
have done in our work, Godoy et al. (2008) varied the dimensionless
acceleration and speed which they defined as 	′ = 8

π2 Ã ω̃2 and ζ ′ =√
2 Ã ω̃, respectively, and found the transition line above which the

BNE is observed. We also plot their transition line as the black line
in Fig. 8. The agreement between their simulations and ours is good
in the low-frequency region (ω̃ � 2.5), but our results disagree in
the higher frequency region.

There are several possibilities that lead to the difference between
our results and those of Godoy et al. (2008). First, our simulations
are three-dimensional (3D), while theirs are two-dimensional (2D).
However, this is unlikely to be the critical difference, especially
since our 3D results agree well with quasi-2D experimental results
by Hejmady et al. (2012). Second, we adopt εn = εt = 0.5, while
they use εn = εt = 0.98. Kudrolli (2004) proposed a condition
that separates the vibrofluidized regime from the dense regime:
nlayer(1 − ε) < 1, where nlayer is the number of particle layers.
According to this condition, our simulations have nlayer ∼ 22 and
ε = 0.5 and thus are likely to be in the dense regime of lasting
contacts between particles, while their simulations have nlayer ∼ 30
and ε = 0.98 and may be in the vibrofluidized regime, especially for
high accelerations. To address this, we repeated our simulations for
εn = εt = 0.98. However, the results are still consistent with 	̃ � 1
and ṽosc � ṽc, rather than with the relation proposed by Godoy et al.
(2008). Third, it is possible that our oscillation speeds are too low
to turn the BNE off. Thus, we extended our default simulations
up to ω̃ = 8 and Ã = 4. However, the BNE is observed for all
oscillation speeds we tested. The disagreement may also be due
to the differences between our codes, or other differences between
our initial set-ups. Future studies would need to investigate, both
numerically and experimentally, whether the BNE turns off for high
oscillation frequencies or not.

In summary, we have found that the BNE occurs for the oscillation
frequency and oscillation amplitude above certain values, and that
critical conditions are well approximated by 	̃ � 1 and ṽosc � 1
for the parameters we tested. Our results show the same general

trend as other works that use comparable densities for small and
large particles but assume different initial conditions otherwise.
In Section 3.5, we investigate the effects of oscillations under the
low-gravity environments, and discuss a possibility of having such
oscillations due to impact-generated seismic waves.

3.4 Comparison with Tancredi et al. (2012)

We compared our simulations with previous works listed in Table 1
in the last subsection. We left out the results of Tancredi et al. (2012)
from this discussion due to the very different oscillation style they
used. In this subsection, we use initial conditions as close to theirs
as we could construct, and then compare the results.

Tancredi et al. (2012) studied granular processes under various
gravitational environments, and observed size segregation in re-
sponse to shaking. Instead of the sinusoidal oscillation, they applied
multiple vertical displacements of the floor of the simulation box at a
constant speed. The duration of a displacement is dt = 0.1 s, and the
time between displacements varies from 2 to 15 s, depending on the
gravitational environments. The floor’s speed (vf = 0.3−10 m s−1)
is linearly increased from 0 to the final value in 20 displacements.
To mimic their oscillations, we do not use the vertical displace-
ments, but instead increase the oscillation amplitudes linearly so
that the maximum speeds reach their final floor speeds in 20 cycles.
The oscillation amplitude is chosen to be equal to one displacement
A = vf dt . This makes the oscillation frequency ω = 10 rad s−1 for
all the simulations.

Their simulation box has a size of 12 × 12 m2 and a height of
150 m. Because of the lack of viscoelastic and frictional interactions
between particles and walls in their ESYS-PARTICLE code, they glued
a layer of small particles on the floor. Since our code handles the
wall–particle interactions, we do not have the glued layer.

Following their set-up, we create an infinitely-tall box with the
floor area of 12 × 12 m2 and fill that box with 1000 small spheres
with mean radius 0.25 m and standard deviation 0.01 m as well as
one large sphere with radius 0.75 m. The restitution coefficients
are estimated from their sections 2.3.1– 2.3.3 as follows. In the
head-on collision simulation of two equal spheres (see their section
2.3.1), they obtained restitution coefficients of 0.8–0.9 for the im-
pact speeds over 1–2 m s−1. Thus, we adopt εn = 0.85 for the normal
coefficient of restitution between particles. In the grazing collision
simulation of two equal spheres (see their section 2.3.2), they found
that the ratio of final to initial speeds is ∼0.95 for the low-speed
collisions with friction. Thus, we adopt εt = 0.95 for the tangen-
tial coefficient of restitution between particles. In the bouncing ball
simulation against the floor with a layer of glued spheres (see their
section 2.3.3), they found a coefficient of restitution of 0.593. We
adopt εn = εt = 0.593 not only for the interactions between particles
and the floor, but those for all the walls of the box.

The treatment of friction is also different between the codes. We
chose μs = 0.6 so that our friction constant becomes comparable
to theirs at the threshold between static and dynamic friction. Since
their code does not take account of rolling friction, we set μr = 0.0.

With this set-up, we performed oscillation simulations for the
maximum speeds of 0.3, 1, 3, 5, and 10 m s−1 and show the re-
sults in Fig. 10. The figure is meant to be compared with fig. 9 in
Tancredi et al. (2012). Despite the differences between our codes
and shaking styles, our results qualitatively agree with theirs, apart
from a difference in rise time. For the low oscillation speeds (0.3
and 1 m s−1), the intruder stays at the bottom of the box. As the max-
imum oscillation speed increases, the intruder starts rising, show-
ing the familiar BNE. The duration of the maximum speed in our
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Figure 10. Evolution of the height of the intruder for the maximum os-
cillation speeds of 0.3, 1, 3, 5, and 10 m s−1. A thick black line is drawn
at a height of 2.84 m to represent the height of 1000 small particles with
a random close packing and maximum bulk porosity of 0.64. The figure
qualitatively agrees with fig. 9 in Tancredi et al. (2012).

oscillation simulation (a fraction of the oscillation period of 0.63 s)
is shorter than theirs. Since the rise speed is proportional to the os-
cillation speed (see Section 3.3), it is understandable that our results
show a consistently slow rising time for the intruders compared to
Tancredi et al. (2012).

3.5 Scaling in low-gravity environments

In this subsection, we apply our model to the low-gravity environ-
ments characteristic of asteroids. The goal here is to check whether
the BNE occurs in such environments, and to understand the gravity
dependence of the rise time of an intruder.

We expect that the BNE is scalable by adjusting the oscillation
frequency according to the gravity field. For example, our default
case has an oscillation frequency of ω = 3

√
ag/ds = 93.9 rad s−1

under the gravitational acceleration of Earth ag = g = 980 cm s−2.
We change the oscillation frequencies for the gravity fields com-
parable to the Moon, (1) Ceres, (87) Sylvia, Eros, and Itokawa
accordingly. These bodies are chosen to compare our results with
those in Tancredi et al. (2012).

We tested four different parameter sets – (ω̃, Ã) = (1, 0.5),
(1, 1), (3, 1), and (3, 3). As expected, we find that the results look
similar for different gravity environments with the same scaled os-
cillation speeds. For (ω̃, Ã) = (1, 0.5) and (1, 1), the BNE does not
occur for any gravity fields, while for (ω̃, Ã) = (3, 1) and (3, 3),
the BNE occurs for all the cases.

The comparison of the evolution of an intruder’s height for
(ω̃, Ã) = (3, 1) is plotted in Fig. 11. We find that the results are all
consistent with the uncertainties typical to the oscillation simula-
tions. The figure confirms the expectation that the BNE simulations
are scalable over a wide range of gravity fields.

In Fig. 12, we compare our simulations under different gravity
fields and the maximum oscillation speeds. The open and filled cir-
cles correspond to the runs with and without the BNE, respectively.
The orange line is the critical speed we estimated in Section 3.3. As
expected, BNEs are observed above ṽc, while BNEs do not occur
below the critical value.

For a comparison, we also plot BNE (open diamonds) and
no-BNE cases (filled diamonds) from low-gravity simulations in

Figure 11. Evolution of height of the intruder as a function of oscillation
cycles for the gravities of Earth, Moon, Ceres, Sylvia, Eros, and Itokawa.

Figure 12. The scaled oscillation speeds compared with the scaled gravi-
tational acceleration. The solid orange line corresponds to the critical speed
ṽc = 1.0 estimated in Section 3.3. Open and filled symbols correspond to
BNE and no-BNE cases in our simulations (circles) and in Tancredi et al.
(2012) (diamonds). For data from Tancredi et al. (2012), we simply follow
their fig. 11 to distinguish BNE and no-BNE cases.

Tancredi et al. (2012). Since their results also show a similar tran-
sition from no BNE to BNE around a constant ṽc, we would ex-
pect that there is a critical floor speed necessary for the BNE in
their simulations as well. Tancredi et al. (2012) estimated the floor
speed threshold as vthre = 1.12a0.42

g , which has a slightly different
dependency on the gravitational acceleration from our relation of
vc ∼ √

dsag. This difference may not be surprising since threshold
speeds in Tancredi et al. (2012) are determined by relatively sparse
data.

It is also informative to plot the rise speed of an intruder as a
function of the gravity field. Fig. 13 shows that, for both (ω̃, Ã) =
(3, 1) and (3, 3), the rise speed is proportional to

√
ag, rather than

ag. This is understandable in our case, since the driving frequency
of our oscillation simulations is ω ∝ √

ag. The result is consistent
with our finding in Section 3.3 that the rise speed is proportional to
the maximum oscillation speed.

Recently, Güttler et al. (2013) experimentally studied the BNE
both in the laboratory and in a parabolic flight to mimic the
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The BNE and its application to asteroids 3377

Figure 13. Change of the rise speed of an intruder depending on the gravity field. Left- and right-hand panels correspond to (ω̃, Ã) = (3, 1) and (3, 3),
respectively. Solid and dashed lines are proportional to

√
ag and ag, respectively. The rise speeds of both sets of our simulations have a

√
ag dependence.

Figure 14. The critical oscillation speeds necessary for the BNE that is estimated from 	̃c = 1.0 and ṽc = 1.0 for Itokawa (left-hand panel) and Eros
(right-hand panel). Blue, orange, and red lines correspond to a typical small particle’s size of 1, 10, and 100 cm, respectively. Green solid and dashed lines are
the seismic speeds estimated from an impact that lead to a catastrophic disruption, and correspond to the impact speeds of 5 and 3 km s−1, respectively. Larger
projectiles would destroy asteroids (above these lines), while smaller ones would generate seismic speeds (below these lines) that are comparable to the critical
oscillation speeds for the BNE. The solid black line is the escape speed.

reduced-gravity conditions comparable to the Mars and the Moon.
They found that the rise speed was not proportional to

√
ag, but

closer to ag. In fact, their best fit was obtained for an exponential
function. The difference seen in our rise speed dependences with
gravity may be partly due to the difference in our shaking profiles.
While we use a sinusoidal oscillation, their oscillation acceleration
is approximated by a square wavefunction. Moreover, due to the
nature of a parabolic flight, they need to stop the oscillations every
time the hypergravity phase kicks in, which could have compacted
the particle distributions and slowed the rise of an intruder. Fu-
ture studies need to investigate the dependence of rise speed (or
equivalently rise time) on the gravity field further.

Finally, we estimate the critical oscillation speeds of the BNE
for observed asteroids. From the critical conditions confirmed in
Section 3.3, we can derive two conditions for critical oscillation
speeds:

ṽc � 1.0 → v �
√

dsag and (2)

	̃c � 1.0 → v �
√

Aag. (3)

In Fig. 14, we plot these conditions for Itokawa (left-hand panel)
and Eros (right-hand panel) by assuming three different diameters
for a typical small particle (1, 10, and 100 cm). When the particle
size is ds = 10 cm, the oscillation speeds need to be larger than
vc ∼ 1 cm s−1 for the BNE to take place on Itokawa, and larger
than vc ∼ 2.5 cm s−1 on Eros. Thus, as expected from the relation
vc ∝ √

ag, size segregations occur for weaker oscillations on smaller
asteroids.

The upper limit of the BNE oscillation speeds can be set by the
escape speed. The escape speeds are ∼16.5 cm s−1 for Itokawa and
∼9.71 m s−1 for Eros, and are plotted as black solid lines in Fig. 14
(note that the latter line overlaps with the top boarder of the panel).
For a small asteroid like Itokawa that has a diameter <500 m, the
BNE is allowed only for small oscillation amplitudes �10 m if a
typical small particle size is 100 cm. For smaller particles, a wider
range of conditions is possible. For a larger asteroid like Eros that
has a diameter of ∼20 km, a typical small particle size can be larger
than 100 cm.

How do these oscillation speeds compare to the characteris-
tic seismic speeds in asteroids? From Asphaug et al. (1996), the
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estimated critical oscillation speeds are consistent with the speeds
of seismic motions that could create bright annuli around craters on
small asteroids such as Ida. We estimate the critical seismic speeds
below and plot them in Fig. 14 as solid and dashed green lines.

The impact energy of a projectile can be written as

Ei = 2π

3
ρpR

3
pv

2
p, (4)

where p denotes the projectile, ρ is the density, R is the spherical
radius, and vp is the impact speed. Following Richardson et al.
(2005), we also write the total seismic energy of an asteroid due to
a seismic wave speed vs as

Es = 2π

3
ρtR

3
t v

2
s . (5)

Here, t denotes the target asteroid and vs = 2πf A, where f and A
are the seismic frequency and maximum displacement, respectively,
from Richardson et al. (2005). More complex representations may
be appropriate for purely agglomerate bodies, but since there is no
good understanding of the actual structure of agglomerate asteroids
or the transmission of seismic waves within such a medium, we
have assumed that the waves are transmitted in a simplified fashion
(i.e. a sinusoidal oscillation).

When a fraction η of the kinetic energy of an impactor is converted
into seismic energy (i.e. Es = ηEi), the seismic speed vs on an
asteroid is estimated as

vs =
√

η
ρp

ρt

(
Rp

Rt

)3

vp. (6)

By defining a specific impact energy as

Qs = 1

2

ρp

ρt

(
Rp

Rt

)3

v2
p, (7)

we can rewrite a seismic speed as vs = √
2ηQs.

To estimate a seismic speed for a certain impact, we consider
an extreme case where an impact leads to a catastrophic disruption
(i.e. an impact that results in the largest remnant having half the
mass of the original target) and define the specific impact energy as
Qs = Qs,D. Jutzi et al. (2010) performed numerical simulations of
asteroid break-ups, and estimated such specific energy threshold for
disruption Qs,D. They provided the following convenient power-law
scaling:

Qs,D = Q0

(
Rt

cm

)α

+ Bρt

(
Rt

cm

)β

, (8)

where Q0, B, α, and β are fitting constants. The first term represents
the strength regime where fragments are held together by material
strength alone, and the second term represents the gravity regime
where fragments are gravitationally bound. The transition between
these two regimes is estimated to occur for target diameters between
100 and 200 m (Benz & Asphaug 1999). The fitting constants
depend on a variety of parameters such as internal structures, tensile
and shear strengths of constituents, and impact speeds. Jutzi et al.
(2010) considered two models for the target’s internal structure – a
purely monolithic non-porous target and a porous target that consists
of a body with pores that are smaller than the thickness of the shock
front, and determined the fitting constants for impact speeds of 3
and 5 km s−1. Since both Itokawa and Eros have low bulk densities
compared to ordinary chondrites (Wilkison et al. 2002; Fujiwara
et al. 2006), we adopt the fitting parameters for a porous target. By
assuming impact seismic efficiency of η = 10−4 (Richardson et al.

2005, and references therein), we plot critical seismic speeds vs for
impact speeds of 3 and 5 km s−1 as dashed and solid green lines,
respectively, in Fig. 14. Regions below these lines correspond to
seismic speeds expected for smaller impactors that will not destroy
the asteroids.

For Itokawa, we find that critical seismic speeds would be com-
parable to, but slightly larger than, the escape speed, and larger than
the minimum oscillation speeds required for the BNE. For Eros,
critical seismic speeds would be smaller than the escape speed, but
they are still larger than the estimated minimum oscillation speeds.
Thus, in both cases, we expect that the critical BNE oscillation
speeds are comparable to the seismic speeds that can create craters.

It is also informative to speculate how long it might take for a
large block to rise to the surface of an asteroid. From Fig. 9, we
find that the rise speed of an intruder is more than an order of
magnitude slower than the maximum oscillation speed for these
three bed depths. Assuming an oscillation speed of 1 cm s−1 and
a depth of 100 m from the shortest axis of Itokawa of ∼200 m,
we can estimate that the rise time would be a few hours if the rise
speed is comparable to the oscillation speed, and more than a day
if the rise speed is one tenth of the oscillation speed. Similarly, by
assuming an oscillation speed of 100 cm s−1 and a depth of 5.5 km
from the shortest axis of Eros of ∼11 km, the rise time would be
about 90 min for the oscillation speed, and about 15 h for one-tenth
of that speed. This implies that unless the seismic shaking lasts for
more than a couple of hours, one impact might not be enough for a
large block to rise to the surface, and that multiple impacts would
be necessary to change the surface significantly.

A potential problem for size sorting by multiple impacts is that
the oscillation directions will likely vary for different impacts. To
check this point, we performed simulations where we changed the
direction and magnitude of effective gravity instead of oscillating
cylinders sinusoidally. First, we consider the most ideal case where
the impact is always applied in the vertical direction of the cylinder.
We use the initial conditions identical to the default case, and change
only the direction of the gravity as follows. Initially, the gravity is
in the −z direction with the magnitude of the Earth’s gravity. Once
the simulation starts, we apply a ‘jolt’ to the cylinder by changing
the gravity vector first to the +z direction and then back to the −z

direction within a short period of time that is randomly chosen from
0.1 to 0.3 s. We then keep on applying the Earth gravity in the −z

direction for a randomly chosen period of time from 0.3 to 0.4 s.
After this break, we again apply a jolt as described above, and repeat
these steps a number of times. Here, the choice of the duration of
the jolts is arbitrary. In this set-up, we find that the intruder comes
to the surface within ∼20 s, which is comparable to the rise time
of the low-speed oscillation (e.g. ω̃ = 1.0 and Ã = 2.0). Next, we
consider a less ideal case where the impact is applied in a random
direction relative to the cylinder. Similar to the above case, the
cylinder is initially under Earth’s gravity in the −z direction. To
mimic a jolt, we randomly choose the gravity magnitude from −2g
to 2g in each direction of x, y, and z, and smoothly change the
magnitude and direction of the gravity vector from and then back
to the initial one within 0.1–0.3 s. After the break of 0.3–0.4 s,
we apply another random jolt and repeat these steps a number
of times. We find that the rise of the intruder is much slower in
this set-up. After ∼180 s, the intruder is about one quarter of the
bed depth from the bottom of the cylinder. Therefore, we expect
that the rise time would be much longer than the ones estimated
from our sinusoidal oscillations if the oscillations are applied from
random directions. If, on the other hand, the oscillations are applied
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approximately perpendicular to a particle bed, the rise time would
be less affected.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We have studied the BNE in an intruder model by using the
N-body code PKDGRAV with a soft-sphere collision model, and ex-
plored its effect on asteroids. We have also investigated the depen-
dence of the BNE on the particle properties, oscillation conditions,
and gravitational environments.

Similar to previous studies, we have found that convection is the
major driving source for the BNE. Our main conclusions are the
following.

(i) The occurrence of the BNE as well as the rise time of an in-
truder is largely independent of the choice of coefficients of restitu-
tion (see Section 3.1). For highly elastic particles (ε � 0.9), however,
the rise time might differ significantly from less elastic cases.

(ii) The occurrence of the BNE depends on the values of friction
constants (see Section 3.2). Both too high and too low friction
constants diminish convection and thus the BNE.

(iii) The critical condition for the BNE agrees well with the limits
of 	̃ � 1 and ṽosc � ṽc ∼ 1 (see Section 3.3). These conditions also
agree well with previous simulations and experiments that have
comparable densities for small and large particles.

(iv) The BNE is scalable for different gravitational environments
by choosing the oscillation frequency that corresponds to the gravi-
tational acceleration (i.e. ω ∝ √

ag, see Section 3.5). Thus, the same
level of size sorting is expected for a smaller oscillation speed on a
small asteroid compared to a big one.

(v) The rise speed of an intruder is proportional to the oscillation
speed (see Sections 3.3 and 3.5). Also, there might be an optimal
bed depth for a certain oscillation speed to achieve the fast rise of
an intruder.

(vi) For a wide cylinder, the convection roll along the wall may
be thick enough to pass the intruder downward, leading to a ‘whale’
effect (see Section 3.3).

(vii) The BNE is expected to occur on an asteroid for seis-
mic speed that is comparable to non-destructive impacts (see Sec-
tion 3.5). We have compared the critical oscillation speed for the
BNE with the critical seismic speed, and found that the region for
the BNE overlaps with that of the seismic shaking.

(viii) We also estimate the rise time of a large block from the
central region to the surface of an asteroid, and predict that multi-
ple impacts or long-lasting seismic shaking might be required for
the BNE to significantly change the asteroid surface. A potential
problem which could affect such multiple impacts is that the BNE
might slow down significantly for randomly oriented oscillations.

The efficiency of the BNE depends on many properties. In this
paper, we have explored the dependence on the coefficients of resti-
tution, the friction constants, the oscillation frequency and ampli-
tude, the particle bed depth, and the gravity. One of the potential
directions for the future study would be to investigate how the BNE
changes from the dense limit to the vibrofluidized regime. In par-
ticular, it would be interesting to perform the BNE experiments
in the high-speed region to understand whether the BNE keeps on
occurring as our code predicts, or turns off sharply as suggested by
Godoy et al. (2008).

The rise time of an intruder is important to estimate the efficiency
of the BNE on asteroids. Our work shows that the rise speed lin-
early scales with the oscillation speed and is proportional to

√
ag.

Although this result is intuitive, we should check whether such a

trend would hold for different shaking models as well since most
of our simulations assume sinusoidal oscillations. Interestingly, the
analytical model developed by Jiongming, Binglu & Bin (1998)
also estimates that the rise speed is proportional to

√
ag.

In this paper, we did not mention the effects of the particle’s
size distribution, the container width, or the container shape. We
assume the idealized system where all of the small particles have
the same size (except for Section 3.4) and the size ratio of large to
small particles is dl/ds = 3. However, particles in actual asteroids
will generally follow some size distribution. Previous studies have
shown that the BNE occurs only for a radius ratio of large and small
particles greater than some threshold (e.g. Duran et al. 1994; Vanel,
Rosato & Dave 1997). The size ratio we chose for our simulations
(dl/ds = 3) is near the threshold according to these experiments.
Thus, we expect that the size ratio might need to be near this value
or larger for the BNE to take place. Also, a preliminary study we
performed indicates that the rise speed of an intruder slows down
when a size distribution of small particles is introduced. Such effects
on the rise speed should be studied more carefully in future work.

Differences due to the container could also be significant. The
experimental studies by Hejmady et al. (2012) suggest that both bed
heights and widths affect the rise time of an intruder. Furthermore,
previous studies have shown that ‘reverse’ convection (i.e. in which
the particle flow ascends along the wall and descends around the
centre) is seen for granular materials in a container with outwardly
slanting walls (e.g. Grossman 1997) and thus the intruder is trapped
at the bottom rather than at the bed surface in such a container (e.g.
Knight et al. 1993). Indeed, when we use a bowl instead of a cylinder
as a container, we observe that the intruder goes up and down in the
granular bed, but never comes to the surface for a density ratio of
ρl/ρs = 1. Our further tests with ρl/ρs = 0.5 and 2 show that the
BNE occurs for the former, but not for the latter. The rise of the
intruder in the former case is consistent with the expected behaviour
of the normal fluid. There is a related issue when we consider the
BNE in an asteroid. The BNE requires the container wall to create
the convective flow, but there is no actual wall such as the ones we
considered here in an asteroid. However, it is plausible that a very
large body could act as a wall for the smaller particles. For future
work, we intend to investigate the effect of having no lateral walls
by adopting periodic boundary conditions, and also to improve our
current study by modelling self-gravitating rubble piles.

One of the most important fundamental problems is the absence
of knowledge of the coefficients of restitution and friction constants
of particles in asteroids. Currently, our knowledge of these values
relies on experiments, for example, the collision experiment done
by Durda et al. (2011) on 1 m size granite spheres or the avalanche
experiment done by Yu et al. (2014) with gravels. However, it is
not clear whether such objects have the same mechanical behaviour
as materials composing asteroids of interest. There are some fu-
ture missions that are expected to return asteroid samples, such as
Hayabusa 2, OSIRIS-REx, and potentially MarcoPolo-R. These ef-
forts will lead to a better understanding of surface features and will
provide invaluable knowledge of asteroid compositions as well as
their response to external solicitations, such as that of the sampling
tool.
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Pöschel T., Herrmann H. J., 1995, Europhys. Lett., 29, 123
Richardson D. C., Quinn T., Stadel J., Lake G., 2000, Icarus, 143, 45
Richardson D. C., Leinhardt Z. M., Melosh H. J., Bottke W. F., Jr, Asphaug

E., 2002, in Bottke W. F., Jr, Cellino A., Paolicchi P., Binzel R. P., eds,
Asteroids III. Univ. Arizona Press, Tucson, p. 501

Richardson J. E., Melosh H. J., Greenberg R. J., O’Brien D. P., 2005, Icarus,
179, 325

Richardson D. C., Michel P., Walsh K. J., Flynn K. W., 2009, Planet. Space
Sci., 57, 183

Richardson D. C., Walsh K. J., Murdoch N., Michel P., 2011, Icarus, 212,
427

Risso D., Soto R., Godoy S., Cordero P., 2005, Phys. Rev. E, 72, 011305
Rosato A., Strandburg K. J., Prinz F., Swendsen R. H., 1987, Phys. Rev.

Lett., 58, 1038
Saez A., Vivanco F., Melo F., 2005, Phys. Rev. E, 72, 021307
Sanders D. A., Swift M. R., Bowley R. M., King P. J., 2004, Phys. Rev.

Lett., 93, 208002
Schwartz S. R., Richardson D. C., Michel P., 2012, Granular Matter, 14, 363
Schwartz S. R., Michel P., Richardson D. C., 2013, Icarus, 226, 67
Schwartz S. R., Michel P., Richardson D. C., Yano H., 2014, Planet. Space

Sci., submitted
Shishodia N., Wassgren C. R., 2001, Phys. Rev. Lett., 87, 084302
Stadel J. G., 2001, PhD thesis, Univ. Washington
Tancredi G., Maciel A., Heredia L., Richeri P., Nesmachnow S., 2012,

MNRAS, 420, 3368
Vanel L., Rosato A. D., Dave R. N., 1997, Phys. Rev. Lett., 78, 1255
Wilkison S. L., Robinson M. S., Thomas P. C., Veverka J., McCoy T. J.,

Murchie S. L., Prockter L. M., Yeomans D. K., 2002, Icarus, 155, 94
Yu Y., Richardson D. C., Michel P., Schwartz S. R., Ballouz R.-L., 2014,

Icarus, submitted

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 443, 3368–3380 (2014)

 at U
niversity of M

aryland on A
ugust 11, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/

