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ABSTRACT

We study the light-scattering behavior of Saturn’s rings for the purpose of deducing the nature and distribution
of the particles comprising them and the collisional and dynamical environments in which they reside. To this
end, we have developed two complex numerical codes to apply to this objective. One is a geometric ray-tracing
code that scatters rays from a light source at an arbitrary illumination angle into a computer-generated patch of
ring particles of predetermined photometric properties and size distribution, and counts the rays that emerge into
arbitrary viewing directions. The code accounts for singly and multiply scattered light as well as the illumination
of the rings by the planet Saturn. We examine the light-scattering behavior of various realizations of particle
distribution, ring thickness, and optical depth—assuming macroscopic, backscattering particles with radii in the
centimeter-to-meter range—and have compared our experimental results with classical analytical single-scattering
and numerical multiple-scattering calculations, and with Cassini images of Saturn’s A and C rings. We can reproduce
the classical photometric results when vertically thick particle distributions are used, and we find good agreement
with the observations when physically thin particle distributions are used, that is, in regimes where classical theory
fails. This work has allowed us to demonstrate that the particles in the low optical depth portion of the C ring
reflect about 32% of the incident sunlight in a manner similar to that of the jovian moon, Callisto. Those orbiting
beyond the Encke gap in Saturn’s A ring are nearly twice as reflective, and are slightly more forward scattering
than those in the C ring. The A ring vertical full thickness beyond the Encke gap is likely to be very thin, ∼10 m.
The thickness of the C ring is not discernible from this work. The optically thicker A and B rings are darker at
high phase than classical calculations predict because they are so thin. We have also incorporated the capability
to realistically simulate a patch of colliding, self-gravitating particles in Saturn’s gravity field into a sophisticated
N-body parallel tree code. This code can model dissipative collisions among several million particles with optional
sliding friction. We have applied our light-scattering code to simulations of Saturn’s A ring produced by this
patch code in which gravitational wakes have been observed to form. We have demonstrated, as have others,
that such wakes are the likely cause of the well-known azimuthal brightness asymmetry in Saturn’s A ring. We
match the asymmetry amplitude and shape, as observed primarily in low-solar-phase Voyager images, by assuming a
velocity-dependent restitution law that yields a coefficient of restitution ∼3.5 times lower at the velocity dispersions
appropriate for the smallest particles in Saturn’s rings than previously assumed; Cassini data are consistent with
these results. We simultaneously find a particle albedo and phase function consistent with those deduced from
photometric analyses of Cassini images taken on approach to Saturn. These results suggest that the ring particle
collisions in Saturn’s A ring are more lossy than previously expected, a result possibly due to particle surface
roughness, a regolith, and/or a large degree of porosity, all of which would lower the coefficient of restitution.
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1. INTRODUCTION

Particle disks, such as planetary rings, of varying thicknesses
differ in the manner in which they scatter light. Consequently,
observations of a ring’s light-scattering properties may in
principle be used to infer the spatial and physical characteristics
of the particles comprising it. The usual approach to this problem
has utilized classical radiative transfer techniques, which strictly
apply to many-particle-thick systems of randomly distributed
particles. However, Saturn’s rings do not necessarily fit this
assumption. There are small-scale structures such as clumps
and self-gravity wakes within them (e.g., Colwell et al. 2006),
and there is good reason to believe that the rings may be very
thin (e.g., Hedman et al. 2007), with a vertical thickness of
only ∼6 m, comparable to the size of the largest particles, a
circumstance under which the classical techniques have limited

utility. Although much has already been inferred about the rings’
properties and dynamics from observations, many studies have
been hindered by an incomplete accounting for all of these
conditions.

Modeling the light scattering within the rings may allow
insight into key planetary ring problems, the solutions to some
of which are still elusive. These problems include the following.

1. What is the vertical thickness of the rings? Both models
(Brahic 1977; Goldreich & Tremaine 1982) and analysis and
modeling of Cassini stellar occultation observations (Colwell
et al. 2006; Hedman et al. 2007) suggest that Saturn’s rings may
be very thin, ∼6 m thick. The spatial resolution and geometry
of past and future observations are inadequate to measure
the rings’ thickness directly, though Cassini can set stricter
limits than are obtainable from either Voyager or ground-based
observations. Estimates of the thickness are possible by studying
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how rings of varying thicknesses scatter light and comparing this
to observations of the rings’ brightness.

2. Saturn’s A ring has a well-known brightness asymmetry, in
which the brightness around the ring changes with a quadrupole
variation. How is this phenomenon produced? It has been pro-
posed (e.g., Colombo et al. 1976) that it is due to self-gravity
wakes in the rings, and Dones & Porco (1989) were the first
to numerically investigate this possibility by applying a single
scattering code to an idealized representation of a wake. Since
then, others have followed suit, with ever more sophisticated nu-
merical models (e.g., Salo 1992; Richardson 1994). However,
quantitative studies linking the physical characteristics of the
rings and their embedded self-gravity wakes with the observed
characteristics of the brightness asymmetry are only now begin-
ning (e.g., Salo et al. 2004a).

3. What causes the “opposition surge” in Saturn’s rings? This
effect, in which the rings’ brightness surges dramatically at
phase angles very near zero, has been observed in Saturn’s
rings in Hubble Space Telescope (HST; French et al. 2007b) and
Cassini (Déau et al. 2008) images. The variation in ring bright-
ness at small phase angles is thought to arise from a combination
of physical optics effects between tiny surface grains (“coherent
backscattering”), intraparticle shadowing due to surface rough-
ness on a variety of spatial scales, and interparticle shadowing
between ring particles. The sharpness of the opposition effect
due to interparticle shadowing depends on the thickness of the
rings.

4. Saturn’s rings are darker in near-forward scatter than
radiative transfer multiple scattering calculations can reproduce,
even if no small forward-scattering particles are assumed to be
present in the rings.

5. How are ring brightness and optical depth correlated?
While even classical theory predicts a strong correlation be-
tween the optical depth and ring brightness at high phase
angles, the observed correlation between the optical depth
and brightness at low-to-moderate phase angles is surpris-
ing. Furthermore, the correlation is present even when the
lit face of the rings is viewed at shallow angles, a geome-
try in which classical calculations predict that the brightness
should tend toward equality for both optically thin and thick
regions.

6. The brightness of the B ring increases as the solar incidence
angle and observer emission angle decrease at a constant phase
angle, in contrast to what single-scattering models predict; this
is the B ring “tilt effect.” The opposite is true for the A ring (an
“antitilt effect”), though previous work suggests that multiple
scattering and the presence of self-gravity wakes in the A ring
may be responsible for these effects (Salo & Karjalainen 2003;
Salo et al. 2004a). Reproducing these photometric observations
in light-scattering experiments by utilizing realistic simulations
of Saturn’s rings will provide insight into the rings’ structure,
dynamics, collisional environment, particle properties, and per-
haps their evolutionary history.

This research involves the development and application of
two complex computer codes. The first is an N-body scalable,
parallel tree code that has been customized, using a “sliding
patch” model, to simulate a patch of colliding, self-gravitating
ring particles in Saturn’s gravity field. The output of this code
is a realistic, three-dimensional distribution of particle locations
in a patch of the rings. Application of this code (as well
as similar codes of other researchers in this field (e.g., Salo
1992, Daisaka et al. 2001) has demonstrated the existence of
transient gravitational wakes in simulations of Saturn’s A ring,

the structures that are believed to be the source of the A ring
brightness asymmetry.

The second code follows light rays into a computer-generated
box of ring particles of predetermined photometric properties
(such as those produced by the N-body patch code), and collects
the rays that scatter off the particles and emerge into arbitrary
viewing directions. The code accounts for singly and multiply
scattered sunlight as well as the illumination of the rings by the
planet Saturn, and can be applied to many photometric problems
in planetary rings. The version described here does not model
the effects of diffraction, though this is likely to be a small effect
for the phase angles considered here.

We can also run the ray-tracing code on computer-generated
boxes containing particles that are not placed via N-body
simulations. For example, we can place the particles into
idealized wakes to perform initial tests on models without
running the time- and computation-expensive N-body code.
Dones & Porco (1989) used a single-scattering code on a
box of particles representing an idealized wake that had been
constructed to mimic the surface mass density contours given
by Julian & Toomre (1966) for a Keplerian velocity field, and
produced the first demonstration that self-gravity wakes are the
underlying cause of the azimuthal asymmetry. We can also
randomly distribute particles in the horizontal plane but with
a Gaussian distribution in the vertical dimension in order to
investigate the light scattering of a ring patch in the absence
of gravitational wakes. These experiments have allowed us to
separate out the background scattering properties of the rings
from those attributable to coherent structures like self-gravity
wakes. They also allow us to compare our light-scattering results
to results expected from classical treatments.

The work described herein is the beginning of a program
to use our numerical methods to determine the physical and
photometric properties of the particles in Saturn’s rings and
their three-dimensional distribution by modeling the rings’
photometry. It will allow us to use the local variations in the
spatial distribution of particles, and concomitantly the variation
in light scattering, to probe the underlying ring structure and
dynamics (e.g., examining the propeller features found in
the A ring by Tiscareno et al. 2006) and the nature of the
particles themselves. It will also allow us to set limits on
the thickness of Saturn’s rings in a variety of ring regions.
This will be especially useful for unperturbed regions that
cannot be probed by other methods, such as estimating the
velocity dispersion from the damping length of density waves
or measuring the vertical thickness at ring edges in either radio
or stellar occultation observations made from spacecraft like
Cassini.

In Section 2, we first describe the general formulation of
the ray-tracing approach using both sunshine and sunlight
reflected by the planet onto the rings (also called planetshine).
In Section 3, we demonstrate the fidelity of the approach by
examining the light-scattering behavior of various combinations
of particle spatial distribution, size distribution, ring thickness,
and optical depth, and then comparing these experimental
results with classical analytical calculations, with tabulations
of numerical results based on the standard “adding–doubling”
method in radiative transfer (van de Hulst 1980), and with
Cassini observations of Saturn’s rings. We find good agreement
with theory and with the published data, even in regimes where
classical theory fails. In Section 3.3, we apply our technique to
simulate the effect of planetshine on the lit and unlit sides of the
B and C rings.
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In Section 4, we describe the modifications of an existing
N-body parallel tree code to incorporate a local shearing disk
model to simulate the dynamics of a patch of Saturn’s rings. This
code, which can simulate a larger range and number of particles
than other realistic N-body codes, readily produces ring patches
that exhibit the transient self-gravity wakes predicted by Julian
& Toomre (1966).

In Section 5, we apply our ray-tracing technique to realistic
ring patch simulations, to model the azimuthal brightness
variations seen in the mid-A ring in low-solar-phase Voyager and
Cassini images. This photometric phenomenon in the A ring is
well known (e.g., Lumme & Irvine 1976; Reitsema et al. 1976),
and others have previously confirmed self-gravity wakes as the
cause of it (e.g., Dones & Porco 1989; Salo et al. 2004a). We
find that to reproduce the shape and the amplitude of the A ring
light curve in low-phase, lit-face geometries requires a velocity-
dependent coefficient of restitution that yields more energy loss
at the velocity dispersions appropriate for the smallest particles
in the rings than has heretofore been assumed. These results
will prove significant in the evaluation of the transfer of angular
momentum and energy across the rings, and in studies of ring
age, evolution, and lifetime.

In Section 6, we summarize and discuss the significance of
our results.

2. GENERAL FORMULATION

We consider spherical particles of various sizes distributed
in a box, which mimics a “patch” in the ring plane. We work
in the limit of geometric optics, that is, the particle radius r
is much larger than the wavelength of light. In Saturn’s main
rings, the vast majority of ring particles are between 1 cm and
20 m (Zebker et al. 1985; French & Nicholson 2000); thus,
our assumption is valid for images of the rings taken at visual,
ultraviolet, and near-infrared (NIR) wavelengths. The particles
are arranged in a three-dimensional box. The dimensions of
the box are Δx , Δy , and Δz. The coordinate system x, y, z
follows the right-hand rule x is radially outward, y is in the
orbital direction, and z is north. The box has periodic boundary
conditions in the x and y directions: that is, after exiting the
side of the box, a ray can propagate through an identical box
along its path until it finally hits a particle or emerges out of
the bottom of the layer. The solar incidence angle is i, the
observer emission angle is e, and both are measured from the
normal of the box on the lit side. The incidence angle is, by
definition, �90◦; it is related to the solar elevation angle, θ0,
by i = 90◦ − θ0 for θ0 > 0 and by i = 90◦ + θ0 for θ0 < 0.
The emission angle is related to the observer elevation angle,
θ , by e = 90◦ − θ for θ > 0 and by e = 90◦ + θ for θ < 0.
The emission angle can take on values between 0 and 180◦.
The quantities μ0 = |cos (i)| and μ = |cos (e)| are defined for
convenience. The locations of the Sun and observer are given as
unit vectors from the origin of the box that is taken to be the box
center.

The Sun-ring-observer angle is denoted by the phase angle,
α, where α = 0◦ corresponds to exact backscattering. The
longitude λ is the planetocentric longitude of a point on the
rings taken relative to the observer and in the direction of orbital
motion, that is, the right-hand side of the northern side of the
ring visible to an observer has 0◦ < λ < 180◦. The solar
and observer azimuth angles are, respectively, φ0 and φ and
are measured in the same coordinate system. The albedo is A;
we use this both for the Bond and single-scattering albedos.
Both quantities indicate the fraction of energy reflected (and, in

general, refracted) by a particle into all directions. It does not
include light diffracted by the particle.

The angles i, e, θ0, θ , μ0, μ, and α relate the positions of
the Sun, ring, and observer to each other. In the ray-tracing
method, however, another set of equivalent angles must also be
defined relative to the surface of individual particles, and not
the ring plane, for each scattering event. For clarity, we will
define the subscripted quantities is, es, θs , θ0s , μ0s , μs , and αs

to denote these same angles, taken with respect to the surface
of the particle at the point of contact. For instance, is denotes
the incidence angle of a ray relative to the surface normal at
the point of scattering. This ray could come from either the Sun
(single scattering) or another particle (multiple scattering), or
Saturn (planetshine); the angles are defined in the same way for
all cases.

The brightness of a patch of ring is expressed with the usual
quantity I/F , where I/F ≡ 1 for a flat, white Lambertian
surface illuminated at normal incidence viewed from any
direction. Formally, I is the intensity measured from a surface
illuminated with flux density πF . The reflectance I/F is a
measure of the reflectivity of the surface, and is a function of
illumination and observing geometry.

2.1. Particle Distributions

To describe the ring particles’ size distribution, we use both
unimodal and power-law size distributions in our simulations.
For the power laws, we assume

n(r) dr = n0

(
r

rmin

)−q

dr, (1)

where n(r) dr is the volume number density of particles with
radii between r and r + dr and q is the power-law index. In
Saturn’s rings, q ∼ 3 (Zebker et al. 1985; French & Nicholson
2000). When q ∼ 3, for a normal optical depth, τ , a full
ring thickness of h, and a uniform distribution in the direction
perpendicular to the rings, the constant, n0, becomes

n0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ

hπr3
0

3 − q

(rmax/rmin)3−q − 1
q �= 3

τ

hπr3
0

1

ln (rmax/rmin)
q = 3

, (2)

where rmin is the minimum particle size, rmax is the maximum,
and we have assumed that all particles fall in the geometric
optics regime. In this work, to reduce the numbers of particles,
and hence the numbers of calculations, required to simulate the
rings, we have considered particles from the tens of centimeters
to ∼5 m in radius, even though the particle size distribution in
Saturn’s A and B rings appears to span a broader size range
from rmin ∼ 30 cm to rmax ∼ 20 m (French & Nicholson
2000). However, it should be noted that there is some debate
about the reliability of the upper limit, as the presence of self-
gravity wakes in some rings may cause the derived maximum
particle size to be overestimated. Moreover, an upper limiting
particle radius of ∼5 m is more readily understandable on
a theoretical basis, since this is the natural scale of self-
gravitational disturbances expected in Saturn’s rings and set
by the differential angular velocity in Saturn’s rings (Shu 1984).

2.2. Optical Depths

Several optical depths can be defined for rings. The phys-
ical optical depth τp is defined such that a “skewer,” passed
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perpendicularly through the ring, has a probability e−τp of not
intercepting a ring particle: that is, τp is the quantity that most
directly relates to an observed I through the relation I ∼ I0e

−τp ,
where I0 is the incident intensity and here I is the intensity of
the attenuated direct beam. It depends on the spatial distribu-
tion of the particles. In creating simulated boxes of particles, it
is impossible a priori to determine τp and it must, in general,
be calculated numerically. Hence, boxes of all kinds used here,
whether random or produced via dynamical simulations, are
created with a prespecified dynamical optical depth, τd , which
is the ratio of the total cross-sectional area of the particles to the
topside area of the box (Wisdom & Tremaine 1988). That is, if
h is the vertical thickness of the ring,

τd = h

∫ rmax

rmin

πr2n(r) dr. (3)

The ratio of physical to dynamical optical depth remains
near unity until the optical depths grow larger than ∼1. For
a completely filled box, the dynamical optical depth remains
finite, but the physical optical depth becomes infinite. However,
when there are pronounced variations in the spatial distribution
of the particles, as there are in the presence of self-gravity wakes,
the physical optical depth can in fact be less than the dynamical
optical depth.

Another optical depth of interest in this problem is the “path
optical depth,” τpa , which accounts for the path length of a ray
traveling into a ring, being scattered, and traveling out:

τpa = τp

(
1

μ
+

1

μ0

)
. (4)

Throughout this paper, unless otherwise specified, an unsub-
scripted optical depth, τ , refers to dynamical optical depth.

2.3. Spatial Distributions

We use three different methods of spatially distributing our
ring particles within a three-dimensional box before applying the
ray-tracing code to them. These are (1) random, (2) dynamical,
and (3) idealized wakes. The different distribution methods are
useful in isolating different effects in Saturn’s rings.

For the random distribution, we place particles into the
box, one at a time. Particles are placed randomly in the
x and y dimensions and are distributed randomly in the z
direction but according to an overall Gaussian distribution;
the ring’s thickness is specified by σz, the standard deviation
of the distribution. (This can be converted into full width
at half-maximum (FWHM) by multiplying by 2

√
2 ln(2) ≈

2.35.) Roughly, 68% of the particles in these boxes lie within
±1σz of the midplane. We add particles to the distribution until
the desired dynamical optical depth is achieved, taking care to
ensure that particles do not physically overlap each other.

Particle positions in the “dynamical” simulations are deter-
mined by the output of our N-body collisional, self-gravitational
numerical ring model. This distribution is a snapshot of a patch
of a ring. We defer a complete discussion to Section 4, but note
that this patch code produces the self-gravity wakes inferred to
exist in the A ring and at some locales in the B ring.

In some cases, especially when exploring parameter space,
rather than run the N-body code, which can be time consuming,
we construct “idealized wakes” by placing particles along
lines with a specified separation and pitch angle to the orbital

direction. We can also specify how the particles are distributed
around the specified wake axis by altering the width or thickness
of the wakes. The resulting idealized structures are roughly
cylinders with an elliptical cross section. While they lack the
smaller-scale morphology seen in N-body simulations, they
provide an efficient way to examine the effects of wakes on
photometry.

2.4. Surface Properties and Phase Functions

The phase function P (α) describes the angular dependence
of the scattering of light by a particle. It is normalized such that(

1

4π

) ∫ 2π

0

∫ π

0
P (α) sin (α) dα dφ = 1, (5)

where φ is the azimuthal angle measured around the direction
to the Sun. The integral, which is taken over all solid angles, is
an expression of conservation of flux.

We consider five phase functions to model the particles’ light
-scattering behavior, shown in Figure 1. The first, a Lambert
phase function, models the light reflected from a smooth, opaque
sphere. The second was an empirical fit to the surface of the
jovian moon, Callisto, by Squyres & Veverka (1981). This
phase function has a weak opposition surge (i.e., brightening
near α = 0◦ that is not as pronounced as the rings’ opposition
surge). We describe its implications in Section 3.2.2. (Note that
the term “Callisto phase function” has had several different
meanings in the literature. For example, Dones et al. (1993)
used it to mean either a power-law phase function with n ∼ 3
(Equation (11)) or the Squyres and Veverka fit. In this paper,
however, we use the term to mean the Squyres and Veverka
fit exclusively in order to avoid confusion.) Third, we employ
two power-law phase functions derived from the photometric
modeling of Voyager images (Dones et al. 1993). Finally, we
consider an isotropic phase function. Although the rings are not
well modeled by isotropic scatterers, this phase function is used
in many multiple-scattering codes, is found in the literature, and
provides a useful comparison and check on our calculations.

Our ray-tracing method calculates I/F (the ring reflectivity
for a given geometry) based on the reflectivity ρs(αs) of a
particle surface, while the classical analytic equations for single-
scattering (Section 2.5) and classical multiple-scattering codes
use the disk-integrated phase function P (α). (Here, we mean
the “disk” of a particle, treating it as if it were a planet.) Use
of the disk-integrated phase function implies a particle being
illuminated by a wide beam of rays that samples every point
on the surface. In our ray-tracing code, however, particles are
hit by discrete rays. As a result, the function describing the
angular dependence of the reflected brightness is not averaged
over all incidence angles, μ0, on the curved lit hemisphere of
a particle. Instead, the ray strikes the surface at one point, and
the scattering event is characterized by a unique incidence angle
from the normal to the surface, μ0s , and a unique emission angle,
μs .

Therefore, we must distinguish between the disk-integrated
phase function P (α) and the surface reflectivity ρs(αs), where
αs is the angle between the incoming and outgoing rays at the
point of contact on the surface. The relationship between these
quantities was discussed by Squyres & Veverka (1981).

With these distinctions in mind, we have
Lambert:

ρs(αs, μs, μ0s) =
{

1 μ0s � 0
0 μ0s < 0 (6)
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Figure 1. The five phase functions used in this work: Lambertian, isotropic, and the empirically determined phase functions: Callisto (Squyres & Veverka 1981) and
two power-law functions with indices of 2.624 and 3.092 (Dones et al. 1993). Except very near 0◦ phase, the n = 3.092 power law is very similar to the Callisto
function, making the two difficult to distinguish in practice outside the opposition surge.

P (α) = 8

3π
[sin α + (π − α) cos α] . (7)

Callisto:

ρs(αs, μs, μ0s) =
{

1.1
μ0s+μs

(2 − 0.79333 αs + e−21.2αs )

0
(8)

P (α) =

⎧⎪⎨
⎪⎩

2.2(2 − 0.79333 α + e−21.2α)
(
1 + sin

(
α
2

)
× tan

(
α
2

)
ln

(
tan

(
α
4

)))
0

. (9)

The upper options in Equations (8) and (9) apply only
for αs � 2.521 rad (144.◦3); the lower options apply for
αs � 2.521 rad (144.◦3).

Power law:

ρs(αs, μs, μ0,s) = 3π

8

cn(π − α)n

sin(α) + (π − α) cos(α)
, (10)

P (α) = cn(π − α)n, (11)

where the normalization constants, cn, are tabulated for some
values of the index n (a positive real number) in Dones et al.
(1993, Table IV). (For example, for n = 3.092, Dones
et al. 1993 gave cn = 0.153.) Equation (10) is derived
by insisting that when the surface reflectivity is integrated over
the entire disk of the particle, the phase function described by
Equation (11) results. There are an infinite number of such re-
flectivities for a given phase function. We chose one that assumes
that ρs is independent of μs and μs0. The derived reflectivity
has been validated by checking that it gives the same results as

the classical, analytical calculations when the power-law phase
function is used.

Isotropic:

ρs = 1/(4μs) (12)

P = 1. (13)

This isotropic phase function is used only to validate our
results against those of van de Hulst (1980), whose primary
purpose was to study scattering in planetary atmospheres. It is
not technically appropriate for ring particles since the surface
reflectivity, ρs , derived from it necessarily yields a function that
sends rays through the scattering particle, unlike the other three
phase functions we use. We include the isotropic phase function
here for completeness.

A truly realistic light-scattering code would take into account
the wave nature of light and consider the contributions of
diffraction. In reality, the net effect of diffraction on the
emerging I/F is difficult to calculate in the most general
case. However, throughout this investigation, we only consider
particles much larger than the wavelength of light. In this case,
diffraction has the effect of removing photons from an incident
beam hitting the particle and redirecting them into a very narrow,
forward-scattered beam (Cuzzi 1985; Roques et al. 1987). For
the geometries we consider here (i.e., far from α = 180◦), we
can safely neglect diffraction. Also, though it is not strictly true
in all scenarios considered here, we assume that the particles
do not fall within each other’s diffraction lobes. Under these
assumptions, diffraction is likely to be a small contributor and
can be neglected.

2.5. Calculation of Scattered Intensity: Analytic
Single-Scattering

We use the standard radiative transfer equations to calculate
the I/F under “classical” conditions, using as input parameters
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the scattering geometry and the ring’s particle and disk prop-
erties. These methods allow us to verify our calculations for
rings described by multiparticle-thick boxes of well-separated
particles at low-to-intermediate phase angles. (At these phase
angles, the rings’ reflectivity is generally dominated by single
scattering; Dones et al. 1993.) Following Chandrasekhar (1950),
the diffuse scattering function S was applied to the case where
θ and θ0 had the same sign: that is, on the same side of the ring
plane (his Equation VII.35)

S = AP (α)

[
1 − exp

[
−τ

(
1

μ
+

1

μ0

)]] / (
1

μ
+

1

μ0

)
.

(14)

The corresponding diffuse transmission function T, where θ
and θ0 have opposite signs, is given by (again, Chandrasekhar’s
Equation VII.35)

T = AP (α)
[
e−τ/μ0 − e−τ/μ

]
/

(
1

μ
− 1

μ0

)
, (15)

when μ �= μ0.
The reflected brightness of a patch of ring is given by

I

F
(A, α,μ0, μ, τ ) = AP (α)

4

μ0

(μ0 + μ)

×
[

1 − exp

(
−τ

μ + μ0

μμ0

)]
(16)

and the diffusely transmitted brightness is

I

F
(A, α,μ0, μ, τ ) = AP (α)

4

μ0

|μ − μ0|
[
e−τ/μ − e−τ/μ0

]
,

(17)
when μ �= μ0.

Equations (16) and (17) define our classical, analytic calcu-
lations. Because these equations account for single scattering
only, they are guaranteed to work well only along paths where
τ/μ 	 1, τ/μ0 	 1, and A 	 1. However, it turns out that the
reflectivity of the lit face of Saturn’s main rings is dominated
by single scattering at phase angles less than about 60◦ (Doyle
et al. 1989; Dones et al. 1993), so they come close to reproducing
the brightness of Saturn’s rings in this geometry.

2.6. Calculation of Scattered Intensity: Ray Tracing

Calculation of the brightness of a ring of many scatterers
distributed arbitrarily in three dimensions requires a numerical
ray-tracing approach. Our ray-tracing code follows the path of a
large number, N, of independent rays originating from a source
and impinging, all at the same incidence angle, on the top of
a box of known dimensions. The rays enter the particle box at
evenly-spaced grid points. When a ray encounters a particle, it is
split up into nc child rays, distributed in a solid angle (Figure 2)
and each with a brightness reduced according to the albedo,
phase function of the surface, and the number of child rays.
These rays are then propagated forward in space.

Our code can handle an arbitrary scattering order, but for
computational efficiency, we generally limit the calculations to
the fourth order: that is, no more than four successive scatterings
are considered. (In practice, we check the contribution of the last
scattering order. If it is small (
1%), it is assumed that higher
orders of scattering �2 will be significantly smaller and thus
negligible.)

Figure 2. Angular distribution of outgoing child rays from the primary particle.
The number of rays is changeable, but almost all ray-tracing runs in this work
have used the 40 shown here. This polar plot shows the zenith angle radially. The
child rays are evenly spaced in azimuth, but are spaced in altitude so that each
ray represents an equal solid angle seen from the particle’s surface. Additionally,
the azimuths are started from 1 rad rather than 0 rad to avoid sending rays off
exactly in the x–y plane. (Such rays can never escape the particle box without
scattering and thus are prone to extend run times significantly, especially at low
optical depths.)

Because the odds that one of the rays scattered according to
Figure 2 will head toward the observer (even with a reasonable
field of view) are extremely small, an additional ray is scattered
toward the observer at each scattering event. This ray is not a
true “child” ray in that it cannot initiate a cascade of its own child
rays upon striking a particle. It is there merely to ensure that the
contribution of any scattering event to the observed intensity is
recorded in the event that the point of scattering on the particle’s
surface is viewable by the observer but no child ray is.

Our ray-tracing method is entirely deterministic; there are
no random numbers drawn to determine which ray is followed.
Given a scattering geometry, phase function, and particle dis-
tributions in size and space, the number of collected rays at the
observer depends only on the number N of source rays used, the
order n of scattering, and the number of child rays, nc, created
per multiple-scattering event. Increasing all these parameters
increases both accuracy and execution time. Typically, the grid
size and, therefore, the number N, are chosen so that, on aver-
age, each particle is hit by at least one ray. In cases where large
numbers of very small particles exist, it becomes impractical to
stick to this rule of thumb, so we chose a grid size suitable for
particles in the middle of the size distribution. Thus, our grid
spacing is typically of order of a meter.

Generally, the I/F of a surface is given by(
I

F

)
= Aρs(αs, μs, μ0s)μ0s . (18)

However, our method traces the paths of individual rays. These
are not spread across the surface of the particle like an incident
broad beam of rays would be, so the factor of μ0s is not
applicable. Furthermore, because we calculate the intensity of
each scattered ray and not the I/F of the surface, a factor of
μs/π is required in order to convert from the usual surface I/F
to intensity (van de Hulst 1980, p. 600).

Therefore, the contribution to the intensity, I, seen by an
unobscured observer after the scattering of a source ray, denoted
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by k, is

I
(1)
k = I

(0)
k Aρs(αs, μs, μ0s)

μs

π
. (19)

The intensity of an incident ray is defined as I (0) ≡ 1 for solar
illumination. In this case, the total incident intensity on the ring
patch, F, is N, the number of rays.

If only single scattering is considered, then the I/F for the
ring patch is given by(

I

F

)
= μ0

μ

π

N

N∑
k=1

I
(1)
k , (20)

where, if the line of sight to the observer is blocked by another
particle, I

(1)
k = 0 (e.g., the ray does not contribute to the final

I/F since it is obscured).
In the multiple-scattering case, at each scattering event the

flux is divided among the nc child rays. Child rays are distributed
across nφ azimuths and nθ altitudes relative to the point on the
particle’s surface, so that nc = nφnθ . In the azimuthal direction,
child rays are evenly spaced. The nφ rays at the ith altitude have
altitude

θs(i) = arcsin

(
2i + 1

2nθ

)
(21)

so that each child ray represents an equal solid angle of the sky
seen from the particle’s surface.

Each emerging ray is reduced in brightness by factors
accounting for the albedo and the surface reflectivity function
so that the total flux of the child rays equals the flux of the parent
times the surface albedo. Each child ray is propagated forward
in its new direction until it either impacts another particle or
leaves the box. At the next encounter, the intensity of one of the
reflected child rays seen by the observer is

I
(2)
k = μ(2)

s

π
I

(1)
k Aρs

(
α(2)

s , μ(2)
s , μ

(2)
0s

)
. (22)

The process is repeated for higher orders of scattering, where
the brightness of a reflected child ray at each scattering event is
given by

I
(n)
k = I

(n−1)
k Aρs

(
α(n)

s , μ(n)
s , μ

(n)
0s

)μ(n)
s

π
. (23)

We calculate the contributions from a source ray, k, and its
cascade of child rays to the I/F seen by an observer by summing
the intensities from all the scattering events in the cascade, which
finally make it to the observer. By dividing by F, we obtain our
final result:(

I

F

)
= π

1

N

⎡
⎣I

(1)
k +

nc∑
i=1

I
(2)
i,k + · · · +

nn−1
c∑

i=1

I
(n)
i,k

⎤
⎦ μ0

μ
. (24)

2.7. Planetshine

On the lit side of the rings seen at low phase, solar illumination
is relatively bright so that any contribution from sunlight
reflecting off the planet, or “planetshine,” is comparatively
negligible. However, this is not the case for the unilluminated
side of the rings at low phase, or for either the illuminated
or the unilluminated side of the rings at high phase. In these
geometries, one cannot safely neglect planetshine.

2.7.1. Reflectivity Function

We begin by using the brightness data obtained by the
Pioneer 11 Imaging Photopolarimeter in the red (0.44 μm) and
blue (0.64 μm) spectral regions on a single belt and a single zone
of Saturn (Tomasko & Doose 1984), and the surface reflectivity
models of these data, produced by Dones et al. (1993), using a
Barkstrom law (Barkstrom 1973) for I/F :

I

F
= A

μp

(
μpμp0

μp + μp0

)B

, (25)

where μp and μp0 are, respectively, the μ and μ0 for the planet’s
surface. The empirically determined quantities A and B are
functions of the phase angle and are taken from Table V of
Dones et al. (1993).

We use this model in the same way as was done in Table V of
Dones et al. (1993) except that in this case, the weighted average
of the A and B values for the blue and red filters (assuming
that each parameter varies linearly with wavelength) is different
because the effective wavelengths of the Voyager clear filters are
shorter than for the Cassini clear filters. The central wavelengths
are 0.49 μm (Danielson et al. 1981) and 0.61 μm (Porco et al.
2004), respectively. Linear interpolation in the phase angle was
used to determine the A and B values for phases between those
tabulated in Dones et al. (1993).

To calculate the intensity of planetshine on the rings, a surface
reflectivity function must be derived from Equation (25). The
relationship, I/F = μp0ρs(μp, μp0, α) (van de Hulst 1980),
where ρs(μp, μp0, α) is the reflectivity, allows us to derive the
surface reflectivity of the planet:

ρs(μp, μp0, α) = A

μp μp0

(
μpμp0

μp + μp0

)B

. (26)

The intensity of light reflected from a point on the planet’s
surface is then given by

I = Fμp μp0 ρs(μp, μp0, α), (27)

where πF is the solar flux density on the planet.

2.7.2. Implementation

To implement planetshine, we gridded the planet into latitude
and longitude intervals as shown in Figure 3. At each grid point
and for any given geometry, we compute μp and μp0. If either
of these is nonpositive (i.e., it is in shadow or out of view of the
ring patch), the point is assigned an intensity of zero. We also
trace the path from the Sun to the grid point and determine if
the path first intersects the dense rings (A ring or B ring) at any
point. If so, the point is in the rings’ shadow and the intensity
is set to zero. We do not yet accommodate the transparency of
the A ring or the opacity of the C ring. If μp > 0, μp0 > 0, and
the point is not in the ring shadow, we proceed to compute the
brightness from that point.

The intensity reflected from each surface element is propor-
tional to its area:

Area = (sin(θ2) − sin(θ1))Δ φ R2, (28)

where θ2 > θ1 are the latitudes of the element’s boundaries,
Δφ is its longitudinal width, and R is the planet’s radius at the
location of the element’s center, which is variable over the body
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Figure 3. A sample calculation area of the planet’s northern hemisphere used
for planetshine in a patch of the A ring. An equivalent calculation is also done
for the southern hemisphere to get the southerly component of planetshine. The
dark band across the southern equatorial region is the shadow of the rings on
the planet for a solar elevation angle appropriate for the Voyager epoch in the
early 1980s.

owing to its oblateness. This formula is an approximation to
the area of an element on an ellipsoid, but for small areas it
is sufficiently accurate. Finally, the intensity of the light that
reaches the ring patch is diminished as 1/d2, where d is the
element-to-ring separation.

Rays with the calculated intensity (where we continue to
define the solar intensity per ray as unity) are sent into the
particle box from the direction of the center of the planet
element. This is repeated for each illuminated element of the
planet: that is, elements which reflect zero intensity are omitted.

From this point onward, the calculation of reflected/
transmitted planetshine from the rings is the same as for sun-
shine.

3. RAY-TRACING EXPERIMENTS WITH RANDOM
PARTICLE BOXES

To isolate the underlying vertical and horizontal physical ring
structure (e.g., particle number density, vertical thickness, etc.)
and particle properties (albedo and phase function), and the
consequent scattering properties of the ring, we performed light-
scattering experiments on boxes filled with particles randomly
distributed in the box, with a dispersion in z provided by
Gaussian deviates. The particles were given one of several
possible phase functions. The Sun and observer positions and
the optical depths and vertical thicknesses of the particle
distributions were, in general, variable input parameters. All
particle size distributions used in this section were unimodal,
with 1 m radius particles.

3.1. Code Verification

We used random particle boxes to demonstrate the accuracy
of the ray-tracing code by comparing our numerical results
with those produced by the classical single-scattering radiative
transfer solutions (Equations (16) and (17)), by the numerical
results obtained by van de Hulst (1980), and by adding–doubling
methods such as those used by Dones et al. (1993). van de Hulst
computed I/F values for plane-parallel atmospheres of small,
homogeneous, isotropic scatterers and tabulated the results for
a variety of μ, μ0, τ , and A. In the range of 1 � τ � 32,
van de Hulst calculated intensities using the “doubling-and-
adding” method, where the intensity from a slab of 2τ was
determined based on calculations of the series of scatterings
that occurs between two layers of optical depth τ .

Figure 4 shows a comparison among our light-scattering
experiment, van de Hulst’s (1980) tabulated results, and the
classical single-scattering equations (Equations (16) and (17)).

The agreement between our light-scattering experiments and
van de Hulst’s (1980) results is good: the maximum deviation

Figure 4. Comparison among our numerical results, van de Hulst’s (1980) tabulated results (which include multiple scattering), and classical analytical (i.e., single-
scattering) results for a classical multiparticle-thick ring. The box in this experiment had 5000 particles, each of which had a radius of 1 m. Particles were randomly
distributed in the horizontal dimension, with a Gaussian distribution in the vertical dimension with σz = 30 m, that is, thick enough to resemble a classical ring. The
particle distribution had a dynamical optical depth of τd = 1.47, a physical optical depth τp ∼ 2, and the particles had an isotropic phase function and an albedo
A = 1. Solar illumination is directly from above. These particle and illumination characteristics match those used by van de Hulst (1980). The total I/F in this figure
is the sum of our single-scattering and multiple-scattering runs (which go out to sixth order), and matches van de Hulst’s results well.
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Figure 5. Comparison of I/F s from the ray-tracing code (symbols) and adding–doubling (solid, dotted, and dashed lines) using the Lambert phase function for four
different geometries. Upper plots are lit face; lower plots are unlit face. The geometries approximately correspond to Voyager images: Geometry 1—FDS 43916.56
(θ0 = 8.◦0, θ = 12.◦7, α = 11◦), geometry 2—FDS 34953.57 (θ0 = 3.◦9, θ = 9.◦7, α = 144◦), geometry 3—FDS 34934.57 (θ0 = 3.◦9, θ = −10.◦5, α = 46◦), and
geometry 4—FDS 34947.01 (θ0 = 3.◦9, θ = −15.◦8, α = 152◦), respectively.

Figure 6. Same as Figure 5, but using the Callisto phase function rather than the Lambert phase function.

anywhere in Figure 4 between the two sets of results is of
order 20%. The assumptions inherent in this comparison—
that is, the normal incidence of the Sun, the unity albedo of
the particles, and the isotropic phase function—significantly
enhance the importance of multiple scattering compared with
real observations in which the Sun is never more than 27◦ above
Saturn’s ring plane. The discrepancy, therefore, is likely due to
an inadequate number of orders of multiple scattering in these
ray-tracing experiments. In realistic cases, the discrepancies will
be much smaller.

A similar test is shown in Figure 5. We compare the results
of an adding–doubling code with those obtained with our ray-
tracing code for four geometries from the Voyager encounters:
low- and high-phase viewing of the lit and unlit sides of the
rings, respectively. Both methods employ the Lambert phase
function. The two methods give virtually identical results up
to the noise level in the ray-tracing curves. This agreement
validates both the ray-tracing method and the implementation
of the Lambert phase function. As a further check, in Figure 6,
we show the results of the same test, with the Lambert function
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Figure 7. Brightness scan from the lit side to the unlit side of an optically thin ring with τ = 0.1 and σz = 80 m. The Sun is at θ0 = 10◦ above the ring plane. The
observer moves from θ = −90◦ to θ = 90◦. The ring is predominantly seen in single scattering; even when the observer is within 5◦ of the ring plane, multiple
scattering is small.

Figure 8. Same as Figure 7, but for an optically thick ring, τ = 1.47, σz = 160 m. The ring is seen predominantly in single scattering except in a narrow elevation
range from 0◦ to ∼−10◦. Because of the ring’s optical thickness, however, multiple scattering becomes a substantial component of the ring’s unlit side brightness.

replaced by the Callisto function. We again find good agreement
between the adding–doubling and ray-tracing results, validating
the implementation of the Callisto phase function.

Figure 7 illustrates another experiment: the change in bright-
ness with the observer viewing angle of an optically thin ring
with τ = 0.1, σz = 80 m. The particle radii were all 1 m. This
is a classical, multiparticle-thick box, in which the particles are
well separated. The observer moves from θ = 90◦ to θ = −90◦.
The ring is predominantly seen in single scattering; even within
5◦ of the ring plane, multiple scattering is small. The opposition
effect (caused by mutual particle shadowing) is not prominent
in the case of an optically thin ring; the I/F here grows as
the observer passes through the ring plane because of the in-
crease in the slant optical depth through the optically thin ring.
Our ray-tracing code reproduces the analytic single-scattering
results.

Figure 8 illustrates the same variation of the observer emission
angle but for an optically thick ring, τ = 1.47, σz = 160 m. The
ring is predominantly seen in single scattering. Because of the
ring’s optical thickness, however, multiple scattering becomes a
substantial component to the total brightness of the ring’s unlit
side. The analytic single-scattering equation (Equation (17))
underestimates the ring’s unlit-side brightness by up to a factor
of ten in some geometries.

To verify the implementation of the planetshine portion of
the code, we have compared our results with those generated
by the same adding–doubling code used in Dones et al. (1993).
Figure 9 compares the planetshine results for two different il-
luminated face geometries: one at low phase and the other at
high phase. For both geometries, the two codes give identi-
cal results, validating the implementation of the planetshine
model.
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Figure 9. A comparison of planetshine computed using an adding–doubling code (Dones et al. 1993) and the ray-tracing code. The geometries are similar to those of
Voyager images FDS 43916.56 and FDS 34953.57 (see Figure 5). Lines show the adding/doubling results and the symbols show our results. Plot titles indicate the
solar and observer elevations (θ0 and θ ) and the phase angle α.

3.2. Variation of Ring Brightness with Ring Parameters and
Geometry

3.2.1. General Geometries

To investigate the dependence of a ring’s brightness on
vertical thickness, optical depth, and viewing and illumination
geometry, we have conducted a study of the variation of the
ring reflectivity versus optical depth, solar illumination angle,
and emission angle (including lit and unlit geometries) for a
variety of random particle boxes, both thick and thin. Sixteen
random particle boxes were created in which the thickness of
the vertical distribution was specified by σz = 2, 4, 8, and
16 m, and the optical depth was taken to be τ = 0.05, 0.1, 0.5,
and 1.0, respectively. The number of particles was 5000. The
particles were given a radius r = 1 m, an albedo A = 1.0,
and a Callisto phase function. In all cases, the difference in
azimuth between the observer and the Sun is 20◦; this provides
enough separation to avoid the opposition effect except possibly
at the smallest values of σz (see Section 3.2.2). Classical single-
scattering calculations were made for the stated geometry and
optical depths.

We begin with an examination of low-phase geometries. The
results are shown in Figures 10–12.

In Figure 10, we compare for τ = 0.5 (comparable to that
in Saturn’s A ring) the variation of the I/F with the emission
angle (or, equivalently, elevation angle) for two different solar
incidence angles: 80◦ (i.e., 10◦ above the ring plane) and a more
penetrating 60◦ (or 30◦ above the ring plane). At all elevation
angles, the more penetrating the sunlight (i.e., the lower the

incidence angle), the brighter the ring, regardless of vertical
thickness.

In Figure 11, we kept the solar incidence angle constant at
80◦ (or a solar elevation angle of 10◦) and grouped the lit face
viewing results according to the optical depth of the box. In
Figure 12, we did the same for the unlit face viewing geometry.

Our results reproduce, or asymptotically approach, those
of the classical calculation for thick boxes, regardless of the
optical depth, illumination angle, or emission angle (either
lit or unlit side), giving us confidence in its accuracy. Not
surprisingly, we find that optically thick (τ = 0.5 and τ = 1.0)
boxes are inherently brighter than optically thin boxes in the
lit-face geometry; for the unlit-face geometry, as the optical
depth increases from a low value, the brightness increases at
first and then decreases when the optical depth becomes large
enough to impede diffuse transmission through the ring. All
boxes viewed on the lit side grow brighter as the observer’s
view grows more oblique (i.e., toward a lower elevation angle).
This is true even for optically thinner boxes, although the
optically thicker boxes undergo more dramatic changes in
reflectivity with a decreasing elevation angle. Also, the most
dramatic change occurs for a more penetrating illumination
angle on a thin ring (i = 60◦ versus i = 80◦) since in
this geometry there is less shadowing and a more illuminated
particle area to see. On the unlit, as on the lit, side, the rings
grow brighter with more oblique viewing geometries, except for
optically thick rings for which a point is reached where, after
growing in brightness, the rings grow dimmer with more oblique
viewing.
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Figure 10. Light-scattering experiments performed over a variety of lighting and viewing conditions, on a set of four boxes with optical depth τ = 0.5 and with varying
vertical thickness: from relatively thick σz = 16 to thin σz = 2. The diamonds are classical single-scattering calculations (Equation (16)) for a many-particle-thick
ring. The solar incidence angle is changed from one panel to the next. In all cases, the albedo is 1 and the observer longitude is 20◦.

Figure 11. Ring brightness (I/F ) as a function of the observer elevation angle, θ , in simulations with boxes of σz = 2, . . . , 16 m and lit-face, low-phase viewing.
Different panels show different optical depths. The difference in longitude of the source and observer is Δλ = 20◦. The solar elevation angle was kept constant at
θ0 = 10◦. Classical single-scattering calculations (Equation (16)) are shown as diamonds. In all cases, the albedo is 1 and the observer longitude is λ = 20◦.

To illustrate more clearly how the brightness of rings of
different optical depths might vary in an image of Saturn’s rings
(at a single illumination and viewing geometry), in Figure 13 we
group the lit face, low-phase results for four discrete emission
angles, as a function of optical depth.

In Figure 14, we compare the differences in light-scattering
behavior between low and high phases for different optical
depths. As in previous experiments shown in Figures 9 through
13, random particle boxes were used. But the particles in
this case have albedos and phase functions appropriate for a
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Figure 12. Same parameters as in Figure 11, except now for the unlit side at low phase angles. The albedo is 1 and the observer longitude is 20◦. The diamonds are
classical single-scattering calculations (Equation (17)) for a many-particle-thick ring.

Figure 13. Data from Figure 11, now plotted to show the variation of simulated I/F vs. optical depth for boxes of varying thicknesses. Different panels show different
observer elevation angles. In all cases, the albedo is 1, the solar elevation is 10◦, and the observer longitude is 20◦.

particular region of Saturn’s rings as observed in Cassini images.
We plotted these ray-tracing results for boxes of varying optical
thicknesses and geometries specific to two Cassini images: one
low (37◦) and the other high (146◦) phase. Different curves
denote boxes of different thicknesses.

Examination of Figure 11 and the left (low phase) and right
(high phase) plots in Figure 14 is very provocative. We find
that (1) while optically thick rings are brighter than optically
thin rings, regardless of phase, the physical thickness of a ring

will determine its brightness at nonzero emission angles, and
that the relationship between physical thickness and brightness
reverses sign between low and high phases; (2) the relationship
is such that the rings, when viewed at high phase (where multiple
scattering dominates for backscattering particles) get dimmer as
the ring gets physically thinner, regardless of τ , in contrast to
the behavior at low phase. This is clearly because of reduced
opportunity for multiple scattering in physically thin rings; (3)
the brightness of physically thin rings changes most dramatically
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Figure 14. Models of I/F vs. optical depth in the A ring exterior to the Encke gap (orbital radius: 135,000 km) for a low-phase (left) and a high-phase (right) geometry.
Rings with random particle locations were used, and different curves denote different vertical ring thicknesses in the models. The solar and observer elevation angles
are given above each plot, as well as the phase angles. Data points (diamonds) were taken from Cassini images having the same geometries as the models. (The optical
depths of the data are physical optical depths and, because they are less than 1, are equivalent to the dynamical optical depth which is plotted here.) Multiple scattering
up to third order was calculated in the ray-tracing models. Albedos and phase functions were adjusted until the model curves with the same thickness passed through
the data points in both plots. (See text for additional constraints.) The resulting values were an albedo = 0.63 and a power-law phase function with an index of 2.624.
Data are from Cassini images N1547753879 and N1521540684.

in the optical depth range from about τ = 0.1 to τ = 0.4 or
so, and then more or less levels out as τ grows. However, the
greatest growth in reflectivity of thin rings beyond τ ∼ 0.4
occurs for the most oblique viewing angles.

We also compare our model results to Cassini observations in
Figure 14. To this end, measurements of brightness were made
on two Cassini images of the outer A ring: one taken at low
(37◦) and the other high (146◦) phase. The portion of the A ring
exterior to the Encke gap has been shown to display only a weak
azimuthal asymmetry (Dones et al. 1993; Colwell et al. 2006;
French et al. 2007a), suggesting that self-gravity wakes are not
very prominent. Hence, ray tracing of random particle boxes is
appropriate for modeling this region.

The images were first calibrated using the standard Cassini
Imaging Science Subsystem (ISS) calibration pipeline that
has been coded in the CISSCAL software package (Porco
et al. 2004). The diamonds in Figure 14 show the resulting
measurements of I/F , with the 5% uncertainty in the calibration
of the images. The true normal optical depth of the region
(τ = 0.55) was derived from Cassini Ultraviolet Imaging
Spectrograph (UVIS) stellar occultation data (Colwell et al.
2006). The ray-tracing model curves that are shown were
calculated by requiring that the data points lie, for both low-
and high-phase geometries, on the curves having identical
thicknesses. The resulting best-fit phase function is a power law
based on Dones et al. (1993) with an index of 2.624; the best-fit
albedo is A = 0.63 ± 0.03. This albedo and phase function are
consistent with that inferred from photometric measurements
made during Cassini’s approach to Saturn (Porco et al. 2005).
The nominal ring thickness we find is ∼4 m thick (standard
deviation) or about 10 m thick FWHM, in agreement with values
of ring thickness estimated for other regions in the A ring from
Cassini stellar occultation data (Colwell et al. 2006; Hedman
et al. 2007), though the calibration uncertainties in the data

make an exact assignment of ring thickness difficult. Continued
refinements in the calibration of Cassini images will hopefully
improve this situation. However, at the moment the high phase
observations and models—the ones with the greatest sensitivity
to ring thickness—suggest an A ring thickness that is not a
classical “multiparticle thick” ring.

It may at first be surprising that we find photometric properties
for a thin ring that agree with values obtained using an
adding/doubling technique (Porco et al. 2005) that assumes
a classically “thick” ring. The reason is that at the intermediate
phase angles (∼66◦) of the images analyzed in Porco et al.
(2005), the brightness of the ring was insensitive to ring
thickness. Hence, it is assuring that we find the same values
of the phase function and albedo for other (i.e., low- and high-
phase) geometries as we found in Porco et al. (2005).

The same approach can be applied to the C ring, where self-
gravity wakes also appear to be absent (Dones et al. 1993;
French et al. 2007a). In Figure 15, we show the results of an
analysis similar to that done in the A ring, except that here we
have included a medium-phase geometry as well and we have
applied an additional constraint to derive the particle properties.
We have required that the “best-fit” phase function and albedo
also reproduce the brightness and form of planetshine reflected
from the C ring (see Section 3.3). Brightness measurements were
taken from three Cassini images of the C ring in a region where
the optical depth is 0.09 based on measurements from stellar
occultations observed by the Voyager PPS and Cassini UVIS
instruments (J. Colwell 2007, private communication), which
agree well with each other. Our best fit yields a power-law phase
function with an index of 3.092, within the range (between 3
and 4) found by Cooke (1991) using Voyager data. This phase
function is close to the Callisto phase function (Figure 1). The
ring particle albedo is A = 0.32 ± 0.02, notably lower than the
albedos measured in the A and B rings, and agrees with that
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Figure 15. Models of I/F vs. optical depth in the C ring (orbital radius: 85,300 km) for a low-phase (left), a medium-phase (middle), and a high-phase (right)
geometry. Because of the low albedo of particles in the C ring, we only needed to calculate two orders of scattering in the ray-tracing models. Plots are similar to
Figure 14. A power-law phase function with an index of 3.092 (close to a Callisto phase function; see Figure 1) and an albedo of 0.32 gave the best results. See text for
details. Data are from Cassini images N1477742794, N1464246905, and N1477743777. Triangles show ray-tracing runs on random boxes containing particles with a
size distribution found in (French & Nicholson 2000): rmin = 0.01 m, rmax = 10.0 m, and q = 3.1. These test cases showed no difference from the unimodal model
curves, suggesting that we do not need to use the size distribution for this experiment.

found in earlier work (Porco et al. 2005) from adding–doubling
methods.

Unfortunately, the low optical depth in the C ring puts it on
the portion of the curve that is insensitive to ring thickness.

3.2.2. Opposition Surge Geometry

The opposition surge is a well-known phenomenon that
is nearly ubiquitous in light-scattering situations near exact
backscatter, such as looking at the halo around one’s own
shadow when it falls on a rough surface. Photographs taken
by the Apollo astronauts of their own shadows show this effect.
Most airless bodies in the Solar System show an opposition
effect, and Saturn’s rings (where the effect was first discovered in
the nineteenth century) are no exception. The opposition effect
has been recently seen in Cassini data taken with the Visible
and Infrared Mapping Spectrometer (VIMS; Nelson et al. 2006;
Hapke et al. 2006) and ISS (Déau et al. 2006) instruments.
This effect is distinct from the gradual rise in brightness of a
single body toward zero phase that arises from seeing more
of the illuminated surface of the body as the phase angle
decreases.

Explanations for the opposition effect on Solar System bodies
fall into three broad categories. First, intraparticle shadowing
explains the effect with surface roughness on scales ranging
from the sizes of grains within the regolith that covers a ring
particle to that comparable to the particle itself. At exactly
α = 0◦, the entire visible surface is lit directly, and no shadows
are visible to the observer. As the observer separates from the
source and α increases, the observer sees more and more of the

shadows caused by surface roughness. It is generally believed
that while intraparticle shadowing plays a role in determining
the shape of the phase curve in backscatter, it cannot produce
the narrow opposition surges, with widths of a few degrees or
less, that are seen on many small bodies.

Second, interparticle shadowing occurs when particles that
are not in physical contact shadow each other. Interparticle
shadowing is the traditional explanation for the opposition surge
of Saturn’s rings (Irvine 1966). Again, at α = 0◦, the observer
is looking only at the illuminated sides of ring particles, and
the rings appear brighter than they do at larger phase angles,
at which the observer can see the shadowed portions of the
particles and the brightness decreases. The width and depth of
the opposition surge depend on the size distribution and spatial
distribution of particles in a ring: both a physically thicker ring
and a broader size distribution lead to a narrower surge. A strong
surge due to interparticle shadowing can only occur along paths
with sufficient optical depth to allow mutual shadowing: that is,
τp/μ � 1.

Third, a physical optics effect known as coherent backscatter-
ing likely contributes to the rings’ opposition surge (Mishchenko
& Dlugach 1992). This process involves multiple scattering
between microscopic grains within the regolith. Of the three
mechanisms, coherent backscattering generally produces the
narrowest brightness surge. Recent observations by HST and
the Cassini cameras indicate that the rings’ surge has a half-
width at half-maximum of only 0◦.1–0.◦3 and an amplitude of
1.4–1.6, where we define the amplitude as the actual I/F at
the zero-phase angle divided by the extrapolated I/F derived
from measurements at low phase angles (French et al. 2007b;
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Figure 16. The opposition surge for a ring with a very large thickness of σz = 160 m. The Lambert phase function shows a surge peak of amplitude 1.4 times the
background and with a half-width at half-maximum of 0.◦1. The Callisto peak has amplitude 2.5 times the background and a half-width at half-maximum of 0.◦2. The
Lambert function has a narrower peak in this case because its surge is almost entirely due to interparticle shadowing, an effect that only becomes pronounced, and
very low phase angles. The Callisto phase function has a built-in surge which is wider than this, so it shows a broader peak here. (The background level is defined as
the value of I/F at exactly 0◦ phase that is determined by extrapolating to 0◦ the phase curve beyond ∼10◦, as indicated by the dashed line.)

Déau et al. 2008). The angular width of the surge is narrower
than that found by previous lower-resolution Earth-based stud-
ies (e.g., Franklin & Cook 1965), which did not get as close to
zero phase as recent observations. Furthermore, Lyot (1929) ob-
served the surge in brightness to correlate with a decrease in the
polarization fraction, as a function of the phase angle, having the
same shape, suggesting a similar cause for both. Such a surge
is expected for coherent backscattering, which our ray-tracing
code cannot model.

The rings’ brightening at phase angles less than ∼10◦ is pre-
sumably a combination of coherent backscattering and inter-
particle shadowing. We have performed several simulations of
the opposition effect using both Lambertian and Callisto phase
functions. The Callisto phase function, based as it is on a real
planetary surface, already has a modest built-in opposition surge
(Squyres & Veverka 1981). The ring particles are likely to have
icy compositions similar to Callisto’s surface, although their
surfaces may be more evolved than those of Callisto due to their
collisional environment. In any case, our results suggest that
a Callisto-like phase function applies to the low optical depth
portion of the C ring.

The ray-tracing simulations of the opposition surge, using
1 m particles with Lambert and Callisto phase functions, and a
vertical ring thickness of σz = 160 m, are shown in Figure 16.
The Lambert opposition surge has a half-width at half-maximum
brightness of 0.◦1 and an amplitude of ∼1.4. Because of the
nature of the Lambert phase function, which pertains to an
idealized perfectly diffusing surface, the surge shown here
(above and beyond the usual upturn toward low phase in any
physically realistic phase curve due to the increasing visibility
of the illuminated surface toward zero phase) is entirely due to
mutual shadowing by particles.

The opposition surge model using the Callisto phase function
has a half-width at half maximum brightness of 0.◦2 and an
amplitude of ∼2.5. Because this phase function has its own
opposition surge, the curve consequently accounts for both
shadowing on the surface (intraparticle) and shadowing between
bodies (interparticle).

The opposition surge is dependent on the thickness of the
ring. Consider, for example, the limiting case of a monolayer
of particles. In this case, mutual shadowing will be only a
minor effect for most illumination and observation geometries,
reducing the magnitude of the surge. To characterize the
variations in the opposition surge with ring thickness, we
have produced additional surge curves for a ring thickness of
σz = 2 m, shown in Figure 17. For this ring, the Lambert
particles show a half-width of 3◦ and a surge amplitude of ∼1.3.
For the Callisto-surface particles, the half-width is 2◦ and the
amplitude is ∼1.9.

It is apparent that the main effect of thinner rings is to broaden
the opposition surge. This is a well-known result (see, e.g., Irvine
1966). The heights of the surges are only slightly affected,
lowering them by about 20%. The Cassini ISS experiment
has acquired (and continues to acquire) images of the rings
that include the opposition surge, the purpose of which is to
eventually produce an estimate of the thickness of the rings
using this phenomenon. In the future, we will compare our
simulations with Cassini observations of the rings’ opposition
surge (Déau et al. 2008).

3.3. Comparison of Planetshine Models to Data

Many Cassini images taken at either high phase or of the
unilluminated side of the rings show strong azimuthal variability
in the A, B, and C rings. Since these images roughly show the
same azimuthal dependence in all three rings, it is unlikely
that the effect is due to canted structures in the rings like the
wakes discussed above, particularly as the background C ring is
believed to be devoid of them. However, the variations are quite
consistent with what is expected from planetshine.

The A ring (and very likely the B ring) contains dynamical
structures (Colwell et al. 2007; French et al. 2007a), that
produce asymmetric brightness variations with longitude that
complicate any attempt to model the azimuthal variation of
reflected/transmitted planetshine on the rings. The C ring
plateaus are similarly rich with small-scale (∼10 km) aggregate
structures (J. Spitale 2007, private communication) and may
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Figure 17. The opposition surge for a ring with σz = 2 m. The Lambert phase function shows a surge peak of amplitude 1.3 times the background and with a half-width
at half-maximum of 3◦. The Callisto peak has amplitude 1.9 times the background and a half-width at half-maximum of 2.◦0. (The background level is defined as the
value of I/F at exactly 0◦ phase that is determined by extrapolating to 0◦ the phase curve beyond ∼20◦, as indicated by the dashed line.)

Figure 18. Data and model of reflected planetshine for the unlit face of the C ring. The model is shown in black lines while the measurements are the gray points.
The light gray regions are error estimates for the data calibration. The solid line is the total I/F for the model, the dotted line is the planetshine contribution, and
the dashed line is the directly scattered sunshine contribution. The orbital radius of the scan is 85,300 km, placing the region away from any C ring plateaus. The
longitudes of the Sun and spacecraft are indicated with vertical dotted lines. Data are taken from Cassini images W1532506579 and W1532582920 (with θ0 = −17◦,
θ + 15◦, α ≈ 128◦, and skyplane resolution = 62 km/pixel).

present a similar problem, so they are also a nonideal place to
start our study of planetshine. Hence, the best starting point for
comparison of planetshine data and models is in the background
C ring, away from the plateau regions, where the optical depth
is ∼0.1.

Accordingly, azimuthal scans were made in Cassini clear-
filter images taken at a phase angle on the rings of ∼90◦, at an
orbital radius of 85,300 km, away from any plateaus. The two
images used for the scans were taken within a very short time of
each other so that the observation geometry is nearly identical
for both ansae of the ring.

To model this part of the C ring, we use as before a random
particle box. However, in this case, we used particles ranging
in size from 1 cm to 10 m with an index of 3.1, consistent
with French & Nicholson (2000), and an optical depth of 0.09.
The particles were distributed uniformly in x and y and with a

Gaussian distribution in z. Since the brightness of a low optical
depth ring is insensitive to ring thickness (Figure 11), we have
arbitrarily chosen the vertical thickness to be σz = 11 m.

Figure 18 shows the model (dark black curves) and data
(gray points) for images on the unlit side of the rings. The
solid black line shows the total model I/F , the dashed line
displays the contribution from the directly scattered sunshine,
and the dotted line shows the contribution from scattered
planetshine.

The particle albedo and phase function that give the best
match between the planetshine model and the data’s overall
intensity, as well as yield the best match between the scattered-
sunlight models and the data presented in Figure 14, are the
same values found for the C ring as imaged through the Cassini
red filter (Figure 15), which is nearly identical in effective
wavelength (λeff = 0.65 μm) to the clear filter we are using
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Figure 19. Data and model of planetshine for the lit face of the C ring. Vertical lines have the same meaning as in Figure 18. The scan is taken at an orbital radius of
85,300 km. Data are from Cassini images W1481837365 and W1481839829 (both with θ0 = −23◦, θ ≈ −4◦, α ≈ 148◦, and skyplane resolution = 37 km/pixel).

here (Porco et al. 2004). These values are A = 0.32 ± 0.02 and
a Callisto-like power-law phase function with index = 3.092.

Another notable result of the model presented in Figure 18
is that it shows an I/F peak with a location and a morphology
consistent with the data. The location of the peak is set by
two things: the phase function of the planet and the phase
function of the particles. The former determines the longitudinal
variation in the intensity of illumination from the planet falling
on the ring. If only the planetshine illumination mattered (i.e., if
the particles had an isotropic phase function), then the peak
intensity in planetshine would be at the subsolar longitude.
However, the particles’ phase function determines how much
of the planet’s light makes it to the observer from a ring patch in
a given viewing geometry. All realistic phase functions for ring
particles are backscattering, even those that do not have built-in
opposition surges (such at the Lambert phase function). Thus,
the particles’ phase function tends to drive the planetshine peak
to the antispacecraft longitude. The observed peak should lie
somewhere between the subsolar and antispacecraft longitudes.

The data and models put the peak in the expected location: the
subsolar longitude is indicated in Figure 18 and the antispace-
craft longitude is at 130◦. The planetshine peak lies between
those bounds but is closer to the antispacecraft longitude, sug-
gesting that the particles’ phase function is the dominant effect.
However, it is clear that both effects are important since the
actual peak is clearly somewhere between the bounding longi-
tudes.

The scan of the unlit C ring can be compared to Figure 19,
a scan of the lit side of the C ring. (Note that the subsolar
and subspacecraft longitudes have changed from where they
were during the unlit side observation.) The obvious difference
between the lit and unlit side observations is that, in the former,
the I/F is higher everywhere. This is entirely to be expected
since, in the former, the sunlight is not attenuated by passage
through the rings, and the planetshine is more intense on the
hemisphere with the subsolar point. The planetshine peak is still
located between the subsolar longitude and the antispacecraft
longitude (190◦).

In this lit case, the match is not as good as the unlit case, and
the data show a somewhat broader peak than that produced by
the model. This is likely due to the inadequacy of the reflectivity

and phase function of the planet model compounded by the
low observer elevation angle. Note that the Pioneer reflectivity
data for one belt and one zone were taken and averaged to
give the reflectivity of the whole planet (Dones et al. 1993):
that is, the model planet is uniformly reflective everywhere,
north and south, with no banded structure. Also, the Pioneer
data were modeled to derive a simple analytical form for the
phase function, which was used in our ray-tracing experiments.
Considering the lack of fidelity between the model and the real
planet, the match in Figures 18 and 19 in both the lit and unlit
cases is quite good. Determining the variation of reflectivity
and phase function across the globe of Saturn is a cardinal
goal of the Cassini imaging experiment (Porco et al. 2004). A
more sophisticated planet model, based on Cassini results, will
eventually be incorporated into future versions of the planetshine
code.

Moving outward from the C ring to the B ring, Figure 20
shows a planetshine scan from Cassini images for the unlit
(northern) side at 108,120 km. The data were modeled with two
approaches. The results of a random box of particles are on the
left, as above, but with particles ranging from 30 cm to 5 m in
radius with a power-law index of q = 2.8. This is identical to
that found for the B ring by French & Nicholson (2000) except
that we have again truncated the upper limit from 20 m to 5 m.
The vertical distribution of particles in the model uses an
FWHM = 6 m. On the right, we show the results of ray-
tracing boxes with “idealized wakes,” with a vertical thickness of
20 m FWHM, a wavelength of 160 m, and a pitch angle of 15◦,
akin to what had been detected in the B ring by Colwell et al.
(2007).

The morphology of the observed reflected planetshine peak
is very similar to what is seen in Figure 18. The overall I/F is
lower here for two reasons. First, the B ring is much more opaque
than the C ring, so there is much less transmitted light (either
direct sunlight or planetshine from the southern hemisphere).
Second, the planetshine illumination on the rings falls off as
roughly 1/r3 (a factor of 1/r2 due to the spreading of light
with distance and a factor of 1/r due to the increasing angle of
incidence on the ring plane), leading us to expect that this part of
the B ring only gets about 60% of the planetshine illumination
received by the C ring at 85,300 km.
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Figure 20. Data and model of planetshine for the unlit face of the B ring observed at a phase angle of 127.◦6. Vertical lines have the same meaning as in Figure 18. The
scan is taken at an orbital radius of 108,100 km. The albedo in both models is 0.6. The model in the left panel uses a spatially uniform distribution of particles (i.e.,
no wake-like structures are present), while the model on the right uses idealized wakes akin to those used by Colwell et al. (2007) and Hedman et al. (2007). Data are
from Cassini images W1532506579 and W1532582920 (see Figure 18).

It is interesting that the planetshine data for the B ring, at least
at longitudes far from the peak, are modeled best by the uniform
boxes of particles and not by the wakes, and that the opposite
is true near the peak. French et al. (2007a) found an azimuthal
asymmetry in the inner B ring and a weaker asymmetry in the
outer B ring, but little or no asymmetry in the central part of the
B ring at low phase angles. At the higher phase angles observed
in Cassini data, an unmistakable asymmetry is observed. It is
likely that no wakes exist in this region of the B ring, as it is
a region characterized by a great number of irregular structures
with large variations in the optical depth, and that other types of
azimuthal structures of different spatial scales are present and
may cause part of the data/model discrepancy in this region of
the rings. This topic will receive attention in future analyses.

4. DYNAMICAL RING SIMULATIONS

4.1. Basic Formulation

For many applications in the study of Saturn’s rings, the use of
random particle boxes in simulating the rings is inadequate. This
is especially true when the rings are expected to have structures
smaller than the scale of the box. To this end, we have cus-
tomized the sophisticated N-body code pkdgrav, a numerical
gravity solver first developed for cosmological modeling (Stadel
2001; Wadsley et al. 2004) in order to produce realistic particle
distributions as inputs to the ray-tracing code. The code was
adapted to treat hard-sphere collisions for planetesimal model-
ing (Richardson et al. 2000); a particle size distribution is easily
accommodated. The main technical features of the code include
a hierarchical tree algorithm for reducing the computational cost
of interparticle force calculations and a complete parallel im-
plementation for balancing work across an arbitrary number of
processors. These features place pkdgrav among only a hand-
ful of truly parallel tree codes available for modeling complex
systems of gravitationally and collisionally interacting particles.

We use the local “sliding patch” model for our simulations
(Wisdom & Tremaine 1988; Richardson 1994; Salo 1995). In
this model, the dynamics at a fixed orbital distance from the
central body are represented by particles in a patch of arbitrary
vertical dimension. The azimuthal and radial extent of the patch
are small compared with the orbital distance but large compared
with the radial mean free path of the particles inside it. The
surrounding replica patches, with exactly the same particle
distribution, are used to provide realistic boundary conditions.

The assumption is that on this scale, the details of the structure
inside a neighboring patch are unimportant; only the mean field
matters (plus any physical contact when particles straddle the
boundary so that momentum transport remains smooth). For
consistency, the innermost and outermost replica patches must
move relative to the central patches in accordance with the shear.

A supporting piece of software is used to generate initial
conditions. This program takes as input a variety of desired ring
parameters, including surface density, particle density, particle
sizes, particle spins, patch dimensions, and starting velocity
dispersions. Typically, our patch sizes are 4 × 10λcrit. Here, λcrit
is the value of the most unstable wavelength and is given by

λcrit = 4π2GΣ
Ω2

, (29)

where Σ is the particle surface density and Ω is the angular
speed of the patch. The large azimuthal dimension is needed to
properly resolve the most unstable wavelength and to minimize
the effect of particle “memory” following a boundary wrap. Par-
ticles are initially placed randomly in the patch, with an option
for a dispersion in z provided by Gaussian deviates. Particle
velocities are assigned using Gaussian deviates. The simula-
tions are largely insensitive to the initial velocity dispersion and
quickly (within 10 orbits) settle to equilibrium values. Particle
spins start at zero, but particles can acquire spin during a col-
lision through a user-assigned surface friction coefficient. The
spins are continuously tracked and properly take into account
the complications arising from the rotating frame of reference.

The equations of motion are given by the linearized Hill’s
formulation for the shearing sheet (Hill 1878; Wisdom &
Tremaine 1988):

ẍi = −∂Φi/∂x + 3Ω2xi + 2Ωẏi , (30)

ÿi = −∂Φi/∂y − 2Ωẋi , (31)

z̈i = −∂Φi/∂z − Ω2zi, (32)

where Φi = −∑
j �=i Gmj/rij and rij is the separation between

particles i and j. Φi is the gravitational potential on particle i
due to all other ring particles, x is the radial direction, y is the
orbital direction, and z is north. These equations are integrated in
pkdgrav using a second-order leapfrog integrator (Richardson
et al. 2000; T. Quinn et al. 2007, in preparation). We use a
“kick-drift-kick” scheme: velocities are first kicked at a fixed
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position for half a step, then positions are drifted for a full
step at fixed velocity, and finally velocities are kicked the
remaining half-step. The (constant) time step is chosen to be
small compared to 2π/Ω (the orbital period) or the dynamical
time 1/

√
(Gρ) (ρ is the particle mass density), whichever is

smaller, and is typically about 50 s. (The dynamical time is a
rough measure of the interaction timescale of a self-gravitating
system.) Gravity is calculated before each kick using a tree
code that approximates the potentials due to distant groups
of particles by multipole expansions about the group centers
of mass, resulting in computation times that scale as order
N log N but that give rise to small force errors (see Barnes
& Hut 1986). The errors are controlled by a single parameter,
the tree-opening angle, that determines how small and distant a
group of particles must be to use the approximation (we use
a value of 0.3 rad, a good compromise between speed and
accuracy). Typical implementations expand the potentials to
quadrupole order; pkdgrav expands to the hexadecapole order.

Collisions are predicted at the beginning of each drift step
by keeping the particle velocities fixed and extrapolating the
particle positions. Since this is a linear transformation, the time
to surface contact between a pair of approaching particles is
a simple quadratic expression. Potential colliders are found in
order Ns log N time (Ns is the number of neighbors to check,
typically ∼32) using the tree. If the time to surface contact of a
potentially colliding pair is found to be less than the size of the
drift step, then a collision is performed. If more than one pair
of particles satisfies this condition, the pair with the smallest
collision time is processed first.

Once the collision outcome has been determined by applying
user-selected restitution formulae, new collision circumstances
are computed for the affected particles to ensure that all
collisions are detected and treated in the correct order, even
if particles are involved in more than one collision during the
drift step.

Boundary conditions from the cosmology component of
pkdgrav were modified for the sliding patch model to account
for the shear. The boundary conditions in this case are time-
dependent, making it necessary to compute the phase of the
sliding patches when particles are near the boundary (either
crossing the boundary or when searching for neighbors). Since
replica patches have large opening angles as seen by most
particles in the central patch, there is little additional cost for
computing their contribution to the gravity field. For safety we
typically use three rings of replicas, making 49 patches in all.
Note that the Ewald correction used in pkdgrav (Hernquist
et al. 1991; Stadel 2001) is not necessary in this case, since
gravitational perturbations from the particles drop off rapidly
with distance in the flattened disk geometry.

Runs are carried out 5–10 orbits beyond the time when the
velocity dispersions achieve equilibrium, which is typically after
∼5–10 orbits.

4.2. Ring Patch Simulations

In running ring patch simulations, among the first choices
of input parameters are the particle physical characteristics,
such as internal bulk density and size distribution. Our choices
were guided by several important constraints. From the analysis
of weak linear density waves in the mid-A ring observed in
Cassini images (Tiscareno et al. 2007), the surface mass density
of this ring region was found to be on average 430 kg m−2.
The small moons, Pan and Daphnis, orbiting within Saturn’s

outer ring region, have been found, within the uncertainties,
to have densities comparable to their critical densities: that
is, the density below which the ring material can no longer
gravitationally accrete onto them (Porco et al. 2007). In the mid-
A ring, critical densities are ∼440–500 kg m−3. The particle
size distribution for this ring region was determined to be a
differential power law with an index q = 2.75, a lower limiting
radius of 30 cm, and an upper limit of 20 m (French & Nicholson
2000). However, as noted earlier, there is significant uncertainty
regarding the upper-limiting particle size since the presence of
wake structures themselves, with thicknesses of ∼20 m, likely
contaminates the determination of this quantity and on physical
grounds, an upper limit of ∼5 m may be more plausible as this
is the expected natural scale of self-gravitational disturbances
in Saturn’s A ring (Shu 1984).

We have found, in fact, that all these constraints can be
consistently accommodated if we make the upper-limiting par-
ticle radius 3 m. Anything larger either violates the surface
mass density constraint for an internal density of 420 kg m−3

(i.e., a 5 m upper limit forces this quantity to be closer to
610 kg m−2) or violates the internal density if we constrain
the surface mass density to be 430 kg m−2 (i.e., the in-
ternal density decreases to 280 kg m−3, which is unaccept-
ably lower than the critical density). For the geometries we
consider in this paper, light scattered from a particle size
distribution with a 5 m upper limit, an internal density of
420 kg m−3, and a surface mass density of 610 kg m−2

is photometrically indistinguishable from that scattered from
one with a 3 m upper limit, an internal density of 420 kg m−3,
and a surface mass density of 430 kg m−2 (see Section 6).
Nonetheless, we have chosen the latter set of parameters for our
simulations as those are consistent with all known constraints.

Figure 21 shows “snapshots” taken from several dynamical
simulations of a patch of Saturn’s A ring at a mean orbital
distance a = 128,000 km and with mean motion Ω =
(GMSaturn/a

3)1/2 = 1.345 × 10−4 rad s−1 using approximately
60,000 particles of density 420 kg m−3 ranging in size from
0.3 to 3 m as selected uniformly from a power-law distribution
with n(r) dr ∝ r−qdr , where q ∼ 2.75. The ring patch
code can, in principle, follow millions of particles (Perrine
& Richardson 2006) in reasonable compute times, but only
60,000 were required to simulate the A ring using realistic
parameters. All simulations were carried out for at least 15
orbital periods, comfortably beyond the point where the velocity
dispersions reached equilibrium (about 5–10 orbits); some of
the snapshots were taken from time steps as early as 12 orbits
into the simulation. The patch dimensions in both cases were
4λcrit × 10λcrit, where λcrit = 4π2GΣ/Ω2 = 62.6 m is the
critical Toomre wavelength for our chosen value of surface mass
density Σ = 430 kg m−2. That is, the patch dimensions were
Δy = 626 m by Δx = 250 m. Particles were initially distributed
uniformly in the plane of this patch, with a random uniform
vertical component of ± 5 m. The corresponding dynamical
optical depth τ = 0.6 and volume filling factor = 0.088. Initial
velocities were chosen uniformly between 0 and ΩR̄ in the
radial direction and between 0 and ΩR̄ in the azimuthal and
vertical directions, where R̄ = 0.59 m is the mean particle
radius. These initial dispersions were chosen deliberately to be
far from the equilibrium values, which turned out to be about
a factor of 10 larger than the starting values. For each run,
we used a time step of 46.3 s (0.001 of an orbital period and
0.01 of the dynamical time for particles of our chosen mass
density).
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Figure 21. Five large-scale dynamical “ring-patch” simulations showing particles in Saturn’s mid-A ring at 128,000 km after at least 12 complete orbits. The simulation
cell is Δy = 626 m by Δx = 250 m. The radial direction is up; the orbital motion is to the left. At this equilibrated stage, the evolution of the system is characterized by
the rapid (∼1 orbit) formation, dissolution, and reformation of filamentary wake-like structures with a pitch angle of ∼25◦ to the azimuth and an average separation
of ∼65 m. This is roughly the critical wavelength (Julian & Toomre 1966), in agreement with theory. For all these simulations, ring particle and disk parameters were
taken to be those expected for the middle of the A ring: a particle size distribution of a power-law index, q ∼ 2.75, with rmin = 0.3 m and rmax = 3 m, a surface mass
density ∼430 kg m−2, particle internal density ∼420 kg m−3, and a dynamical optical depth τd ∼ 0.6. Different elasticity laws were used for these simulations. From
top to bottom, the elasticity laws were velocity-dependent coefficient of restitution laws found by Supulver et al. (1995) (uppermost) and Bridges et al. (1984) (second
from top) in laboratory experiments on smooth ice particles; velocity-dependent laws of the form used by Borderies et al. (1984) for smooth ice spheres with v* =
0.01 cm s−1 and v* = 0.001 cm s−1 for the middle and second-from-the-bottom ring patches; and a constant restitution law with εn = 0.1 was used for the bottom
ring patch. All simulations had εt = 0.9.

However, the differences among the simulations lie in the law
used to describe the elasticity of the particles as a function of
their collision speeds. In the upper simulations of Figure 21, we
adopted two coefficient of restitution laws commonly in use:
that due to Supulver et al. (1995) and the other due to Bridges
et al. (1984). Both of these have the form

εn(vn) =
(

vn

vc

)b

, (33)

where εn is the normal coefficient of restitution, vn is the
magnitude of the normal component of the radial velocity

expressed in cm s−1, and vc = 0.0077 cm s−1 and b = −0.234
for Bridges and vc = 0.01 cm s−1 and b = −0.14 for Supulver.

Both laws, displayed in Figure 22, were determined in
laboratory collision experiments on smooth ice spheres, but in
one case (Bridges) the particles were frosty with temperatures
∼ 200 K, and in another (Supulver) frost-free with temperatures
∼ 100 K.

For the second set of simulations, we adopted a restitution law
for the particles that yields a smaller εn for the higher velocity
particles in order to explore the effects of higher inelasticity in
clearing out the small interwake particles. Here, we assumed the
functional form derived by Borderies et al. (1984) for smooth
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Figure 22. Restitution laws mentioned in this work. The bulk of the smallest particles in each of the simulations performed using these laws falls within the velocity
range indicated by the bold sections on each curve.
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However, to explore greater inelasticity, we have altered the
point at which the particles transition from purely elastic to
inelastic behavior from the Borderies et al. (1984) value of
v* = 0.03 cm s−1 to v* = 0.01 cm s−1 in one case, in line with
the transition speed found by Supulver et al. (1995), and to
v* = 0.001 cm s−1 in another case to test even smaller
elasticities. These smaller transition speeds, which produce
lossier particles in the range of speeds relevant for the
mid-A ring, may not be unreasonable. The particle surfaces
are very likely to be rough, which serves to lower the coefficient
of restitution (Borderies et al. 1984), as does the presence of
a regolith (Colwell & Taylor 1999; Colwell 2003). Addition-
ally, the particles are very porous: an internal mass density of
420 kg m−3 yields a particle with ∼43% void space. Collisions
between such particles may be characterized by compression of
the surface material at the contact point into void space followed
by very little rebound.

For completion, we also tried a constant coefficient of
restitution, εn = 0.1.

For all these restitution laws, which are shown in Figure 22,
we adopted a tangential coefficient of restitution, εt = 0.9,
as measured by Supulver et al. (1995). (Note that no other
laboratory experiment obtained a measure of εt .)

Gravitational wake structures are clearly seen in all the ring
patch simulations utilizing these restitution laws, as shown in
Figure 21, after at least 12 orbital periods and long after the
system has equilibrated. What is visually very noticeable is
that for the lossier restitution laws, the interwake particles are
less abundant than in the Supulver case. We find that in the
Supulver case, it is the smallest fastest particles that lie in
between the wakes and when we assume greater inelasticity,
their velocity dispersions are also reduced (Figure 23): the
peaks in the velocity distributions for the particles in the size
range from 0.3 to 0.5 m—that is, the smallest particles—are
shifted from ∼0.18 cm s−1 for the Supulver law down to a
peak relative velocity of ∼0.1 cm s−1 for both the Bridges and

v* = 0.01 cm s−1 laws, and a bit farther to 0.08 cm s−1 for the
lossier v* = 0.001 cm s−1 and εn = 0.1 laws. In Figure 22, we
have indicated the FWHM limits of the small particle velocity
distributions, where most of the small particles fall in relative
velocity, on the appropriate restitution law. The fact that the large
jump in energy loss (Figure 22) between the v* = 0.01 cm s−1

and v* = 0.001 cm s−1 simulations does not result in a large
jump in peak velocity dispersion is a result of the fact that both
velocity shear across the rings and ring particle self-gravity will
keep the ring particles stirred above a minimum velocity. In the
case of the small particles in our simulations, this minimum is
predominantly set by the escape speed of ∼0.03 cm s−1.

For all of these laws, the velocity dispersions of the largest
particles, which are found within the wakes, remain approxi-
mately the same, with an average of ∼0.11 cm s−1.

There are even slight but noticeable differences in the four
lossier simulations. Bridges and v* = 0.01 look similar to
each other in the number of remaining interwake particles, and
v* = 0.001 and εn = 0.1 also look similar to each other in
this regard, though the latter set looks clearer of interwake
particles than the former, and there are differences in scale of
the wake structures, and the sizes of the voids in between them,
in comparison with the members of the latter set. Moreover,
these gross differences between the different simulations are
maintained when one examines frames taken at different time
steps than those shown in Figure 21, as long as the frames come
from times past equilibration.

These are all critical factors in the analysis and modeling
of the A ring azimuthal brightness asymmetry presented in
Section 5.

5. LOW-PHASE LIGHT SCATTERING: THE AZIMUTHAL
ASYMMETRY

To begin our investigation of the A ring azimuthal brightness
asymmetry, a photometric phenomenon that is one of the
manifestations of self-gravity wakes in the rings (e.g., Dones
& Porco 1989), we examine two different lit-face low phase
geometries: a Voyager geometry, at low sun and observer (or
spacecraft) elevation angles (∼10◦), and a Cassini geometry, at
higher Sun and spacecraft elevation angles near 22◦. In the upper
part of Figure 24, we present a scan of brightness at low phase
around the A ring as measured in Voyager images FDS 43650.10
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Figure 23. Relative velocities for small- (< 50 cm), large- (> 1 m), and intermediate-sized particles in the five simulations shown in Figure 21.

and FDS 43650.22 (one of the left ansa and one of the right ansa)
at a semimajor axis of 128,900 km. Error bars on the data curves
show the uncertainties (∼10%) inherent in the calibration of
Voyager images. In the lower panel, we present a scan around
the A ring at a semimajor axis of 128,000 km, taken from 19
separate Cassini clear-filter images on 2005 June 7 while the
spacecraft was at a distance of 986,000 km (∼16 Saturn radii).
The calibration uncertainty of the Cassini clear filter is ∼5%.
In both scans, longitudes lacking data belong to parts of the
ring that are obscured by Saturn, in the planet’s shadow or in
front of the planet, where the planet’s disk interferes with the
measurements.

In comparing these scans, there are two obvious differences
between Cassini and the Voyager (and Earth-based) observa-
tions of the asymmetry: the location of the brightness extrema
and the variation between the right (<180◦) and left (>180◦)
sides of the ring.

The first minimum in the Cassini data appears at about
77◦, compared to 67◦. This 10◦ shift is the signature of the
increasing separation in longitude of the Sun and spacecraft.
There is a minimum in the brightness where the observer looks
along the long axis of the wakes, because gaps in this viewing
geometry take up a larger fraction of the projected area as seen
by the observer. Moreover, the gaps, having less material, scatter
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Figure 24. Top: the azimuthal brightness asymmetry in the A Ring at an
orbital distance of 128,900 km, as observed in Voyager clear-filter images FDS
43650.10 and FDS 43650.22. The difference in Sun and spacecraft longitudes
was 8.◦2, the subspacecraft latitude was 10.◦8 (so that the observer elevation angle
on the ring ranges from 10.◦7 to 11.◦0), and the subsolar latitude was 7.◦9. The
phase angle was 8.◦05. The error bar on the data shows the estimated absolute
uncertainty in the Voyager clear-filter calibration of ∼10%. Bottom: the A ring
azimuthal brightness asymmetry seen from Cassini at an orbital distance of
128,000 km in clear-filter images taken on 2005 June 7. The difference in Sun
and spacecraft longitudes is 23.◦2, the subspacecraft and subsolar latitudes are
both −21.◦5, and the observer elevation angle on the rings varies from −19.◦0
and −24.◦6. The phase angle is 21.◦5. The error bar on the data show the absolute
uncertainty in the calibration of the Cassini clear filter of ∼5%.

less light to the observer, so the brightness is consequently
reduced. The same thing happens when the sunlight falls on
the rings in the same orientation: more of the sunlight passes
straight through the gaps, leaving less to scatter to the observer,
regardless of where the observer is. In principle, we expect there
to be two minima at around 77◦: one for the observer (which
should occur between 65◦ and 70◦) and one for the Sun which
has a 23◦ offset from the observer’s minimum, and should be
∼90◦. In reality, the wakes have a distribution of orientations
that spreads both minima and blurs them into one minimum at
approximately their average longitude.

There is also a marked difference in brightness between the
two sides of the ring. A possible explanation for the left/
right amplitude difference may rest with differences in the
emission angle. The spacecraft’s proximity to the ring can
lead to the emission angle from the rings varying significantly
with longitude around the ring. However, the two minima are
located near ±90◦ so that these locations on the ring are nearly
equidistant from Cassini at the time of observation. The slight
difference in distance causes a change in the emission angle
of only 69◦.6–70◦.4. As Figure 10 shows, this is insufficient to
cause the ∼50% differences in amplitude seen in the scan. The
wake structures may complicate this: small differences in the
emission angle may cause larger variations in I/F than implied

by the homogeneous models. This will receive further attention
in future work.

To determine the particles’ elastic and photometric character-
istics that fit these data the best, we ray-traced the five different
dynamical simulations of the mid-A ring (orbital distance of
128,000 km) shown in Figure 21, assuming the illumination
and viewing geometries appropriate for the two (Voyager and
Cassini) observations. In all ray-tracing runs, we used a dense
grid of source photons with a spacing of 1 m, 96 child photons,
and a scattering order of 3. We also assumed in every case the
phase function found for the middle of the A ring by Dones
et al. (1993): that is, a Callisto-like power-law phase function
with an index n = 3.092.

Note that the Voyager data scan was taken at 128,900 km;
the Cassini scan was taken, and all the ring patch simulations
were done, at 128,000 km. At the former orbital distance
from Saturn, the amplitude of the asymmetry (defined to be
2(peak − trough)/(peak + trough) is ∼3% larger than it is at
128,000 km (Dones et al. 1993). Consequently, we corrected
the amplitude of our Voyager scan to a distance of 128,000 km
by decreasing its amplitude by 3%; the Voyager scan adjusted
in this way was used in the fitting of the ray-tracing models to
the data.

It became obvious upon initial comparison of data and models
that there is a small discrepancy of ∼5◦ in the azimuth of
the troughs between the models and the data scans for both
Voyager and Cassini geometries. This offset was found by
others examining the asymmetry in HST (and therefore low
phase) images (French et al. 2007a). The angular phase of the
minimum in the model curve is dependent on the cant of the
wakes in the simulations. The sign of the angular mismatch
implies that the wakes in our simulation are not orbitally sheared
as much as (or are more radial than) the real wakes. The ring
patch code does not include the nonspherical gravity harmonics
in the planet’s gravitational field, but a simple calculation of the
effects on the orbital shear in the mid-A ring of adding J2 and
J4 yields a change significantly less than 1◦. Also, while the
size of the ring patch can affect the tilt of the simulated wakes
in the case where the patch is not sufficiently large, our boxes
are large enough to avoid this problem. We do not yet know the
exact cause of this small mismatch but we note (below) that it
changes slightly (ranging from 5◦ to 8◦) for different simulations
and fits. We intend to investigate this offset in future studies
in which we will explore the effects of varying the tangential
coefficient of restitution, εt , and examine the effects of more
complicated particle structures (Richardson 2008). Nonetheless,
we believe that the discrepancy is small enough not to undermine
the arguments presented here.

The final values determined for the particle albedo and
angular shifts from the fits to the Voyager and Cassini data of
all the models examined here were those that yielded minimum
residuals between the data and model, normalized by the errors
in the data: that is, 10% for Voyager (Dones et al. 1993) and
5% for Cassini. These best-fitting models and data are shown in
Figures 25 and 26.

Clearly, in the Voyager geometry, the model using the
Supulver restitution law does not give adequate results: there
is a large mismatch between the model amplitude and the
observations. We also ran models with a size-distribution power-
law index of q = 3, but found an insignificant change in
the model amplitude. This discrepancy has been known for
some time, and it has been long surmised that its cause was
related to an excessive abundance of small particles in between
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Figure 25. The best-fit models produced by ray tracing the five simulated ring patches shown in Figure 21 using the geometry appropriate for the Voyager data,
together with the observed Voyager light curve adjusted in amplitude (as described in the text) for an orbital position of 128,000 km. The best-fit albedo and angular
shift are given in the legend to each figure.

the simulated wakes, which has the effect of reducing the
wake/interwake contrast and smoothing out the light curve
(Porco et al. 2003). It was for this reason that restitution
laws that yielded greater inelasticity at velocities appropriate
to these interwake particles, and one that cleared out the small
interwake particles, were used in running additional dynamical
simulations. The normalized residuals for the Supulver model
fit to the Voyager data are RMS = 0.56.

The matches in amplitude using the more lossy restitution
laws are better than for Supulver but some are better than others.
In the Voyager case, the best-fitting model in terms of shape,

amplitude, and minimum residuals is the v* = 0.001 cm s−1 law.
With a best-fitting albedo A = 0.38 ± 0.04 and an angular shift
of ∼ 7◦, it produces the lowest normalized residuals of RMS =
0.14. The formal albedo uncertainties are 1σ and determined by
the shift in the fitted albedo that produces an increase of 1 in the
normalized residuals (Bevington 1969).

Each of the panels in Figure 21 is a single time step near
12 orbits in a dynamical simulation that ran for at least 15 orbits,
far past equilibration of the system. The wake structures in these
simulations are transient and form and shear on timescales of
an orbit, but the overall character of the ring patch to the eye
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Figure 26. The best-fit models produced by ray tracing the five simulated ring patches shown in Figure 21 using the geometry appropriate for the Cassini data, together
with the observed Cassini light curve. The best-fit albedo and angular shift are given in the legend to each figure.

is largely the same. Nonetheless, to determine the variation
in our ray-tracing results due to the transient nature of the
“scenes” in Figure 21, we chose a different time step in the
v* = 0.001 cm s−1 simulations than that shown in Figure 21
and ray-traced it at the Voyager and Cassini geometries. The
resulting curves are displayed next to the nominal curves in
Figure 27 and illustrate the level of variation one can expect in
the model light curve for any given restitution law model over
the course of a simulation. In fits of the Voyager and Cassini
data to their respective ray-traced curves extracted from the
two different time steps represented in Figure 27, the minimum
normalized residuals varied ∼20% for both Voyager and Cassini

geometries. When six different postequilibration time steps
from the same simulation (v* = 0.001 cm s−1) were chosen
for ray tracing and intercomparison, the standard deviation of
the residuals from the mean was σ ∼ 14%. Thus, a variation
of ∼20% in the minimum normalized residuals obtained from
different restitution models fitted to the same data set, which is
∼1.5σ from the mean residuals, and the concomitant differences
in the shapes of the resulting light curves as shown in Figure 27
are not statistically significant.

The remaining velocity-dependent restitution models have
increased normalized minimum residuals over those of the
v* = 0.001 cm s−1 model by a factor significantly greater than
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Figure 27. Ray-tracing results for both the Voyager and Cassini geometries, comparing model light curves at two different time steps—12.2 and 15.7 orbits—in the
v* = 0.001 cm s−1 simulation. One of these time steps (T = 12.2 orbits) is the second-from-the-bottom ring patch shown in Figure 21.

20%—that is, ∼60% for v* = 0.01 cm s−1 and ∼80% for
Bridges—but not different from each other by more than 20%.
The constant εn = 0.1 model had minimum residuals ∼50%
greater than the v* = 0.001 cm s−1 model.

Thus, we conclude that, of all the models we tried, the best-
fitting model for the ring region at 128,000 km observed in the
Voyager geometry is the v* = 0.001 cm s−1 restitution law and
yields an angular shift of ∼7◦ and an A = 0.38 ± 0.04. This is
only somewhat lower than the albedo observed for the mid-A
ring through the Voyager clear filter (with λeff = 0.49 μm), A =
0.49 (Figure 14 of Dones et al. 1993), when 2σ uncertainties
are considered.

In the Cassini case, we can also confidently reject the Supulver
model; it cannot reproduce the shape or amplitude of the Cassini
light curve and its residuals are relatively large: RMS = 0.70.
The more lossy velocity-dependent models do much better but
which of these is best is less clear: the variation in normalized
minimum residuals is no larger than 13% among them, and
their average is RMS = 0.39. The constant εn = 0.1 law
yields residuals even larger: RMS = 0.48. So, at present,
the data extracted from Cassini images cannot distinguish
among any of the remaining laws—the constant εn, Bridges,
v* = 0.01 cm s−1, and v* = 0.001 cm s−1 laws —though the
velocity dependent ones seem marginally better. The best-fit
albedos for these velocity-dependent models are A ∼ 0.56 ±

0.04, consistent with the albedo, A = 0.58, derived in the red
region of the spectrum sampled by the Cassini clear filter for
this region of the rings (Porco et al. 2005).

6. SUMMARY AND DISCUSSION

We have developed two computer codes that form the basis
of a technique for probing the physical structure and particle
properties in planetary rings from their light-scattering behavior.
Our ring-patch code realistically simulates a patch of colliding
and self-gravitating particles in orbit around a planet and readily
produces the transient, 100–200 m shearing agglomerations
of particles called “self-gravity wakes” in Saturn’s rings that
we have demonstrated here are responsible for the azimuthal
brightness asymmetry observed over the past 50 years in
Saturn’s A ring, and clearly seen in Voyager, HST, and Cassini
images of the ring.

We have also developed a deterministic ray-tracing code that
“shoots” light rays into a box of particles having predetermined
photometric properties and distributed throughout the box either
arbitrarily—for example, randomly or in the form of idealized
wake structures—or realistically by our ring-patch code. It can
simulate light scattering over a wide range of geometries, and
successfully accounts for direct sunshine and sunlight reflected
off the planet and onto the rings.
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Our technique has been validated in comparisons of our
results with those of other, accepted analytic or seminumerical
techniques, such as classical single-scattering calculations and
numerical adding/doubling methods.

We can reproduce the absolute reflectivity, I/F , of a region
in Saturn’s outer A ring, beyond the Encke gap, observed in
Cassini low- and high-phase images using exceedingly thin rings
(∼10 m vertical thickness), a particle albedo of A = 0.63 ±
0.03, and an empirical, power-law phase function with an index
n = 2.624. . ., more forward-scattering than we find for the
mid-A ring. We also reproduce the brightness observed in
Saturn’s low optical depth C ring at low, intermediate, and high
phases using an albedo of A = 0.32 ± 0.02 and a Callisto-
like phase function with index n = 3.092. Because of its
low optical thickness, we cannot discern via this technique the
vertical thickness of the C ring: thin or thick models might
apply. We can also reproduce a suite of photometric observations
not explained by the predictions of standard radiative transfer
applied to classical rings.

Our findings here now allow ring thickness to be used as a
parameter to explain certain Voyager photometric observations
of Saturn’s A ring, as has been suggested by others (Dones
et al. 1993; Porco et al. 2001). Saturn’s rings may in fact be
darker at high phase than predicted by classical models because
they are very thin. Observations of brightness variations across
the B ring, which have been interpreted in terms of variations in
particle albedo across the ring (Estrada & Cuzzi 1996), may well
also have a component attributable to ring thickness instead. We
will investigate this suggestion in the future.

We have made considerable progress in determining the elas-
tic and photometric properties of particles in the mid-A ring from
modeling of the well-known azimuthal brightness asymmetry
observed there. We find that to reproduce the shape and the am-
plitude of the A ring light curve in both Voyager and Cassini low-
phase, lit-face geometries requires a velocity-dependent coeffi-
cient of restitution that yields considerably more energy loss at
the velocity dispersions appropriate for the small particles in the
rings than is produced by the most recent laboratory measure-
ments on ice (Supulver et al. 1995) and closer to but still more
lossy than is produced by the original laboratory measurements
(Bridges et al. 1984). Though useful in rejecting the Supul-
ver model, the Cassini measurements used in this study were
unfortunately not able to discriminate among the lossier resti-
tution laws—that published by Bridges et al. (1984), or those
given by the Borderies et al. (1984) law with v* = 0.01 cm s−1

or v* = 0.001 cm s−1, or a law assuming a constant
εn = 0.1. We suspect that in future work, by using the
numerous Cassini images now available over a range of il-
lumination and viewing geometries, and utilizing improved
photometric calibration, this circumstance will considerably
improve.

For the moment, it is the Voyager data in the mid-A ring that
provide the greatest leverage in determining the particle elastic
properties and these data single out the v* = 0.001 cm s−1

law as preferred over the others. This law yields a decrease in the
coefficient of restitution for normal collisions, εn, at the velocity
dispersions in question (Figure 22) as large as a factor of ∼5
below those determined from the Supulver model (compare εn =
0.15 for the former to εn = 0.75 for the latter at ∼0.1 cm s−1)
and a factor of ∼3.5 below the Bridges model (compare
εn = 0.15 for the former to εn = 0.55 for the latter at the
same speed). The Cassini data are at least consistent with these
results.

The exact shape of the elasticity law beyond the range of
velocity dispersions applicable to Saturn’s rings is of course not
addressed by this work. Other laws that behave very differently
outside the relevant velocity range, and yet yield equivalently
low and velocity-dependent coefficients of restitution within
the relevant velocity range as that produced by the Borderies
v* = 0.001 cm s−1 law used here, may work just as well.
Regardless of the exact shape of the elasticity law, our findings
point to ring particles whose elastic properties are likely to be
velocity-dependent and whose energy loss in mutual collisions,(
1 − εn

2
)
, is ∼40% greater than previously found in models

of the A ring azimuthal brightness asymmetry (French et al.
2007b).

It is important to note that all the laboratory experiments
were performed on relatively smooth spheres of solid ice. The
Bridges experiments were performed on frosty warm (200 K) icy
spheres; the Supulver experiments were done on colder (100 K)
frost-free spheres. However, real particles in Saturn’s rings,
which are closer to 100 K and may be frosty, also undoubtedly
have nonideal, rough surfaces for which collisions at contact
points having a radius of curvature smaller than that of the
particle will yield greater loss than collisions on smooth spheres
(Borderies et al. 1984). Moreover, collisions between particles
having a regolith (Colwell & Taylor 1999; Colwell 2003) or
large porosity (and therefore a great percentage of void space)
will also produce greater inelasticity, as some fraction of the
energy of collision will be used to compact the material with
very little rebound. Together, these processes may make for
extremely inelastic particles.

In the future, we will extend our work on Cassini images
of Saturn’s rings to a variety of resolutions, geometries, and
ring regions, as well as improve the image calibration in order
to reduce measurement uncertainties in these data. We will
also investigate the trade-off between increased inelasticity and
particle size distribution in refining our model for the A ring
asymmetry and, in turn, the estimates of energy loss as a function
of velocity dispersion. And we will investigate the source of the
angular offset between the observations and our models and
its effects on the model results. Nonetheless, our results that
the particles in Saturn’s rings are more lossy than previously
found should prove significant in the evaluation of the transfer
of angular momentum and energy across Saturn’s rings, both in
perturbed and nonperturbed regions, and ultimately in studies
of ring age, evolution, and lifetime.
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