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0.1 Introduction & Techniques

In this review I will outline the importance of discrete particle collisions in the context of
planetesimal dynamics and show how they can be simulated by direct methods. Direct
methods are those in which the evolution of each particle is tracked explicitly. Although
more computationally expensive than statistical techniques, direct methods have the
advantage of making fewer approximating assumptions about the nature of interactions
(such as the collective gravity in a system). The techniques will be illustrated in §0.2
using several examples from a broad range of applications.

0.1.1 Collisions in the Solar System

Under the “Planetesimal Hypothesis” of Solar System formation, planets grow by the
pairwise accretion of planetesimals (see [8] for a review). Detecting and resolving particle
collisions accurately is therefore of critical importance. In the case of planet formation,
direct methods that incorporate collision mechanics provide bonus information, such as
the exact planet genealogy (an indication of radial mixing) and the spin evolution (since
the net spin is the product of individual impacts). The question of planet formation will
be addressed in more detail in §0.2.5.

Other physical processes in the Solar System in which collisions play a key role include
the production and dynamics of dust. Grain-grain collisions can lead to fractal growth
(§0.2.3) and interesting collective behaviour (§0.2.2), even when gravity is unimportant,
while collisions between larger bodies can replenish the dust population. Roughly 15%
of nearby stars surveyed by IRAS show infrared excess that could be indicative of sur-
rounding dust clouds [3]. In systems such as β Pic it is believed that this dust must be
replenished by collisions between larger parent bodies, possibly the functional equivalent
of our own Kuiper Belt Objects, i.e. debris left over from the formation of the Solar
System. Asteroid collisions in our own Solar System are thought to be responsible for
the Zodiacal dust cloud.

Collisions are important in more fundamental ways as well. For one, collisions provide
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a mechanism for transport of angular momentum in dense media. The momentum is
transported via sound waves and gives rise to a nonlocal viscosity that may regulate
behaviour in systems such as Saturn’s dense particle rings (§0.2.1). In general, collisions
provide a mechanism for damping excitations induced by gravitational scattering and
shear in a Keplerian disk. By removing heat, the effective volume of the system decreases,
causing the collision frequency to increase. In sufficiently cold systems this can lead to
runaway growth of particles, a key ingredient of planet formation.

Finally, on a more technical note, simulations involving physical collisions are inher-
ently discretized and do not require softening. This is an advantage so long as no hard
binary formation is expected (otherwise regularization techniques might be required).
The particle equations of motion therefore incorporate Newton’s law of gravity exactly.

0.1.2 Collision Detection

To detect collisions in direct simulations, a code must make use of either hindsight or
foresight. To use foresight, each collision must be predicted in advance. This is only
feasible for linear trajectories, such as in the absence of gravity, or when using a low-
order integrator like “leap-frog”. In this case, the time until surface contact of particles
of size R1 and R2, relative position r, and relative velocity v is given by:

δt = − (r·v)

v2

{

1−

√

1− [r2 − (R1 +R2)2] v2

(r·v)2

}

. (1)

A necessary condition for collision is that r·v < 0 (i.e. δt > 0) and that the argument
of the square root be non-negative (otherwise there is no intersection). Note that to
evaluate the collisions in the correct sequence, all potential colliders must be considered
at each step.

Hindsight is necessary if the particle trajectories between updates are complicated,
such as when using a high-order integrator. In this case collisions are detected after

they actually happen. The goal is to minimize the interpenetration distance by choosing
a time-step that is sensitive to close encounters, requiring an integration scheme that
can handle changes in time-step size or that uses individual particle steps. A versatile
expression is given by [1, 10]:

δt = η

(

aä+ ȧ2

ȧ
...
a+ ä2

)1/2

, (2)

where a is the particle acceleration and η is a dimensionless parameter ¿ 1 chosen such
that overlaps are <

∼1% of the sum of the particle radii. Once a collision has been detected,
the particle positions must be corrected so that the particles just touch before evaluating
the collision outcome. For small overlaps it is safe to simply move the particles out along
their line of centres [11]. For this hindsight method, only the nearest neighbour need be
checked for collision, information that usually comes for free during gravity calculations.

Note that the collision methods described here are only valid for instantaneous, iso-

lated, single point contact collisions: surface deformation effects are ignored, only one
collision can take place at a time, and non-spherical colliding bodies must have only one
contact point. This is sufficient for most cases, though the isolation condition is some-
times violated in the most dense simulations (e.g. rubble-piles, §0.2.4), resulting in small
but manageable errors.
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Physics

mi∆vi = (−1)i−1P, i = 1, 2

∆hi = ci×(−1)i−1P, i = 1, 2

u′n = −εnun

Pt = µtPn

Pp = µpPn

Definitions

hi = Iiωi, i = 1, 2

u = v + σ

v = v2 − v1

σ = σ2 − σ1

σi = ωi×ci, i = 1, 2

Figure 1: Definitions and equations for the collision problem.

0.1.3 Collision Resolution

There are many possible outcomes following a collision, depending on the nature of the
colliding bodies. Here I will concentrate only on bouncing. Other possibilities are briefly
described in §0.2.3 and §0.2.5. Fig. 1 illustrates the important physical parameters for
the collision of two arbitrarily shaped bodies and lists the governing equations along with
the necessary definitions. The Ii’s refer to the inertia tensors of the colliding bodies. The
quantity εn is the normal coefficient of restitution; µt and µp parameterize surface fric-
tion. The physics consists of statements of linear and angular momentum conservation,
along with a kinematic equation and two kinetic equations. The latter three equations
are empirical in origin—for complicated body shapes and surface friction they do not

guarantee a physically meaningful outcome [5]. Remarkably, fully self-consistent bounc-
ing models based on simple restitution parameters have yet to be devised. Fortunately,
self-consistent solutions are derivable for certain special cases: non-central impact with-
out surface friction [12]; central impact between spheres with surface friction [11]; and the
simple case of central impact without surface friction, in which only linear momentum
conservation and the kinematic equation play a role, i.e.:

∆v1 = (1 + εn)
m2

m1 +m2

un, ∆v2 = −m1

m2

∆v1. (3)
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Figure 2: Local simulation of Saturn’s B ring, showing the initial conditions (left) and
the state after 3 orbits (right). Note the clumping that develops in the top view.

0.2 Applications

0.2.1 Planetary Rings

The brightness of Saturn’s rings and the size distribution of the particles suggest that
collisional processes are still at work. Due to the thinness of the rings and the observed
density of material, collisions are thought to be frequent (>∼ 1 collision/particle/orbit in
the dense B ring). Most of the features in planetary rings are attributed to resonances
and shepherding by moons. However, the densest rings may be subject to gravitational
instabilities that cause particles to clump together loosely for a while and then dissipate
in the tidal field after just a few orbits. [13] showed that Saturn’s A and B rings may
be susceptible to formation of wakes similar to those found by [7] in stellar disks. The
difference is that physical collisions play an important role in the rings case, reducing
random motions and causing clumps to form. Both [13] and [11] have performed simu-
lations illustrating these phenomena (Fig. 2). The instability wavelengths are too small
to have been detected by Voyager, but the Cassini spacecraft, with an estimated 30 m
resolution, should be able to see them.

0.2.2 Dynamics of Granular Media

As a quick example of the role of collisions in the dynamics of granular media, consider
the following experiment: start with three identical non-gravitating balls in 1D with
velocities such that the outer two balls converge on the inner ball. The outcome of the
first two collisions can be written as a matrix equation. If the coefficient of restitution ε

satisfies 0 < ε < 7 − 4
√
3, there is at least one real eigenvalue of the matrix between 0
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Figure 3: An example of a fractal aggregate.

and 1. This means the system will “collapse”, suffering an infinite number of collisions
in a finite amount of time. This remarkable result has been confirmed by numerical
simulation and has been found to work in 2D as well [9]. In unpublished work, I’ve
shown that the phenomenon also occurs in 3D. Now consider the case where ε slightly
exceeds its minimum critical value. In that case, a fourth particle must be introduced to
ensure collapse. This works in general: for larger values of ε, more particles are required
to ensure collapse. Hence in a large granular system, collapse could occur even among
relatively elastic particles. This might help explain some collective phenomena observed
in granular systems in which patterns are seen to develop over large distances.

0.2.3 Fractal Aggregate Dynamics

If particles are constrained to stick at the point of contact, fractal aggregates such as
the one shown in Fig. 3 form. This is an example of ballistic accretion, and for identical
particles leads to a fluffy aggregate of fractal dimension ∼ 2. Using the equations in §0.1.3
along with Euler’s torque-free rigid body equations of motion, it is possible to observe
such clusters bounce off each other [12]. Fractals may play a role in the early stage of
planet formation: their fluffy nature would allow dust aggregates to couple more easily
with the nebular gas and be transported greater distances. They also grow more quickly
than shapes with higher fractal dimension. Elsewhere in this volume, Blum shows how
to grow these fractals in the laboratory.

0.2.4 Tidal Distortion and Disruption of “Rubble-Piles”

With careful collision treatment it is possible to simulate “rubble-piles”, that is, loose
collections of material bound together only by self-gravity. [2] showed that if tidal dis-
ruption caused Comet D/Shoemaker-Levy 9 (SL9) to fragment into ∼ 21 pieces during
its penultimate encounter with Jupiter in 1992, then the progenitor had to be virtually
strengthless: at periapsis, tidal forces stretched the rubble-pile into a needle-like shape;
as the rubble-pile receded from the planet, gravitational instabilities along its length
caused the particles to accrete into discrete clumps, making a “string of pearls”. The
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comet could not simply have been in 21 pieces to begin with, as the pieces would have
paired off after the disruption, making too few observed fragments.

The discovery of SL9 has sparked a series of investigations into the dynamics of
rubble-piles. [14] showed that SL9-like disruptions of cometary rubble-piles can explain
the crater chain population observed on the Galilean satellites. [4] can account for
the observed crater chains on the Moon by invoking tidal disruption of Earth-crossing
asteroids. They also show that formation of crater chains on the Earth via disruption
of asteroids by the Moon is very unlikely. A comprehensive investigation by the same
authors of rubble-pile distortion and disruption is currently in preparation for Icarus. It
is found that less catastrophic tidal encounters result in milder stripping of material from
the rubble-pile, which can lead to binary asteroid formation. Other phenomena that may
be explained by rubble-pile distortion and disruption include the unusual shapes of some
asteroids, the range of observed asteroid spin periods, the population of doublet craters
on the terrestrial planets, and possibly even the origin of the Martian satellites.

0.2.5 Formation of the Solar System

Direct numerical simulations involving particle collisions can improve our understanding
of the Mid to Late stages of planet formation. This period is characterized by runaway
growth of a few large bodies in a swarm of smaller, faster moving planetesimals, followed
by isolation of the largest protoplanets until slow mutual perturbations nudge them into
crossing orbits, ultimately leading to giant impacts. There are a number of outstanding
questions that such simulations can help address, including: the extent of radial mixing,
the origin of planetary spin, the clearing of the asteroid belt, and the role of giants in
terrestrial planet formation. A key ingredient in such simulations is the prescription used
to determine collision outcomes. Typically the outcome is based on the relative impact
energy [6], with the following outcomes in increasing order of energy: agglomeration,
bouncing, cratering (mass transfer), and fragmentation. Of course, no one really knows in
detail what happens when, say, two large asteroids collide. We must rely on extrapolation
from laboratory experiments. However, carefully crafted simulations can be modified to
including new findings as they become available.

I am currently working with Tom Quinn and George Lake at the University of Wash-
ington to modify a powerful spatially and temporally adaptive cosmology code, making
it suitable for simulations of Solar System formation. The code uses domain decomposi-
tion to balance work between multiple processors, and a k-D tree to reduce the cost of
computing long-range forces. New components that must be incorporated include colli-
sion detection and resolution, and sensitive hierarchical time-steps. Using a Cray T3E
we plan to simulate 106 planetesimals for 106 yr or more, which would revolutionize the
state of the art in direct simulation of Solar System formation.

0.3 Summary

I have shown some of the important roles collisions play in planetesimal dynamics. Col-
lisions can be incorporated realistically into numerical simulations, allowing direct mod-
eling of a variety of interesting problems. Applications include planetary rings, granular
physics, fractal aggregates, tidal disruption, Solar System formation, and more!
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