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A self-consistent numerical treatment for modeling fractal ag-
gregate dynamics is presented. Fractal aggregates play an impor-
tant role in a number of complex astrophysical regimes, including
the early solar nebula and the interstellar medium. Aggregates
can be of various forms and sizes, ranging from tiny dust particles
to ice chunks in planetary rings and possibly even comets. Many
observable properties, such as light scattering and polarization,
may depend sensitively on the geometry and motion of such aggre-
gates. Up to now various statistical methods have been used to
model the growth and interaction of aggregates. The method pre-
sented here is unique in that a full treatment of rigid body dy-
namics—including rotation—is incorporated, allowing individual
particle and cluster trajectories and orientations to be followed
explicitly. The method involves solving Euler’s equations for rigid
body motion and intreducing a technique for bhandling oblique
collisions between arbitrarily shaped aggregaties. Individual parti-
cles may be of any size and can have their own spin, Currently
tapgential impulses during impacts are assumed negligible, al-
though equations for the treatment of tangential friction are pre-
sented. Models for the coagulation and restitution of aggregates
are discussed in detail. Some of the key features required for a
fragmentation model, not implemented here, are discussed
briefly. Torque effects arising from self-gravity, tidal fields, or gas
drag are not presently considered. Although the discussion focuses
mainly on the theory behind the numerical technique, test simula-
tions are presented to compare with an analytic solution of the
coagulation equation and to illustrate the important aspects of the
method. © 1995 Academic Press, Inc.

1. INTRODUCTION

The importance of fractal aggregate dynamics in astro-
physical systems dominated by gas and dust is becoming
increasingly recognized. In the present context, an aggre-
gate is a heterogeneous collection of particles fused to-
gether through mutual inelastic collisions. An aggregate
may also refer to a body made up of individual fragments
held together by mutual self-gravity. A solid aggregate is
said to be fractal if its geometry is such that the density of
constituents falls off as some nonzero inverse power of

the radius. Hence fractal aggregates are “‘fluffy’” and
consequently, if the mass is sufficiently small, may be
able to couple with any gas in their environment very
easily (e.g., Meakin and Donn 1988).

It has long been thought that gravitational instability
alone in the solar nebula could explain the rapid growth
of planetesimals (Safronov 1969, Goldreich and Ward
1973). But recent work (Weidenschilling et al. 1989,
Cuzzi et al. 1993, Weidenschilling and Cuzzi 1993) sug-
gests that turbulence may have prevented the onset of
gravitational instability until meter-sized or larger parti-
cles had been formed through unfocused binary accre-
tion. In this case mutual collisions were driven by turbu-
lence in the gas or by relative velocities arising from drift
rates that varied depending on particle size. It is likely
that the resulting accretion was ballistic in nature; that is,
the mean free path between collisions exceeded the mean
particle size. A variety of physical and numerical experi-
ments have shown that such aggregation leads naturally
to the formation of fractal aggregates (e.g., Blum and
Miinch 1993, Blum et af. 1994). Current studies of stars
such as 8 Pictoris that are observed {o have circumstellar
material promise to yield further insights into the dynami-
cal properties of primordial gas and dust (see, ¢.g., Back-
man and Paresce 1993).

The only physical evidence that exists today in our
Solar System regarding the nature of carly aggregates can
be found in primitive meteorites. These bodies are abun-
dantly speckled with millimeter- to centimeter-sized
“‘chondrules’” whose origins are still largely unknown
(Grossman 1988, Palme and Boynton 1993}. However, it
is generally accepted that solid clumps of material had to
be heated and cooled rapidly in order to form the
chondrules (e.g., Boss and Graham 1993). Many theories
of the heating and cooling mechanisms have been put
forward, but it is likely that a better understanding of -
aggregate dynamics would improve the picture,

Aggregates need not all be tiny clumps of dust parti-
cles. Recent numerical work on Saturn’s rings (Richard-
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son 1994, Salo 1994) has shown that aggregates can read-
ily form in the dense regions of the outer main rings,
where the constituent particles are inferred to be chunks
of water ice ranging in size from ~1 ¢m to several meters
in size (Cuzzi et al. 1984). Some of these particles may
stick due to cohesion between surface frost layers
{Hatzes et al. 1991}, though this process was not modeled
in the cited simulations. The aggregate formation is
driven by gravitational instability, despite the strong tidal
field of the planet. The associations typically persist for a
few orbital periods before breaking up. The presence of
these aggregates and associated gravitational wakes may
explain the observed azimuthal brightness asymmetry of
the A ring (Lumme and Irvine 1979). Their presence is
also consistent with recent results from a Voyager photo-
polarimeter experiment (Showalter and Nicholson 1990).
Recent world attention on the spectacular impact of
Comet Shoemaker-Levy 9 with Jupiter has focused in-
terest on aggregation processes even more. Weidenschill-
ing (1994), Asphaug and Benz (1994), Solem (1994), and
others proposed models for the nature of the comet frag-
ments, suggesting that some of the fragments themselves
may be loosely bound aggregates (earlier work in this
area can be found in Donn 1990). Tt will be very interest-
ing to see the quantitative measurements arising from this
once-in-a-millenium event, which may shed further light
on the nature of these larger gravitational aggregates.
Numerical simulations of small-particle aggregation in
astrophysical contexts generally employ statistical meth-
ods, such as Monte Carlo techniques, to build aggregates
in free space by solving the coagulation equation
(Liffiman 1992} or by shooting particles or clusters at a
nucleus fixed in a lattice (e.g., Ossenkopf 1993, Blum et
al. 1994}, Although a large number of particles (N = 10%)
can be simulated using these methods, the principal dis-
advantage of these techniques is that they are not dynam-
ically self-consistent. That is, the details of restitution
and solid body rotation are not taken into account. Also,
typical lattice simulations are divided into two regimes:
particle~cluster aggregation (PCA) and cluster—cluster
aggregation (CCA). In PCA simulations, aggregates are
formed one particle at a time; in CCA, aggregates of iden-
tical size are merged to form larger aggregates, It is likely
that the actual aggregation process that takes place in the
solar nebula (for example) consists of a combination of
these two extremes, probably dominated by the coagula-
tion of subclusters of different size. The configuration of
the final aggregate may depend sensitively on the dy-
namics of the subclusters. For example, if energy equi-
partition takes place in the system, then the larger an
aggregate, the more likely it is to move and spin at a
slower rate. In order to investigate these effects, it is
necessary to adopt a more sclf-consistent, though much
more computationally intensive, approach. It is not clear
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how important these details will turn out to be in astro-
physical systems where particle aggregation is taking
place. Nevertheless, it is now possible (0 model these
effects, and numerical experiments that use these meth-
ods may prove valuable in future investigations.

Section 2 of this paper details a new particle-in-a-box
method for modeling aggregate dynamics in free space.
The aggregate constituents are uniform spheres and can
be of arbitrary size. Spheres are chosen because their
inherent symmetry makes them the simplest geometric
objects to handle, both for compnting inertia tensors and
for detecting collisions. However, the basic theory is
fully general and can be applied to more arbitrary shapes.
In the current study, which focuses on the underlying
numerical method, effects of mutual gravitation and gas
drag are not considered. These effects and other interest-
ing phenomena will be addressed in future projects.

Note that both aggregates and their constituents (the
basic building blocks of the aggregates) are referred to
interchangeably as “‘particles™ in the text. This is be-
cause, on its own, an aggregate has many of the proper-
ties of a single particle located at the center of mass, and
indeed the numerical method described here takes ad-
vantage of this. It should be clear from the context
whether a “‘particle” refers to a single building block or
an aggregate. The term ‘‘cluster’” is also occasionally
used to refer to an aggregate.

Results of test simulations performed with the new
code are presented in Section 3 and compared with an
analytic solution of the coagulation equation. A modified
version of the box_tree code discussed in detail in
Richardson (1993, 1994} was used for the simulations.
Properties of the aggregates formed in the simulations are
presented and discussed in this section. A summary of
the conclusions follows in Section 4.

2. THEORY AND SIMULATION METHOD

The aggregate simulation method described here rec-
ognizes three possible collision cutcomes: coagulation,
restitution, and fragmentation. All three processes can
involve single particles, a single particle and a cluster
(aggregate), or two clusters. In the test simulations (Sec-
tion 3}, only coagulation and restitution are considered,
and the choice of collision cutcome depends only on the
impact energy for simplicity. The treatment of each pro-
cess is described below, together with a full description
of the mathematical formalism and numerical tools
needed to carry out the simulations.

2.1. Aggregate Properties

There are many aggrepate properties that are useful to
characterize. Dynamically, the most important are the
moments of inertia, the principal axes, and the angular
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velocity (spin). There are other propertics that affect the
dynamics of an aggregate but which are context depen-
dent. These include the ratio of projected surface area to
mass (important for gas drag), and the surface charge
(important for dust-like aggregates). A helpful universal
parameter that can be used to characterize the geometry
of a given aggregate is the fractal dimension fp, defined
later.

For this initial study, only context-independent dy-
namical properties are of interest. These properties are
also independent of the center of mass motion. Much of
the treatment that follows is based on Chapter 5 of Gold-
stein (1980), which the reader may find to be a helpful
review, The discussion of properties ends with a brief
note on the computer representation of an aggregate.

2.1.1. The inertia tensor. The inertia tensor I relates
the spin angular momentum h of a rigid body to its angu-
lar velocity @ h = lew. Using the parallel axis theorem,
the inertia tensor of an arbitrary aggregate of spheres is
given by

Lgg = E [ + mi(rfl — ri)l, (D

where I = # m:R? 1 is the inertia tensor with respect to
any diameter of a single sphere of mass m; and radius R;
(1 is the unit matrix). Each sphere i is located at a posi-
tion r; with respect to the center of mass of the aggregate.

Note that the inertia tensor is a real, symmetric matrix,
that is, I" = I, where superscript T denotes the transpose
operator. This makes it particularly simple to diagonalize
I (see below). Furthermore, I is always invertible.

2.1.2. Principal axes of an aggregate. For any rigid
body, there exists an orthogonal coordinate system in
which the inertia tensor is diagonal, This coordinate sys-
tem, denoted by the principal axes p;, { = 1, 2, 3, can be
found by diagonalizing I in the usual way (e.g., Press et
al. 1992, Section 11.1-11.3). The eigenvectors of the in-
ertia tensor are the principal axes, and the eigenvalues
{the nonzero elements of the diagonal matrix) are the
principal moments of inertia. Many operations are simpli-
fied by working in the body frame. For example, the rota-
tional component of the kinetic energy of an aggregate is
simply given by

T=1lo]+3bes + 1 Lol (2
where [;, i = 1, 2, 3, are the principal moments of inertia
and the w;’s are the spin components measured with re-
spect to the body axes. The spin components in the fixed
space frame can be obtained by a simple transformation:
if A is a matrix whose columns are p(, p:, and s, then
Wspace = Adhogy. Since the transformation matrix is
orthogonal, the operation is equivalent to a rotation. This
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transformation can be used with any vector quantity
measured in the body frame. For example, the angular
momentum in body coordinates due to rotation of an ag-
gregate is given by

hyogy, = (Fio), Loz, Izws). 3)

The angular momentum as seen in the space frame js then
hopyce = Ahpogy. Finally, note that since A is orthogonal
(i.e., its column vectors form an orthonormal set), it is
invertible and its inverse is equal to its transpose. Thus
for any vector X, Xipace = AXpody and Xpoay = ATXgpace-
From now on, A will denote the matrix whose columns
are the principal axes.

2.1.3. Computer representation. The computer rep-
resentation of an aggrepgate poses a bit of a challenge,
since it is necessary to keep track of the orientation of
each component sphere. The simplest implementation is
to represent each aggregate by a linked list of its basic
building blocks, the first member of which contains all the
center of mass information, such as position, velocity,
time-step data for integration, and various statistics. This
root particle structure also contains the principal mo-
ments of inertia of the entire aggregate, the principal axes
(i.e., the orientation of the body as a whole}, and the
location in memory of the first member particle. The
member particle structures need only contain minimal
information: the position of the sphere center in body
coordinates, the mass and radius, optional orientation
information (useful for animations if the sphere has a
surface pattern), and the memory location of the next
member. The advantage of this setup is that the center of
mass particle and a single, unaggregated particle share
the same data structure, so that integration of (linear)
particle movement need not distinguish between simple
and aggregate particles. This means that linear and rota-
tional motions are decoupled in the program (at least in
the zero-torque case), greatly simplifying the numerical
treatment.

2.2. Rigid Body Equations of Motion

The exact orientation of an aggregate is needed in or-
der to detect collisions accurately. In two dimensions this
is straightforward since rotational motion of aggregates in
2D can be characterized by a scalar angular velocity that
remains constant between collsions. In 3D the problem
becomes considerably more complex because the angular
velocity vector is no longer constant: it can affect the
orientation of the principal axes which in turn changes
the angular velocity, leading to such phenomena as free
precession. This complication is well known in rigid body
dynamics and can be treated with a combination of
Euler’s equations and some vector calculus.
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2.2.1. Euler's equations. The rotational motion of a
rigid body is governed by Euler's equations

Lay — wyes(l — 1) = N,
Lw; — ey (ls — ) = Ny,

Loy — wio(l, — 1) = Ni,

(4)

where I; and w; have the usual definitions, and the N;'s are
the principat axis components of any net torque acting on
the body. In the absence of any net torques, Euler's
equations reduce to

Loy = sl — 1),

(5)

haw; = eawy(l; — 1)),

oy = wjen(ly — 1),

which is a set of three linear, coupled, first-order differ-
entia) equations. Such systems can readily be solved us-
ing standard numerical techniques {e.g., Press et al.
1992, Section 16.1: ““Runge-Kutta Method™’). The solu-
tion gives the angular velocity of the body as a function of
time.

2.2.2. Motion of the principal axes.,  Although Eq. (5)
fully describes the evolution of the angular velocity of a
rigid body with respect to the body axes, more differen-
tial equations are required in order to calculate the spin
as seen in the fixed space frame. This is because the
principal axes will themselves move with respect to the
space axes as the system evolves in time. To see this,
consider a point r fixed in the body. Since the principal
axes form a three-dimensional basis set, r can be ex-
pressed in the body coordinates r = riy; + ripz + rips.
Let w be the instantaneous angular velocity of the body
as seen in the space frame, so that @ = wpi + wsp; +
wifs. Then the instantaneous velocity of the point at r due
to rotation is given by v = @ X r as seen in the space
frame. To see how the first principal axis moves in time,
setry = 1, r; = r; = 0 (viz., a point at unit distance on the
pi axis) and expand the cross product. Repeat the proce-
dure for axes 2 and 3 to obtain

P = iy — @,
P2 = wip; — wsp, (6)

-
”

P = wap — wipa.

Since these are vector eguations, they introduce 9 new
variables, making 12 in all {i.e., 9 axis components plus 3
spin components}. Fortunately, these equations are of
the same type as Euler’s equations, namely linear and
first order, so they can be handled easily by a standard
differential equation solver.
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Note that it was not necessary to invoke the cumber-
some machinery of Euler angles to solve this problem
(e.g., Klavetter 1989). Not only does this make the solu-
tion easier to understand, but it saves considerable CPU
expense during simulations since complicated trigono-
metric operations are not required.

2.3. Collision Detection

Binary collision detection is an essential part of dy-
namical simulations of small bodies since dissipative col-
lisions provide a balance for any energy input from or-
bital motions. In practice, a collision is detected only
after the two bodies concerned just start to overlap. In
Richardson (1994), a careful procedure was outlined to
correct for such overlaps. However, in the absence of
self-gravity, these overlaps (=1%) can safely be ne-
glected,

To minimize overlaps, however, particle/cluster time
steps should be chosen so that potential colliders are
treated more carefully than particles or clusters that are
far apart. This is easily accomplished by choosing At =
n(r/v), where r is the distance to the closest approaching
particle or cluster and v is the relative velocity. The con-
stant % is set at run time and should be less than unity
(typically about 0.1-~-0.01). These time steps are used in a
modified version of the individual time-step integration
method of Aarseth (1985) to advance the particies.

Aggregates present a special problem for collision de-
tection because of their arbitrary shapes. The procedure
used in the current study is to assign a maximum size to
each aggregate and store the value in the root particle
radius variable. The maximum size is given by

Rmax = m'le(f‘; + Ri). (7)
3

where r; is the distance of sphere  from the aggregate
center and R; is the sphere radius. If the distance between
the centers of two aggregates is less than the sum of the
corresponding maximum radii, then the aggregate orien-
tations are updated (cf. Section 2.2) and a particle-by-
particle check is performed to see if any part of the aggre-
gates in fact do overlap. If so, the contact point is noted
for use by the collision outcome routines (described be-
low). Otherwise, the distance and relative velocity of the
two closest and approaching aggregate particles are re-
corded for use in calculating the next time step. Note that
the aggregate rotation is taken into account when calcu-
lating the relative velocity, so that collisions can be de-
tected accurately even if the aggregate centers are sta-
tionary or moving away from each other.

2.4. Coagulation

Coagulation is actually the simplest particle interaction
to model, if it is assumed the contact points are perfectly
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rigid. Currently no restructuring or compaction is per-
formed after coagulation (cf. Meakin and Jullien 1988),
although this process may be important in the context of
planetesimal formation (e.g., Weidenschilling and Cuzzi
1993) and will be investigated in future work. The details
of the conditions needed for coagulation to take place,
such as surface frost layers {e.g., Hatzes et af. 1991;
Chokshi et al. 1993), similarly are omitted in favor of
simpler models for this initial study.

As pointed out in the Introduction, no distinction need
be made between particle—cluster aggregation and clus-
ter—cluster aggregation, since both processes are treated
analogously. All that is actually required is that the exact
cluster orientation be known, but this information is al-
ready contained in the principal axes and thus involves
little extra work. Moreover, the orientations are updated
automatically as part of the collision detection procedure
described above.

Once the decision has been made to connect two parti-
cles or clusters together, a new particle is created to rep-
resent the center of mass of the combined system. If
either of the colliding bodies is an aggregate, the corre-
sponding member list is simply linked in to the new parti-
cle. Most of the properties (position, velocity, inertia ten-
sor, etc.) of the new aggregate are straightforward to
compute, except the spin. To determine the spin, use is
made of the fact that the aggregation process must con-
serve total angular momentum:

Liter = hetores {(8)

where
Ioctore = rmui(ry X v1) + Ly + ma(r; X v2) + Len, (9)
Lfer = M(r X v) + lew. ao

Here the ¥'s and v’'s are positions and velocities, respec-
tively, measured in the space (fixed) frame, and M =
m, + my. Note that the position and velocity of the new
aggregate correspond to the center of mass values just
prior to the impact. Further, the new inertia tensor is
given by Eq. (1). Hence w, the spin of the new aggregate,
is the only remaining unknown. Also note that the pre-
ceding equations give the spin as seen in the space frame,
not the body frame. To obtain the spin with respect to the
body axes, write

Iw = Lop + hospr + Bosps = hetore — M X v), (11
where I, i = 1, 2, 3, are the principal moments of inertia
of the new aggregate (cf. Section 2.1.2), the j;’s are the
corresponding principal axes, and the w,’s are the desired
spin components as seen in the body frame. This equa-
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tion can be solved by writing it in the form

Mx = b, (12)
where the columns of M are given by Ii;, X = (w, w, w3),
and b = lyerore — M{x X ¥). The spin vector x can then be
determined using traditional methods of solving linear
algebraic equations (e.g., Press et al. 1992, Section 2.3:
LU Decomposition™).

2.5. Restitution

In Richardson (1994), a fully general scheme tor calcu-
lating the outcome of point-contact collisions between
two uniform spheres was presented. The procedure al-
lowed for inelastic restitution and surface friction. The
problem could be solved exactly because the collisions
were central; that is, the contact point was on the line
connecting the sphere centers. Most aggregate collisions
however are oblique, and the problem becomes surpris-
ingly difficult to solve in this case. Part of the difficulty is
that it is necessary to specify equations for each un-
known impulse component, in addition to the familiar
Newtonian equations of motion. Also, it has been recog-
nized that the conventional definitions of restitution and
friction coefficients can lead to misleading results in some
cases {e.g., Brach 1989, Stronge 1991}, These problems
can arise in impact configurations that involve nonnegli-
gible tangential impulses and manifest themselves by an
increase in the post-collision kinetic energy. Fortunately
recent work by Brach (1994) and others has led to an
approach suitable for certain special cases.

2.5.1. Method of generalized coefficients. The most
self-consistent approach to rigid body collision resolution
is the method of generalized coefficients {Brach 1994). In
this scheme, equations describing the impulse compo-
nents at the contact point are introduced, each involving
a unique coetlicient. Together with Newton’s second law
these equations completely specify the problem, with an
equal number of equations as unknowns. The coefficients
for the general 3D problem consist of either three kine-
matic coefficients of restitution or, in the case adopted
here, one kinematic coefficient in the normal direction
and two transverse kinetic coefficients, defined below.

The collision geometry developed in the equations be-
low is illustrated in Figs. 1 and 2. Note that a different
notation from that of Brach (1994) has been employed. In
particular, all post-collision velocities are denoted by
primes (). A new coordinate system (f, t, i) is defined
such that i is a vector perpendicular to the tangent plane
at the impact site and points from body 1 to body 2, and {,
p are in the tangent plane and oriented according to the
right-hand rule (Appendix). For a point-contact collision
(no moments or couples acting over the contact region),
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FIG. 1. Diagram illustrating the important components of a 3D point-
contact collision between two arbitrary rigid bodies. Refer to text for
definitions of the symbols used.

the system equations become

my;— my; = {(—1)F"'P, i=1,2, (13)
hi —h=¢ xX{(-1I)tP, i=1,2, (14)

Uy = —Eqlin, (15)

P,=u P, (16)

P, = u,P,, (17

where v; are the center-of-mass velocities, ¢; the relative
position vectors of the impact site (¢; = r. ~ r;, where r, is
the position vector of the impact site), P is the total im-
pulse delivered at the impact site, 8 = v + ¢ is the total
refative velocity at the impact site (v is the relative linear
velocity (v2 — vi), o is the relative spin velocity at the
impact site (o> — o), and o = w; X ¢), &, is the kine-
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matic coefficient of restitution, and u,, u, are the kinetic
coefficients for transverse directions. The latter three
cquations define the restitution coefficients.

When the symbol A is introduced to denote the vector
difference between a primed quantity and its umprimed
counterpart, the first two equations can be combined and
cast in simpler form,

(18)
(19)

mIAV1 = —mzsz,

IjA(ﬂj = mg; X Avf: i= 15 29
where the angular momenta h; have been defined as Liw;.
It is clear by inspection that Eq. (18) conserves linear
momentum. 1t is also straightforward to show that these

equations together conserve total angular momentum.

2.5.2. Solution of the collision equations. The best
strategy for solving the collision equations is first to find
vi. The remaining unknowns, v}, w{, and e}, follow cas-
ily. Start by expanding the kinematic equation (u, =
—&ultn), and substituting from Egs. (18) and (19) for v,
and the angular velocities. It is necessary to multiply Eq.
(19) by the inverse matrix I;'! to isolate the angular veloci-
tics. Note that a convenient vector identity allows a;, to
be written as ; - (¢; X fi), which enables the inverse of
the inertia tensor to be taken out from inside the cross
product. After a bit of algebra, the following equation is
obtained,

Ul w17 ea X VT - (e2 X R) + uil (e X v - (e; X f)
= vip (L + &) 5ty + o 7 X V1 - (&2 X )

+ I Ye X v)] - (¢ X A), (20)
where M = m, + m; is the total mass and u = mm/M is
the reduced mass. To proceed, write all vectors in the nip
basis and let I7! = (a;), I;' = (by), where {,j = 1, 2, 3 (see
Appendix). Expand the matrix multiplications and cross
products. For example, the term [I5 '(e; X v})] - (¢; X f) is
given by

(Cz,pbm - Cz.;bzl)(cz,rvf,p - CZ.,DU{J)
t {C1pb21 — Cribules bl — €1001,)

+ (C2,5b23 — c2,bu)er i, — ca,00,).

Similar expressions are found for the remaining terms,
with particle index 1 replaced by 2 and a replaced by b as
appropriate.

Finally, substitute Eq. (13) into (16} and (17} to obtain
expressions for v}, and v},
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FIG. 2. Diagram showing the collision geometry for a pair of aggre-
gates made up of spheres. Each vector ¢; connecting the center-of-mass
of an aggregate (hollow circle) to the impact point is decomposed into
two components: a vector a; from the aggregate center-of-mass to the
center of the impacting sphere (solid point), and a vector b; from the
sphere center to the impact point.

2D
(22)

U;,l =U,t ’J"IU;.H - KFn,

vLP = vl,p + p:'pU;,n - ’-val.n-

It should be emphasized that the derivation to this point
is fully general for point-contact collisions. An enormous
simplification is possible if it is assumed that all tangential
impulses are negligible, i.e., u, = 0 = p,. Then terms in
vi. and v], on the left-hand side of Eq. (20) cancel with
identical terms in v, , and v, , on the right-hand side. Fur-
thermore, the coefficient of v, on the left-hand side can-
cels with the coefficient of v,, on the right-hand side,
leaving

m
Vin = U1+ AL+ £0) 37 thn, (23)
where
y'l=1+ #f(azzb"%,p — 2anci cyp T aasfir + an%.p
— 2bpcygcap + bysciy) (24)

{the symmetry of the inertia tensors has been exploited
here). Expressions for vi, wi, and w'; then follow trivi-
ally. In summary,

Avi = y(I + &) % u i, 25)

A"g = (26)

_ L ]
(1 + &) A il [ oy Av1],
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Awl = mll]—I(C] X AV[), (27)

mly ez X Avy) [= —my ks (e X Av)). (28)

Aw;

Again, it is straightforward to show that these equations
satisfy conservation of linear and total angular mo-
mentum.

If cither w, or w, is nonzero, the expressions become
considerably more compiex. Furthermore, it is not at all
obvious what values should actually be assigned to the
tangential coefficients if they are nonzero, since there
may cxist physical constraints that bound their allowed
values, and these may depend on the actual collision ge-
ometry. It may be possible 10 determine the bounding
values by applying work-energy conditions, a procedure
which is discussed further in Brach (1994) and elsewhere.
For the current study, it will be assumed that the tangen-
tial impulses are identically zero at the contact point.
Note however that rotational motion can still be im-
parted, since the collisions are generally noncentral.

2.6. Fragmentation

The last collision outcome to be discussed is fragmen-
tation. If the impact energy of a coilision involving an
aggregate is sufficiently large, or if the impulse delivered
to ajoint is particularly strong, it is reasonable to suppose
that the aggregate may fragment. Thus equilibrium may
consist of a competition between coagulation and frag-
mentation processes (see, e.g., Greenberg er al. 1978,
Beaugé and Aarseth 1990, Barge and Pellat 1993,
Wetherill and Stewart 1993 for discussion of such equilib-
ria in the context of plaentesimal dynamics).

Although a fully self-consistent model for this process
has not yet been constructed, it is instructive to consider
the shortcomings of a simplified model in order to under-
stand the complexity of the problem. As a test, a simple
model of fragmentation was conceived in which impact
energies exceeding a fixed threshold determined solely
by the initial energy of the system would result in cata-
strophic breakup. To carry out the breakup, the impact-
ing aggregates were first coagulated into one body, then
the constituent particles of the body were given velocities
equal to the vector sum of the center-of-mass velocity of
the aggregate, the linear equivalent of the rotational ve-
locity of the constituent particle at the instant of impact,
and an outward radial component that accounted for the
energy loss in creating the final aggregate just before
breakup, simulating the release of some binding cnergy.

There are two major drawbacks to this model: (1) the
release of binding energy is rather ad hoc, and (2) it is
unlikely that each bond in the aggregate would be broken.
For intermediate impact energies, it is more likely that a
distribution of fragments would result, cach with differ-
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ent sizes, velocities, and spins, according to the nature of
the fragment.

A self-consistent model requires a detailed consider-
ation of each bond and would presumably depend on the
material involved, Both normal and tangential impulses
at each bond site need to be taken into account. The bond
model must provide a sink for energy that is converted
into mechanical stress and heat. Most important, how-
ever, it may be necessary to loosen the rigid body con-
straint so that collisions are no longer instantaneous. This
is because a break near the impact site may prevent a
break further on, which suggests a wave propagation
model would be most appropriate for the problem. In a
recent study, Benz and Asphaug (1994) used a hydrody-
namical treatment for the breakup of a solid bedy. It is
hoped, however, that the rigid body approximation can
still be used to model the fragmentation of fractal aggre-
gates, and work is currently in progress toward that goal.

3. TEST SIMULATIONS

The results of test runs of the new aggregate code will
now be presented. Five models were investigated, each
successive model incorporating more features than the
previous. This procedure serves to clearly demarcate the
contribution of each new feature. Three runs with differ-
ent random number seeds were performed for each of the
first four models and the results were averaged together.
Error bars in the plots to follow are the standard devia-
tion of the mean. The fifth model used more particles and
was evolved for a longer time; thus only one run was
performed. The models are summarized in Table 1 and
will be discussed in detail below.

The simulations were carried out in free space; thus
particle trajectories were strictly linear between colli-
sions. In order to maintain a constant particle number
(either aggregated or not), periodic boundary conditions
were imposed on a cubical simulation region. Ghost par-
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ticles were introduced in the surrounding boxes to enable
collision detection on the boundaries, in much the same
way as described in Wisdom and Tremaine (1988) (also
see Richardson 1993). There were two important differ-
ences, however: first, since there was no tidal field
present, the boxes were not required to slide or shear;
second, ghost boxes were needed above and below the
plane (i.e., in the +z directions) since the vertical extent
of the simulation region was finite. This made 26 ghost
boxes in all; however, since there was no self-gravity,
various simplifications were made to restrict attention to
the nearest neighbors (including ghosts) of each particle,
as these were the most likely colliders.

The initial conditions were straightforward: the cube
was populated with a uniform random distribution of
equal-size spheres, with initial velocities also oriented
randomly. The velocity magnitudes were either constant
or drawn from a Gaussian distribution, depending on the
model. The cube had a dimension of 10 in arbitrary units
and, in the first four models, the spheres were of radius
0.1. Checks were made to ensure there were no overlap-
ping or touching particles at the start. The center-of-mass
position and velocity were subtracted from all particles to
give zero net momentum. The particles were also given
zero initial spin. The simulations proceeded until some
prefixed time in arbitrary units (several CPU hours on an
Alpha AXP for most models) and statistics were col-
lected at regular intervals. Information recorded included
the collision and merger rate, the mass spectrum, the
fractal dimension, volume density, and spin of any aggre-
gates, and the velocity dispersion of the system. Momen-
tum checks were performed on a collision-by-collision
basis to ensure that the system remained dynamically
self-consistent.

For the purpose of illustration, the impact energy limit
for deciding collision outcomes in full restitution models
was arbitrarily derived solely from the initial velocity dis-
persion of the system: impact energies of magnitude [ess

TABLE 1
Summary of the Five Test Models
Model Number of runs N(0) R, T Coagulation Collision outcome
(i) 3 1000 0.1 8.2 Sphere® Coagulation
(ii) 3 1000 0.1 8.2 Sphere? Coagulation
(iii) 3 1000 0.1 8.2 Aggregale Coagulation
(iv) 3 1000 0.1 8.2 Aggregate Coagulation or restitution
V) 1 9000 0.033 40.8 Aggregate Coagulation or restitution

Note. The initial number of particles, the initial particle size (compared to a fixed box size of 10 arbitrary length units), and the simulation
duration (also in arbitrary units) are given as N(0), Ro, and T, respectively. The type of coagulation is either “*sphere” (colliding pairs of particles
replaced with single spheresj or ‘‘aggregate™ (colliding particles stick at the point of contact). The coflision outcome is either ‘‘coagulation’’ (no
restitution) or “'coagulation or restitution’’ (restitution allowed, depending on impact energy).

@ Particle size and velocity fixed (constant coagulation coefficient).
& Particle size and velocity allowed to change (see text).
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FIG. 3. Plots showing statistics averaged over three test runs of
model (i) (cf. Table I). Error bars are the standard deviation of the
mean. (a) gives the number of particles/clusters in the system N (points
with error bars), the number of collisions A (dotted line), and the
number of “‘first-time’* collisions N, (dashed line), as a function of
time. In this model, which does not include restitution or fragmentation,
the latter two curves coincide. The solid line is given by Eq. (30) and is
derived from the coagulation equation with constant coagulation coeffi-
cient. The long-dashed lines intersect at the point where the number of
discrete particles/clusters in the systemn would be expected to be half
the starting value. (b) shows the evolution of the maximum mass in
units of the initial mass. The solid line simply connects the points to aid
the eve. (¢) and (d)} show the mass spectrum at times r = 1.6 and 8.2 (the
end of the simulation), respectively. Error bars are shown at the top of
each histogram segment. The solid line is Eq. (31), again derived from
the coagulation equation. The plots show that model (i) is in excellent
agreement with theory,

than the initial mean kinetic energy resulted in aggrega-
tion; impacts exceeding this amount resulted in restitu-
tion. This allows the simulation to be scaled to any initial
velocity dispersion without appreciably changing the
results. The choice of limit was such that roughly half of
all collisions resulted in restitution, giving a clear illustra-
tion of the effect of bouncing. Ultimately it is desirable to
incorporate a model of the aggregate material and surface
properties in order to decide the collision outcomes. The
normal coefficient of restitution was calculated according
to the velocity-dependent formula given by Bridges et al.
(1984) for iceballs, scaled to the appropriate units.
Results from model (i) are shown in Figs. 3a-3d. In this
model, none of the aggregation formalism was used. In-
stead, each colliding particle pair was merged into a new
single particle with mass equal to the sum of the masses
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of the colliding particles. However, the radius of each
merged particle was kept fixed at the initial value of 0.1,
resulting in a constant collision cross section, In addition,
all particles (merged or not) were constrained to have a
constant speed. This, together with the fixed cross sec-
tion, ensured a constant coagulation coefficient, a sce-
nario for which an analytic solution of the coagulation
equation is known (Smoluchowski 1916). The discretized
coagulation ¢quation is given by

d _ 1

dr 2 ‘_g;k Aghny — ny ; Apn;, (29)

where n; is the total number of bodies in mass bin &, and
Ay is the coagulation coefficient, or ‘‘kernel,”” which is
the probability of collision between species i and j per
unit time. For model (i), Ay = o (v) /V, where o = 7 (2R)?
is the collision cross section for identical spheres of ra-
dius R, {v) = 3y is the mean relative speed between colli-
ders that have constant speed vy and random velocity
orientation, and V is the volume of the simulation region
(the cube of the box size).

Figure 3a shows the number of particles N(¢) (points
with error bars), the number of collisions Nc(f} (dotted
line), and the number of “*first-time” collisions N¢,(f)
(short-dashed line) as a function of time. Error bars for
N¢ and N, are not shown; the curves for these two quan-
tities consist simply of straight line segments connected
between successive data points. The N¢, curve serves to
remove consecutive collisions between the same pairs
from the total collision count. However, in model (i) each
collision resulted in a merger; thus the N and N, curves
overlap exactly. Moreover, N(t} + Ng(t) = N(0), which is
emphasized by the symmetry of the curves. The intersec-
tion is the point at which half the particles have merged.
The solid line which runs through the N(t} points is the
analytic solution of the coagulation equation

N = N@O) (1 + § aN@O)!, (30)

where @ = Ay is the (constant) coagulation coefficient
given above. The curve is an excellent fit to the data. The
long-dashed lines intersect at the point N(t,;) = N(0)/2,
where ¢, = 2/aN(0).

Figure 3b is a plot of the maximum mass in the system
(in units of the initial particle mass) as a function of time,
In this case, the solid line merely connects the points. It
is difficult to determine the theoretical maximum mass
from the coagulation equation because of the ambiguity
in the interpretation of fractional values of n; (see, e.g.,
the discussion in Wetherill 1990). However, this plot will
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be useful for comparison below with models that incorpo-
rate fractal aggregation.

Figures 3c and 3d show the mass spectrum of the sys-
tem at a time near the beginning of the simulation (one-
fifth of the way through) and at the end, respectively.
Error bars are shown at the top of each histogram seg-
ment. The solid line is the analytic solution

() = NOF(1 — (31
where = N(1)/N(0) is the fraction of particles remaining
at time ¢, Masses are given in units of the initial mass;
thus k is equivalent to m in the plots. There is more
scatter in 3d than in 3c because of noise due to the
smaller number of particles, but allowing for this the data
in both plots are in good agreement with theory.

There are only a few known analytic solutions to the
coagulation equation {(see Wetherill 1990 for a review).
As a result, numerical techniques must be used to solve
more realistic problems. Nevertheless, the case A; = «
serves as a useful benchmark for comparison of numeri-
cal methods. In model (ii) the constraint of constant ve-
locity was removed and particle sizes were allowed to
grow with mergers such that the particle density re-
mained constant. The cross section in this case is given
by oy = #(R? + R?). This kind of particle growth model
has been used extensively (see, e.g., Weidenschilling
1980, Nakagawa et al. 1981, Beaugé and Aarseth 1990,
Aarseth er al. 1993, Richardson 1993). The results are

N/N/N,

FIG. 4. The same quantities as plotted in Fig. 3 but for model ().
Although the coagulation coefficient is no longer constant, the model
still agrees well with simple theory.
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Run statistics for model (iii), in which ““true’” aggregation
was enabled. Here significant deviations from simple theory are seen,
owing to the increased coagulation efficiency of fractal aggregates.

shown in Figs. 4a—4d. The theoretical results for the case
of constant coagulation coefficient are also shown for
comparison and actually agree quite well with the data.
However, the N(1) points lie notably below the theoreti-
cal curve, just outside the error bars. In addition, the
maximum mass tends to be larger at the end of the simu-
lation. Both trends are indications of the augmented co-
agulation efficiency which results from the increase of the
collision cross section as the particles grow (which
slightly exceeds the decrease in velocity dispersion due
to energy equipartition). This will be illustrated more dra-
matically in the following model.

In model (iii) true aggregation was allowed to take
place: particles that collided stuck together at the point of
contact, The results are shown in Figs. 5a-5d. Although
the individual particles remain as discrete components of
each aggregate, they are not included in N; thus the parti-
cle number still decreases with time. However, N de-
creases significantly faster in this model than in models (i)
and (ii). This indicates that true aggregates collide and
grow much more efficiently than single particles, owing
to their extended shape. Moreover, the system is suscep-
tible to a kind of runaway accretion, with the formation
of a very large particle about 509 larger than the next
closest particle in mass (recall that 5d is an average over
three runs, each run developing a mass on the order of
150 times the initial mass, with the next largest particle
being on the order of 100 times the initial mass).
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FIG. 6. Plots of model (iii) aggregate properties at the end of the simulation. Points from all three runs are included. In (a), the aggregate size is
shown as a function of the number of sphere components. In {b), the disiribution of fractal dimensions is shown. The error bars show uncertainties
in the derived values. (c) gives the spherically averaged density as a function of particle number. The dashed lines are fits to the data and are

described more fully in the text.

The properties of the aggregates in existence at the end
of the model (iii) runs are shown in Figs. 6a~6c. In 6a, the
quantity Ry, {¢f. Eq. (7)) is shown as a function of the
number of particles N, in each aggregate. The dashed line
is a fit to a log—log version of this plot, giving a power-law
slope of 0.57 + 0.01. Hence R, & N2 for this system.

In 6b, the fractal dimension fj, is plotted against N,.
The fractal dimension in the current context is defined as
the slope of a log-log plot of radius measured from the
center of mass vs enclosed particle number (see, e.g.,
Mandelbrot 1982, for a more general discussion of fractal
dimension). Strictly speaking fp is defined only for ob-
jects that extend to infinity. Furthermore, because each
aggregate is made up of an integral number of spheres,
the number of particles as a function of distance does not
vary smoothly. Consequently the values of fi, obtained by
the power-law method described above must be consid-
ered as only estimates of the true values, and such esti-
mates become increasingly unreliable for the smaller ag-
gregates, This is illustrated by the large uncertainties in f
for small N, (shown by error bars). Nevertheless, it can
be seen that fp seems to converge to 4 mean value near 2
{dashed line) for the larger aggregates, in broad agree-
ment with previous empirical and theoretical studies (see
citations in Introduction). The actual mean value of f;
obtained for this model is 1.8 + 0.4, using inverse square
weights. Note that this is close to the inverse of the expo-
nent found in 6a, as would be expected.

The spherically averaged density p of the aggregates as
a function of N, is shown in 6c. The density is simply the
total mass divided by the volume of a sphere R, in
radius. The dashed line is given by p ~ N707=08 where
the exponent was determined in the usual way from a
log-log plot. If the exponent is labeled v, it is straightfor-
ward to show that the relationship among N, Ry, and p
implies that

(32)

which gives fi, ~ 1.8, in agreement with the value ob-
tained from 6b.

The effects of restitution collision outcomes on the par-
ticle evolution and fractal aggregate properties are inves-
tigated in model (iv). The results are plotted in Figs. 7a—
7d and Figs. 8a—8c. In Fig. 7a, it is seen that about half
again as many collisions take place in this model com-
pared to previous models, owing to the new possibility of
an encounter without coagulation. As a consequence, it
takes about twice as long to reach the N(0)/2 stage in this
model. Also, N¢ and N, no longer coincide, indicating
that multiple collisions have occurred between the same
two particles/clusters before colliding with other species.

1500

. 1000

N/Ne/Ng
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FIG. 7. Run statistics for model (iv}, which included the effect of
restitution. Here the particle number decreases more slowly than sim-
ple theory, owing to the possibility of aggregate bouncing.
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FIG. 8. Aggregate propertics for model (iv}.

Note that although the system initially evolves more
slowly than simple theory (the errorbars lie above the
solid curve), eventually the fractal nature of the aggre-
gates ensures that fewer particles remain in the system at
the end of the run. On average, there were ~1500 colli-
sions per run in this model, of which 60% resuited in
coagulation and 40% in restitution.

The properties of the fractal aggregates formed in
model (iv) are similar to those found in the previous
model, which suggests that restitution has a minimal ef-
fect on the nature of the aggregates formed. The power-
law exponent for R, is 0.573 = 0.009, the mean fractal
dimension is 1.7 = 0.3, and y is —0.72 = 0.03.

The last model to be considered, model (v}, is identical
to model (iv) except that the starting number of particles
was increased from 1000 to 8000, the particle size was
reduced by a factor of 3, and the system was allowed to
evolve for a much longer time. Only one run was per-
formed, requiring less than 1.5 CPU days on an Alpha
AXP. The tree code component of box.-tree was used
to reduce the cost of nearest-neighbor searches, allowing
the factor of 9 increase in particle number to be handied
in a reasonable time. Since, from the coagulation equa-
tion, £, ¥ 1/NR?, model (v) would be expected to evolve
on a time scale similar to that of model (iv). This is con-
firmed by comparing the usual quantities, plotted in Figs.
9a-9d and Figs. 10a-10c: the half-way stage was reached
at ¢ ~ 1.7, and approximately 90% of the mass was aggre-
gated by ¢ ~ 8.2, similar to model (iv). During the course
of the run, there were 14420 collisions, of which 62%
resulted in coagulation and 38% in restitution. At the end
of the simulation, 99.98% of the mass was aggregated,
with one cluster accounting for 31% of the total mass.
Note that there were several large merger events in the
latter half of the run (Fig. 9b). At the end of the simula-
tion, the aggregate properties were (Fig. 10) Ry.. expo-
nent = .52 = 0.01, mean fp = 2.0 = 0.2, and y =
—0.55 = 0.04, The larger particles dominate the average
properties in this case, since there were fewer unaccreted
particles at the end of the run.

The evolution of the space components of the system
velocity dispersion in model (v) is shown in Fig. 11a. The
dispersions decrease monotonically as they must since
there was no energy source in the simulation. Further-
more the system remains essentially isotropic, in accor-
dance with the symmetry of the initial conditions and the
simulation environment itself. Figure 11b shows the total
kinetic energy (translational plus rotational) as a function
of particle mass at ¢+ ~ 8.2 (the termination point of the
earlier models}, when there were still a fair number of
discrete particles/clusters. It can be seen from the plot
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_r(c)
4000 -
=]
2000 -

0 .—{T—i.'_'l -

] 2 4 6 8

m T

FIG. 9. Run statistics for model (v). This model was similar to
model[ (iv) but had a larger starting particle number, used smaller parti-
cles, and was aliowed to run for a longer time. Only one run was
petformed; the solid line in {a) in this case is the observed number of
particles while the dot—dashed line gives the simple theoretical predic-
tion for comparison. The theoretical curve in (d) has been omitted for
clarity. By the end of the simulation, 99.98% of the mass is in aggre-
gates.
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FIG. 10. Aggregate properties for modet (v), at r ~ 40.8, the end of the run.

that the system is in good equipartition. In other words,
the larger an aggregate, the smaller its velocity and spin
with respect to its less massive neighbors. This trend
continues throughout the simulation but with increased
scatter due to the smaller number of particles.

The final figure, Fig. 12, is a ray-traced diagram of the
second largest aggregate at the end of the model (v) run.
The aggregate ts made up of 1811 spheres and has a frac-
tal dimension of 2.02 = (.01. Although the overall shape
of the aggregate is linear, the constituent particles are
tightly clustered around the curved long axis, giving rise
to a fractal dimension near 2. Note that size differences
between spheres are a result of viewing perspective, not
of any intrinsic size distribution. The qualitative form of
this aggregate compares favorably with results of other
authors (see, e.g., Blum et al. 1994 for a recent example),
though there are more gaps and irregular features in the
aggregate shown here, owing to the dynamical growth
method used.

4. CONCLUSIONS

A new numerical method for the self-consistent treat-
ment of fractal aggregate dynamics has been presented.
The method allows for the rigid body rotation of the ag-
gregates in accordance with Euler’s equations. Three col-
lision outcomes were considered: coagulation, restitu-
tion, and fragmentation, although only the first two
models were tested in detail. The restitution treatment
required the use of generalized impact coefficients to
handle oblique collisions in a consistent manner, Test
simulations were discussed, illustrating various aspects
of the new code and showing excellent agreement with
analytic theory. Although the tests only included equal-
size particles, the code allows for an arbitrary distribu-
tion of particle sizes. It is hoped that tangential impulses,
compaction, and a proper fragmentation model will be
incorporated in the future.

The tests demonstrate the feasibility of direct simula-
tion of particle aggregate dynamics. This level of sophis-

tication is now possible because of the rapidly increasing
power of fow-cost workstations at astronomical institu-
tions. As a result, more and more relevant physics can be
included in simulations of complicated regimes such as
the early solar nebula, planetary rings systems, and the
interstellar medium.

The next stage of investigation involves applying the
code to one of these regimes. Of particular interest is a
study of the optical properties of dust-like aggregates.
Effects to be modeled include the absorption, scattering,
polarization, and possibly sputtering properties of such
aggregates. There is code already availabie for investi-
gating some of these optical properties (e.g., Draine and
Flatau 1994). Another importani consideration is the ef-
fect of gas drag and tidal fields on aggregate dynamics.
These aspects would require a treatment of torque (cf.
Eq. (4)) and would therefore represent a significant in-
crease in the complexity of the problem. However, as the
aggregate code was built within box._tree, the machin-
ery for careful integration in the presence of time-varying
forces is already in place.

It is hoped that the work presented here will provide a

FIG. 11.

(a) shows the evolution of the velocity dispersion in model
(v). All three Cartesian components are shown but they overlap due to
the isotropy of the system, {b) shows the total kinetic energy {transia-
tional plus rotational) as a function of particle mass for all the particles/
clusters in model (v) at r ~ 8,2. The distribution of points shows that the
system is in rough energy equipartition.
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FIG. 12. Ray-traced diagram showing the configuration of the largest aggregate at the end of the model (v} run, The aggregate contains 1811
particles and has a fractal dimension nearly equal to 2. Note that apparent size differences between spheres in this diagram are simply a

consequence of the 3D viewing geometry.

bridge to even more sophisticated simulations of some of
the complex astrophysical systems that up to now have
had to be treated statistically. The code is freely available
to any researchers who would like to use it and can
be obtained by request to the author.

APPENDIX
Collision Geemetry: The ntp Basis

it is particularly simple to characterize the geometry of collisions
between aggregates of spheres. A single point contact between such

aggregates can only involve two spheres, one from each aggregate (Fig.
2). The nip basis is constructed by choosing @i to hie along the vector by
in the figure. Then t and p can be formed using the familiar Gram-
Schmidt orthonormalization procedure (described in any elementary
linear algebra text).

To solve Eq. (20), the a’s and 5's representing the inverse maftrices
I;! and I;! must first be transformed to the nfp basis. To accomplish
this, let A be a matrix whose columns are the principal axes of the body
int question, If Ly, is the inertia tensor in the body frame (i.e., a diago-
nal matrix whose elements are the principal moments of inertia), then
the inertia tensor in the space frame is given by

]space = AIWAT
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Similarly, if B is a matrix whose columns are the unit vectors a, , and @,

.
lspace = BImpBT¢

where L, is the inertia tensor in the ntp basis, Since the columns of B
form an orthonormal basis set, B is orthogonal and therefore invertible,
and the inverse is equal to the transpose. Hence

Ly = B7AlL,,A™B. (33)
It remains to invert the matrix, which can be accomplished using tradi-
tional numerical methods (e.g., Press ef al. 1992, Section 2.3).
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