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Abstract

We present numerical experiments investigating the shape and spin limits of self-gravitating “perfect” rubble piles that consist of
smooth, rigid, spherical particles with configurable normal coefficient of restitution and no sliding friction. Such constructs are c
employed in a variety of investigations, ranging from the formation of asteroid satellites to the dynamical properties of Saturn’s
rings. We find that, owing to cannonball stacking behavior, rubble piles can maintain non-spherical shapes without bulk spin, unlik
and can spin faster than a perfect fluid before shedding mass, consistent with the theory for the more general continuum rubble
(Holsapple, 2004, Icarus 172, 272–303). Rubble piles that reassemble following a catastrophic disruption reconfigure themse
within stability limits predicted by the continuum theory. We also find that coarse configurations consisting of a small number of
are more resistant to tidal disruption than fine configurations with many particles. Overall this study shows that idealized rubble pile
qualitatively in a manner similar to certain granular materials, at least in the limit where global shape readjustments and/or mass
begins. The limits obtained here may provide constraints on the possible internal structure of some small Solar System bodies
extreme shapes or are under high stress. Amalthea is presented as a case study.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Motivation

The possibility that many small bodies in the So
System—from comets to asteroids to small moons—m
be highly fractured, and thus have low tensile strength,1 has
received increased consideration based on growing, tho
largely circumstantial evidence (seeRichardson et al., 2002,

* Corresponding author. Fax: +1-301-314-9067.
E-mail address:dcr@astro.umd.edu(D.C. Richardson).

1 Tensile strengthis the ability to resist stretching, such as that impar
by a tidal encounter. Distinct from this isshear strength, which is the ability
to resist shearing or sliding motions. Loosely consolidated material ge
ally has no tensile strength; but, when the particles are being forced tog
it will have shear strength by virtue of geometric interlocking of its pa
cles. It will not have shear strength in the absence of confining compre
pressure. For example, dry sand has shear strength when under comp
pressures, but no tensile strength; liquid water has neither shear nor t
strength.
0019-1035/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.icarus.2004.09.007
,

e

for a review). We define a “gravitational aggregate” to b
body of low tensile strength made up of competent pie
and bound together by gravity. We define a “rubble pile”
be a special case of gravitational aggregate with virtu
zero tensile strength and moderate porosity (as might a
from jumbling of the component pieces) that may or m
not represent the actual internal structure of some of th
Solar System bodies. For the purpose of this paper, a “
fect” rubble pile has zero tensile strength and is made u
identical, smooth, rigid, spherical particles of uniform int
nal density that cannot interlock in any way and that can
change shape. An appropriate analogy is a pile of billi
balls. Perfect rubble piles have the advantage that they
among the simplest granular materials to model numeric
since collisions between spheres are always central imp
at a single point of contact and the external gravitational
tential due to a spherical mass distribution is equivalen
the potential due a single point located at the center of
distribution and having the same total mass.

http://www.elsevier.com/locate/icarus
mailto:dcr@astro.umd.edu
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A variety of investigations have been carried out that e
ploy perfect rubble piles in their numerical models, inclu
ing, most recently, tidal disruption of asteroids(Richardson
et al., 1998; Richardson and Scheeres, 2002), planetesima
evolution (Leinhardt and Richardson, 2002; Tanga et
2004), ring particle dynamics(Porco et al., 2003; Wals
and Richardson, 2004), and comet splitting(Weissman e
al., 2003). Alternative rubble pile models employ ellipsoid
(Roig et al., 2003)or polygonal(Korycansky, 2004)parti-
cles, but have not yet been employed in full-scale sim
tions. Other investigations have precluded direct mode
with perfect rubble piles due to the large number of pa
cles involved (and instead simply merge particles toge
when they come back in contact), but will likely empl
such techniques in the future as algorithms and hardw
improve. Examples include the post-collision formation
asteroid families(Michel et al., 2004)and asteroid satellite
(Durda et al., 2004). It is therefore important to understan
how idealizations in the model may affect the outcomes
that proper inferences may be drawn.

It is also of intrinsic interest to study perfect rubble pi
as a special limiting case of the general problem of s
gravitating granular media, a topic with a range of appli
bility, from theoretical mechanics to material transport
asteroid surfaces. In particular, recent interpretation of
teroid lightcurves (e.g.,Pravec et al., 2002) shows that al
asteroids with diameters in excess of 150 m are (within
certainties) inside the limits for mass shedding at the e
tor for unconsolidated materials, as noted byHarris (1996).
They are also within the more stringent equilibrium lim
discussed here for rubble piles with no cohesion, using
ther the continuum results ofHolsapple (2001)or the results
of this paper. For the smaller bodies, the so-called “fast
tators,” much larger spins are observed from the lightcur
but, as noted byPravec et al. (2002), very small cohesion
could accommodate all observed spins. Indeed,Holsapple
(2003)shows that explicit spin-limit curves for bodies wi
cohesion smoothly bound all the data if the body has a c
sion of only a few kPa, which is on the order of the cohes
of the lunar regolith.

In this paper, our first approach to investigating the pr
erties of perfect rubble piles is to determine how they co
pare to perfect fluids and continuum granular materials
testing their spin and shape limits numerically. Since ana
ical descriptions of fluid behavior (as well as more gen
granular configurations; cf. Section1.3) exist, this provides
a good reference point for finding properties unique to r
ble piles. We also briefly consider the equilibrium states
perfect rubble pile under tidal stress.

In the remaining subsections of this introduction
present more definitions, outline previous work, and de
certain special cases that will prove useful in comparing
results with earlier work. In the remainder of the paper,
outline our numerical procedure in Section2, present and
discuss our results in Section3, and offer our conclusions i
Section4.
1.2. Definitions

For the purpose of comparing our numerical models
continuum models (i.e., those containing effectively an i
nite number of particles), we restrict our discussion totriax-
ial ellipsoidsof uniform mass density,2 that is, bodies whos
surfaces satisfy the equation

(1)
(x − xc)

2

a2
1

+ (y − yc)
2

a2
2

+ (z − zc)
2

a2
3

= 1,

where(xc, yc, zc) is the location of the body center (coi
cident with the center of gravity),(x, y, z) is a point on
the surface measured in the body frame (i.e., the fram
which thex, y, andz directions are aligned with the m
jor, intermediate, and minor axes of the body, respective
and a1, a2, anda3 are the semi-major, semi-intermedia
and semi-minor axis lengths of the ellipsoid, respectively
a1 � a2 � a3).

We define the axis ratiosq2 ≡ a2/a1 andq3 ≡ a3/a1, so
that q3 � q2 � 1. With these definitions, a perfect sphe
hasq3 = q2 = 1, an oblate ellipsoid (which we will call a
obloid, shaped like a soy burger) hasq3 < q2 = 1, and a pro-
late ellipsoid (which we will call aproloid, shaped like a tofu
dog) hasq3 = q2 < 1. Obloids and proloids by this definitio
arebiaxial ellipsoids, i.e., degenerate examples of triaxial
lipsoids. Obloids are sometimes calledspheroids, hence the
term “Maclaurin spheroid.”

1.3. Previous work

Holsapple (2001)provides a concise review of the d
velopment of spin/shape equilibrium theory for fluids a
solids over the past three-and-a-half centuries. This re
will not be repeated here, apart from noting that for p
fect, self-gravitating, incompressible fluids, there is a l
ited locus of stable permissible spin and shape comb
tions, of which the Maclaurin spheroids and Jacobi el
soids are the most familiar examples (also seeBinney and
Tremaine, 1987, Section 4.6.1). Figure 2a (cf. Section3)
shows the Maclaurin and Jacobi curves together on a
of normalized body spin vs. axis ratiosq2 (red curve) andq3
(green curve). These are numerical solutions to Eq. (4-
of Binney and Tremaine (1987)obtained using the GNU Sc
entific Library.3 The curves indicate permissibleq2 andq3
values for a fluid, where the upper segment of both cu
together describe the Maclaurin spheroids (q2 is fixed at 1
and onlyq3 varies with spin, so these are obloids) and
lower segments describe the Jacobi ellipsoids (for wh
there is a uniqueq2, q3 pairing for each allowed spin

2 Note that a rubble pile doesnot strictly have uniform mass densit
since it consists of solid spheres interspersed with empty space, bu
volumes large compared to the component spheres the bulk density
same everywhere in the body.

3 http://www.gnu.org/software/gsl/.

http://www.gnu.org/software/gsl/
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The unstable extension of the Maclaurin sequence is
shown.

In his paper,Holsapple (2001)4 developed a detailed the
ory of the possible spin and shape configurations of s
cohesionless bodies as a function of the Mohr–Coulo
friction angleφ of the component material in the conti
uum limit. (A perfect fluid hasφ = 0◦; typical terrestrial
granular materials haveφ ∼ 30◦.) In common experience
grains of sand poured onto a table will form a pile w
a maximum slope, or angle of repose, equal to the a
of friction, namely∼ 30◦, while water poured onto a ta
ble will not form a pile at all. For sand, a combinatio
of interparticle friction, cannonball stacking, and geome
locking keeps the pile from spreading out. In other wor
sand has shear strength in some conditions. Interesti
addingsomewater to a sand pile allowsφ → 90◦ or more,
which is why sandcastles can stand up (Hornbaker et al.
1997; alsoAlbert et al., 1997). Holsapple (2001)found that,
unlike perfect fluids, cohesionless bodies can occupy are-
gion of permissible shape and spin combinations, roug
centered on the classic fluid curves. Comparing his res
against a database of 845 real asteroids,Holsapple (2001)
showed that virtually all asteroids are consistent with co
sionless moderate-porosity structures in the granular co
uum limit.5 However, the continuum models and the perf
rubble pile models here are different, since the latter c
sist of finite-size components that are not in the continu
limit. Therefore, an important justification for the prese
study was to investigate the differences.6 Indeed, we find
that theHolsapple (2001)φ = 40◦ limiting curves for pro-
loids are a good representation of our numerical results
Section3).

Using a different approach,Washabaugh and Scheer
(2002) investigated the energy and stress distributions
spinning elastic ellipsoids using a constitutive law, with
tal mass and angular momentum strictly conserved. In
approach, for a given angular momentum, incompress
bodies in the minimum elastic energy state correspon
Maclaurin spheroids and Jacobi ellipsoids, but do not ma
well with observations of asteroids. Moreover, if astero
are incompressible rubble piles,Washabaugh and Scheer
(2002) showed they would be under tensile stress and
require some type of cohesion between the component
terial. On the other hand, if some compressibility is allow
the elastic energy minima are broader and can encom
observations. They conclude that rubble piles could be c
sistent with observations.

4 Also seeHolsapple (2004)for new, completely generalized close
form derivations, viz. his Eq. (6.3).

5 SeeFarinella et al. (1981)andWeidenschilling (1981)for earlier stud-
ies of fluid spin/shape equilibria among asteroids.

6 Preliminary comparisons were performed and reported byBottke et al.
(1999), who found broad similarities between rubble piles and sandpile
2D, including a rough match for an empirically derived angle of repose
,

-

s

1.4. Special cases of the continuum theories

It is instructive to consider a few special cases in the c
tinuum limit as fiducials for our numerical experiments. T
Maclaurin and Jacobi curves have already been mentio
(cf. Fig. 2a). Since our perfect rubble piles consist of fin
solid components, the spin limit of a test particle to rem
on the surface of a solid body is also of interest. This
be obtained simply by equating the centrifugal accelera
of the test particle due to rotation of the body to the gr
itational acceleration of the particle from the body. For
case of a rigid sphere, the spin limit at the equator can
expressed as

(2)
ωmax√
2πGρ

=
√

2

3
.= 0.82,

whereρ is the bulk density of the body. For a rigid proloi
it is necessary to perform a volume integral over the m
density to compute the gravitational acceleration (Appendix
A; also seeHarris, 2002, Appendix). The result for a particle
on the tip is

(3)
ωmax√
2πGρ

= 1

e3/2

√(
e2 − 1

)[
2e + ln

(
1− e

1+ e

)]
,

wheree ≡
√

1− q2
2 is the eccentricity of the body. A simila

expression can be derived for a particle on the equator o
obloid. Note Eq.(3) is equivalent to the cohesionless prolo
granular pile case in the limit of 90◦ friction angle (cf. the
φ = 90◦ curve in Fig. 3 ofHolsapple, 2001).

Often the ellipsoid is approximated as a point mass for
purpose of computing the gravitational acceleration, lead
to the following approximate spin limit for a rigid proloi
(see, e.g.,Harris, 1996; alsoPravec and Harris, 2000):

(4)
ωmax√
2πGρ

=
√

2(1− e2)

3
.

Equations(3) and (4)are plotted inFig. 2a (cf. Section3),
the former as a dashed blue curve, the latter as a dotted
genta line. Note that both curves have the expected limi
behavior in the sense that they are coincident at the o
and at the limit of the spherical case given by Eq.(2).

Also shown among the fiducials ofFig. 2a is the case, fo
a proloid, of granular material withφ = 40◦, from Fig. 3 of
Holsapple (2001). The lower and upper limit curves, show
as dotted and dashed light gray lines, respectively, delin
the region inside which a cohesionless granular pile w
φ = 40◦ is within yield (that is, material in the pile doe
not start to flow). We will find that all the rubble pile cas
studied here lie between these fiducials.

2. Method

All simulations were carried out usingpkdgrav, an
N -body gravity tree code that allows for interparticle c
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lisions (Richardson et al., 2000; Stadel, 2001). Initial con-
ditions were generated and analysis was performed u
codes auxiliary topkdgrav. Perl scripts were written to au
tomate the generation and analysis of the hundreds of
performed. The runs themselves were managed using
condor high-throughput environment7 on a private clus
ter of PCs in the Department of Astronomy at the Univer
of Maryland.8 Typically a run required∼ 8 CPU h or less to
complete.

2.1. Initial conditions

The initial conditions for each run consisted of a sin
rubble pile rotating uniformly about the axis of maximum
ertia (equivalently, the shortest axis). In order to investig
the effect of numerical resolution on the outcome, rub
piles withN ∼ 100 andN ∼ 1000 particles were generate
In each case, the desired axis lengths were specified
proloids were considered as initial conditions for this inve
gation, soa2 = a3 for each body at the start) and the result
ellipsoidal volume was filled with equal-size spheres i
hexagonal close-packed (HCP) configuration(Richardson e
al., 1998). Note that since the component spheres in H
configurations are identical, it was generally not possibl
fill the target shapes with exactly the desired number of
ticles (e.g., for a spherical shape with a targetN = 1000, the
closest matching configuration withN � 1000 hasN = 955;
for non-spherical shapes the component particle radius
adjusted to stay as close to the desiredN as possible; se
Section2.3.1for other caveats regarding the shapes of rub
piles). Starting axis ratiosq2 of 0.1,0.2, . . . ,1 were investi-
gated (recallq3 = q2 < 1 for proloids). The desired spin wa
imposed by setting the velocity of each sphere accordin
vi = ω×ri , whereω is the (unnormalized) spin vector andri

is the position vector(xi, yi, zi) of each sphere relative to th
body center of mass. Starting spins of 0.02,0.04, . . . ,0.84
(in units of

√
2πGρ) were tested. The starting bulk densityρ

was set to 2000 kg m−3 (to represent a generic asteroid de
sity, but the results are scaled by density anyway) by var
the internal density of theN generated particles approp
ately.Figure 1shows a typical starting case.

For technical reasons,pkdgrav does not allow particle
to be in contact initially, so the rubble pile particles were
duced in radius by 1% at the start. Past experience has s
that such a small perturbation has negligible effect on
outcome and that it is not necessary to first equilibrate e
rubble pile, such as by allowing the velocity dispersion
reach a constant value, before using it in a simulation.

2.2. Simulations

Each simulation used a timestep of∼ 5 s (� 0.1% of the
“dynamical time”∼ 3/

√
Gρ for a single particle; note tha

7 http://www.cs.wisc.edu/condor/.
8 http://www.astro.umd.edu/~dcr/Research/borg.html.
n

Fig. 1. Sample rubble pile used for testing. This example has 897 p
cles (the target was 1000), withq2 = 0.50 andq3 = 0.48 (the target was
q2 = q3 = 0.5). The arrows indicate the sense of rotation, in this c
around the maximum moment axis.

ρ for a particle is typically 1.5–2 times larger thanρ for the
rubble pile due to the macroporosity). Runs were carried
for at least 10 rotations (based on the starting spin period
until equilibrium was reached (i.e., the point beyond wh
no further significant change to the largest remnant see
likely, based on examination of animations of each sim
tion).

In order to test the effect of the (normal) coefficient
restitutionεn on the outcome, values ofεn = 0.8 for both
the N ∼ 100 case andN ∼ 1000 case, and 0.5 for just th
N ∼ 100 case, were investigated, whereεn values of 0 and 1
refer to perfectly inelastic and perfectly elastic outcomes
spectively. The tangential coefficient of restitutionεt was set
to unity in all cases, meaning there was no sliding frict
between spheres.

Simulations of densely packed self-gravitating partic
can be computationally expensive whenεn < 1 if there is
no energy gain to offset collisional loss, since the time
tween collisions can become arbitrarily short. To counte
this, particles colliding at< 10% of their mutual surfac
escape speed were forced to haveεn = 1 (cf. the “sliding
phase” correction described byPetit and Hénon, 1987), ef-
fectively giving the rubble pile a minimum “temperatur
that corresponds to a thermal energy much smaller tha
gravitational binding energy. However, it is possible for
time between collisions of a pair of particles in a dens
packed system to approach zero even at relatively high c
sion speeds. This phenomenon (called “inelastic collap
and described inMcNamara, 2000; also seeMcNamara
and Young, 1996) was minimized by again settingεn = 1,
thereby halting the collisional cascade, when the code re
nized that particles were undergoing tiny but rapid moti
between collisions. Occasionally even this technique fa
and particles interpenetrated due to roundoff error. In s
cases the particles were forced apart again until they w
just touching. We found that such incidents were few
number (compared to the typically millions of collisions th
were processed per run) and, for the simulations perfor
here, did not adversely affect the overall outcome.

http://www.cs.wisc.edu/condor/
http://www.astro.umd.edu/~dcr/Research/borg.html
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Finally, as noted inLeinhardt et al. (2000), neither rolling
nor true sliding motions are modeled, and particles can
remain mutually at rest in contact (i.e., there are no s
face normal forces). Instead, the constituent particles o
otherwise quiescent rubble pile are in a constant stat
low-energy collisional vibration (dictated by theεn → 1 cri-
teria described above). As will be shown, this approxima
nonetheless gives the material realistic bulk properties w
compared to theoretical granular models.

2.3. Analysis

We distinguish four types of outcome in our simulatio
of spinning rubble piles: no mass loss or shape change
mass loss but shape change required; moderate mas
and therefore shape change; and finally major mass loss
shape change.9 The largest remaining remnant in each r
was determined using the procedure outlined inLeinhardt
et al. (2000). For each remnant, the net mass loss (nu
ber of particles lost), final shape (axis ratios), and final s
were computed. The latter quantity was determined by
computing the inertia tensorI of the remnant and the net a
gular momentumL of the remnant’s constituent particle
relative to the center of mass, and formingω = I−1L (cf.
Richardson, 1995). Results showing initial and final state
for each run are presented in Section3.

2.3.1. Caveats
Precisely measuring the dimensions (and hence bulk

sity) of a body made up of discrete, finite spheres is c
lenging because of the bumpiness of the outer surface
a perfect fluid, or a granular assemblage in the continu
limit, this is not an issue since the outer surface mus
smooth in that case. However, in order to compare our
sults with fluid and continuum limits (Fig. 2a), we must
measure the axis ratios of our rubble piles and compute
bulk densities. Our strategy is to solve for the body princi
axes as the eigenvectors of the inertia tensor and mea
the maximal separation of particles along these axes,
ing into account the finite size of the particles. This meth
ignores any asymmetries, since the center of mass is
sumed to coincide with the center of figure, but the ca
presented here always satisfied this assumption in any
However, the ellipsoid described by Eq.(1) for the measured
dimensions is generally only an approximation to the ac
enclosing shape due to the discrete nature of the sph
particularly for extreme elongations. For example, a b
with a 10: 1 axis ratio (q2 = q3 = 0.1) could be modeled a
a line of 10 identical spheres, but the resulting shape is
well described by an ellipsoid and will lead to imprecisi
in determining the bulk density. For our purpose we sim

9 Note that in his work,Holsapple (2001)did not determine shap
change due to plastic flow for his models, but could distinguish betw
new equilibria and catastrophic disruption on the basis of adopted
rules.
s

r

e

-

.

,

assumed an ellipsoid with the measured dimensions wa
adequate description of the rubble pile shape in question

Because of the uncertainties in measuring rubble
shapes, and moreover the fact that it may not be possib
exactly match a desired axis ratio when generating a ru
pile, the actual initial conditions were not assumed to exa
match the desired initial conditions. This will be evident
the summary plots of the next section, keeping in mind
all bodies were initially as close to being prolate (q2 � q3) as
our numerical resolution would allow. The choice of init
conditions was largely arbitrary anyway; the conseque
of the numerical effects described above is that we did
sample parameter space perfectly uniformly. Nonethe
parameter space coverage was more than adequate fo
first investigation.

3. Results and discussion

3.1. Spin tests

Figures 2b–2fsummarize the results of the equilibriu
spin and shape study. As previously mentioned,Fig. 2a
shows certain limiting-case fiducials in the continuum lim
that will aid in the interpretation of the numerical resul
These fiducials are repeated inFigs. 2b–2ffor reference,
except that the curves for fluid bodies are shown in cyan
stead of red and green) and only theq2 curves are shown in
Figs. 2c and 2eand theq3 curves inFigs. 2d and 2f.

Figure 2b uses errorbars to denote the values ofq2 andq3
for each body as a function of normalized spinω/

√
2πGρ

for the N ∼ 1000, ε = 0.8 case. Dark gray errorbars
the background indicate initial conditions while colored
rorbars in the foreground indicate final conditions. Sin
q3 � q2 by definition, the measured value ofq3 is repre-
sented by the bottom of each errorbar whileq2 is represented
by the top. The center of each errorbar is merely the ave
of q2 and q3. Note that obloids haveq2 ≡ 1 and proloids
haveq2 ≡ q3, so the errorbars give an indication of how f
off the bodies are from these ideals. Recall that our inten
was to start with perfectly prolate bodies but that resolu
effects meant the bodies were only approximately pro
(q2 � q3) and that the bulk density and initial spin were si
ilarly slightly off from their targets (typically by only a few
percent). For this reason the gray errorbars actually have
tical extent in all cases when in fact for proloids they wo
have no vertical extent. Furthermore, achieving a partic
value ofq2 or q3 was problematic in some cases (e.g.,
pecially q2 = 0.9 or 0.7), as were initial normalized spin
> 0.8. As argued in the previous section however, our
mary concern is breadth of coverage of parameter space
uniformity of coverage.

The colored errorbars inFig. 2b indicate the final con
figurations of the largest remnant in each simulation. Gr
indicates bodies that have not suffered any mass loss
not lost any particles). Yellow indicates remnants that los



354 D.C. Richardson et al. / Icarus 173 (2005) 349–361

rtia
he lower
line:

s
greater
)
ottom
Fig. 2. (Top left, a) Theoretical axis ratio limits for continuum models as a function of normalized angular speed around the maximum moment of ine. Solid
red curve:q2 for a fluid; solid green curve:q3 for a fluid (the upper branches of the red and green curves describe the Maclaurin sequence while t
branches describe the Jacobi sequence); dashed blue curve: Eq.(3), the limiting case for a test particle to remain on the tip of a proloid; dotted magenta
Eq. (4), the often-used approximation to Eq.(3); dotted/dashed light gray curve: lower/upper limit curve fromHolsapple (2001, Fig. 3), for a cohesionles
granular proloid with friction angleφ = 40◦. (Top right, b) Initial (dark gray) and final (green for no mass loss, yellow for up to 10% mass loss, red for
than 10% mass loss) configurations for the largest bodies in each simulation, with errorbars indicatingq2 (top) andq3 (bottom). (Middle left, c) Same as (b
but only forq2. (Middle right, d) Same as (b) but only forq3. (Bottom left, e) Same as (c) but with straight lines connecting the initial and final states. (B
right, f) Same as (e) forq3.
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to 10% of their initial mass. Typically in such cases mass
shed from the ends of the major axis and the remaining m
rial slumped together to form a smaller body, almost alw
with a slower normalized rotation. Red indicates remna
that lost more than 10% of their initial mass. Such outcom
were typically catastrophic, leaving a much smaller, roun
slower-spinning remnant.

Figures 2c and 2duse the same color scheme asFig. 2b
but separate theq2 data (Fig. 2c) from theq3 data (Fig. 2d)
so trends are easier to distinguish. The initial conditions
shown as small dark gray crosses and the final data point
now represented as open squares.Figures 2e and 2fshow the
same data but with solid lines now connecting the star
and ending conditions to indicate how bodies have move
the diagram. The most dramatic cases were usually acc
panied by mass loss. For added clarity the initial conditi
for cases with mass loss (shown as crosses) use the
color scheme as the final conditions.

Recall that bodies behaving as pure fluids would be
pected to lie on the fluid fiducial lines (shown in cyan). T
straight dotted line in magenta is the approximate limit
curve from Eq.(4) for a test particle on a rigid proloid
The dashed curved line in blue is Eq.(3) for a test par-
ticle on a rigid proloid. Also shown in light gray are th
upper and lower limiting curves fromHolsapple (2001)for
granular material with a friction angle ofφ = 40◦ in a pro-
loid configuration. Our numerical results lie almost exac
within these latter curves, suggesting that our rubble p
behave, at least in the limiting case, like granular ma
ial with φ = 40◦. We caution however that other angles a
probably consistent with the measurement errors (cf. S
tion 2.3.1, and Section3.1.2 below). Indeed,Albert et al.
(1997) found φ ∼ 23.4◦ for a monodisperse population
spheres based on laboratory experiment. It may be tha
effectiveφ in our simulations depends to some degree on
numerical resolution (number of particlesN ), an aspect we
plan to investigate in future work (Section4).

3.1.1. Spin tests: discussion
Several trends are readily apparent inFigs. 2b–2f. First,

most remnants lie in the upper left of the plots, that is, t
have both low-to-moderate spin and elongation. In part
lar, most of the green points (no mass loss) lie to the up
left of the Maclaurin/Jacobi curves, indicating that perf
rubble piles are capable of retaining a range of shapes (
spherical to highly elongated) independent of the spin r
up to a maximumbeyondthe fluid limit that is roughly de-
fined by the Holsapple curve. This can be understood
noting that in coarse configurations of a few large sphe
in order for a single rubble particle to move toward a low
energy state, it must first overcome the potential barrier
posed by its large neighbors (analogously, this is how c
nonball stacking works). Without an extra input of ene
this is not possible, so the shape is retained, even at
spin. Note extreme elongation at zero spin is also po
ble. For example, a single line of perfectly aligned mass
e

-

e

spheres will maintain their alignment in the presence of s
gravity by virtue of perfectly counteraligned mutual norm
forces. This is an elementary example of a configuration
is in unstable equilibrium. However, in the continuum lim
Holsapple (2004)finds a maximum elongation ratio for
prolate body at zero spin of about 0.12 (see their Fig.
Our results confirm this lower stability limit (e.g., configur
tions beginning with aspect ratio of 0.1 at zero or small s
fatten to an aspect ratio of 0.12 or so). Conversely, for
elongations, we find that bodies suffer mass loss or sh
change at a slightly slower spin than predicted by the H
sapple curve, which may be a result of the finite nature
our model.

A second trend inFigs. 2b–2fis that, when mass loss o
curred, the resulting remnants had a tendency to end up
to the fluid/granular limit curves, or rather, to move with
the stability bound for a continuum cohesionless solid w
no strain energy. This was particularly true for cases w
� 10% mass loss (shown in yellow) and finalq2, q3 � 0.5,
and for cases with� 10% mass loss (shown in red) and fin
q2, q3 � 0.5. FromFigs. 2e and 2f, the former group typi-
cally originated from bodies with low elongation and rap
spin, while the latter group mostly came from bodies w
high elongation and rapid spin. Both groups had in comm
a fast initial spin (and hence kinetic energy), which sugg
that upon reaccumulation there was sufficient free ene
to drive the remnants toward the lowest energy state a
able for their angular momentum, in other words, toward
continuum limits. Note thatFig. 2b indicates that many o
these bodies are indeed consistent with Maclaurin sphe
or Jacobi ellipsoids (i.e., the errorbars straddle the requ
curves to some degree). Notable exceptions to these tr
include bodies that suffered moderate mass loss and e
up with relatively slow spins (red points well to the left
the limit curves) and bodies that suffered minor mass
and ended up with relatively fast spins (yellow points to
upper right of the plots, near the Holsapple curve). Fr
Figs. 2e and 2f, these appear to be cases where the c
bination of the initial shape and spin (either high elongat
with modest spin in the former case or low elongation w
high spin in the latter) was insufficient to allow the vigo
ous reshaping of the bodies needed to attain the minim
energy state. It turns out that the red points in question
clude the relatively small number of cases where the m
loss was between 10 and 50% of the starting mass; mos
points suffered more than 50% mass loss.

A third trend, fromFigs. 2e and 2f, is that fast-spinning
bodies with low elongation had a tendency to shed m
from their tips whereas fast-spinning bodies with high el
gation had a tendency to disrupt in a manner reminiscen
the tidal disruption of Comet D/Shoemaker–Levy 9 (SL
at Jupiter (see, e.g.,Asphaug and Benz, 1994). Indeed, tidal
encounters provide a torque that, under favorable circ
stances, causes a body to spin up and possibly gently
mass or violently disrupt (e.g.,Richardson et al., 1998
Scheeres et al., 2000, 2004). However, direct compariso
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of tidal encounters with the present study is only valid
cases where the encounter can be treated as an impulse
or deep encounters result in more complicated disrup
scenarios for which the planet’s gravity causes signific
perturbations over an extended interval. Note also tha
starting cases that lose mass are unphysical unless the
ies had some cohesion to start with, requiring an impac
some other impulse to break them up, after which any r
cumulated remnants would be rubble piles.

3.1.2. Conservation of angular momentum
Bodies that change shape and/or spin without losing m

(indicated by green lines inFigs. 2e and 2f) must conserve
angular momentum. For uniform rotation about the sh
axis, the angular momentum is (Holsapple, 2004, personal
communication; also seeWashabaugh and Scheeres, 20
Eq. (2))

(5)h = 32/3M(M
ρ

)2/3(1+ q2
2)ω0

10· 21/3π2/3(q2q3)2/3
,

whereM is the mass of the body andω0 is the unnormal-
ized angular speed. Therefore, for constant mass and de
conservation of angular momentum requires

(6)η ≡ (1+ q2
2)ω

(q2q3)2/3
= constant,

whereω ≡ ω0/
√

2πGρ (from here forward it will be as
sumed thatω is always normalized in this way).Figure 3
shows the final value ofη vs. the initial value for the gree
cases inFig. 2 that moved at least 0.01 units in theξ2 space
defined in the following section (this lower limit roughly co
responds to half the distance between tested values ofω, q2,
andq3, i.e., a noticeable displacement on the plots ofFig. 2).
Ideally data shown inFig. 3 should lie on the diagonal lin
ηfinal = ηinitial .

There are two distinct clumps of points inFig. 3, repre-
senting two populations of starting configurations that
derwent significant shape and/or spin change without lo
mass. The central clump corresponds to the group tha
gan withω ∼ 0.6–0.7 andq2, q3 ∼ 0.9–1.0, while the clump
to the right, noticeably (∼ 20%) below the diagonal line, be
gan with ω ∼ 0.5 andq2, q3 ∼ 0.5. The actual magnitud
of the change in angular momentum, checked by exp
itly summing over individual particles, averaged 0.09% o
all simulations shown inFig. 2 (i.e., including those with
mass loss), with a maximum of 3.2%, standard deviatio
0.31%, and median of 0.012%. Hence the fact that some
ticles lie well off the diagonal line inFig. 3 appears to be
due to the uncertainties in measuringω, q2, andq3 for these
rubble piles (cf. Section2.3.1). By inspection, we have es
timated that errors in axis measurement could be as l
as one particle radius along each axis. ForN ∼ 1000 this
translates to∼ 10% measurement error. When propaga
through to the expression forη, deviations from the diago
nal line inFig. 3at least as large as 20% are expected (re
w

-

,

-

-

Fig. 3. Initial and final normalized angular momentum as given by Eq(6)
for cases inFig. 2that showed significant shape and/or spin change wit
mass loss. Conservation of angular momentum requires the points
on the diagonal line, but uncertainty measuringω (normalized),q2, andq3
for a rubble pile can cause deviations at least as large as those shown
Angular momentum was actually conserved to better than∼ 3% in all cases
as determined by summing over the individual particles in each simula

thatω is normalized byρ, so this introduces density unce
tainty as well).

We conclude that the bodies that suffered no mass
reshaped themselves along curves of constant angula
mentum, within the measurement uncertainties. The fact
there is a systematic deviation from perfect conservation
a particular group may indicate a bias in the measurem
uncertainty for those starting conditions. At any rate, in
nal conservation of angular momentum for each simula
was very good, lending confidence that the dynamics w
modeled correctly. Since reaccumulated rubble piles s
the minimum energy state (see previous section), it is lik
that bodies that change shape without mass loss are se
a lower energy state, but cannonball stacking causes
to encounter multiple local minima along the way in wh
they may get trapped.

3.1.3. Resolution effects
In addition to theN ∼ 1000,εn = 0.8 case discussed

this point, we also testedN ∼ 100 with εn = 0.8 and with
εn = 0.5. We found no significant difference in outcome b
tween the latter two cases, despite the different restitu
coefficients. This is probably becauseεn is only important
during reaccumulation, when impact speeds are in exce
the sliding limit discussed in Section2.2, and in such case
repeated collisions would tend to occur. In the limit of ma
collisions per particle, so long asεn < 1, the end result is
significant dissipation in all cases. Since we evolved all s
ulations to equilibrium, the fact that there is little differen
between the two restitution cases tested is not surprisin



Rubble pile shapes and spins 357

f
nts in mass

nd
d

Table 1
Statistical summary of runs

N εn m % 〈ωf 〉 σωf
max(ωf ) 〈ef 〉 σef max(ef )

∑
ξ2/nb

1000 0.8 [0,1] 100 0.32 0.15 0.66 0.71 0.24 0.99 0.13
1000 0.8 1 61.9 0.27 0.16 0.66 0.69 0.26 0.99 0.10
1000 0.8 [0,1) 38.1 0.39 0.10 0.65 0.75 0.20 0.98 0.17
1000 0.8 [0.9,1) 15.8 0.41 0.10 0.65 0.88 0.09 0.98 0.18
1000 0.8 [0,0.9) 22.3 0.38 0.10 0.52 0.66 0.20 0.97 0.16
1000 0.8 [0.5,0.9) 7.2 0.35 0.13 0.52 0.74 0.14 0.97 0.14
1000 0.8 [0,0.5) 15.1 0.40 0.08 0.50 0.61 0.22 0.97 0.17

100 0.8 [0,1] 100 0.34 0.16 0.67 0.65 0.27 0.97 0.14
100 0.8 1 66.7 0.29 0.17 0.67 0.61 0.30 0.97 0.12
100 0.8 [0,1) 33.3 0.43 0.09 0.63 0.73 0.17 0.93 0.20
100 0.8 [0.9,1) 14.9 0.48 0.07 0.63 0.81 0.10 0.93 0.23
100 0.8 [0,0.9) 18.4 0.40 0.09 0.54 0.67 0.19 0.93 0.17
100 0.8 [0.5,0.9) 6.0 0.38 0.11 0.51 0.65 0.18 0.89 0.17
100 0.8 [0,0.5) 12.5 0.41 0.07 0.54 0.68 0.19 0.93 0.18

100 0.5 [0,1] 100 0.33 0.16 0.67 0.66 0.27 0.97 0.14
100 0.5 1 68.9 0.29 0.17 0.67 0.61 0.30 0.97 0.12
100 0.5 [0,1) 31.1 0.42 0.09 0.63 0.77 0.14 0.95 0.19
100 0.5 [0.9,1) 13.0 0.47 0.06 0.63 0.82 0.10 0.95 0.22
100 0.5 [0,0.9) 18.1 0.39 0.10 0.55 0.73 0.15 0.92 0.17
100 0.5 [0.5,0.9) 6.5 0.37 0.13 0.55 0.73 0.15 0.92 0.16
100 0.5 [0,0.5) 11.6 0.41 0.07 0.51 0.73 0.16 0.92 0.18

HereN is the requested number of rubble pile particles (the actual number may be slightly less to satisfy the desired shape);εn is the normal coefficient o
restitution;m is the remnant mass range considered when computing the statistics, in units of the starting mass; % is the percentage of final remna
rangem; ω is the remnant’s final angular speed of rotation in units of

√
2πGρ, whereρ is the bulk density;e is the remnant’s final shape eccentricity; a∑

ξ2/nb is a measure of the phase space distance between all final configurations and the nearest fluid configurations inm (see text for details), normalize
by the number of bodies. Angle brackets indicate averages and theσ ’s represent standard deviations.
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However, there is a noticeable trend between theN ∼
1000 andN ∼ 100 cases. The rationale for these tests
that with fewer particles it was expected that resolution
fects would play a greater role. In particular, we might exp
that the coarser resolution (i.e.,N ∼ 100) would make it
harder for final configurations to reach the fluid limit (
the case of reaccumulation after disruption, for examp
in much the same way that it is easier to knock ove
stack of many small cannonballs than a stack of fewer la
cannonballs. To see this, we constructed the metricξ2 =
ω2 + (

q2+q3
2 )2, which measures the distance in(ω,

q2+q3
2 )

phase space between the largest remnants in each simu
and the fluid limit curves (the average in the second coo
nate is used as a proxy for the constraint thatq2 andq3 are
not actually independent for fluids). Dividing the data in
various remnant mass bins (m) for eachN–εn model,Table 1
shows this statistic summed over the remnants in each
and normalized by their total number, along with the me
standard deviation, and maximum final values of the norm

ized spin (ω) and eccentricity (e; recalle ≡
√

1− q2
2) in each

bin. Also shown is the percentage of remnants in each m
bin (the column labeled “%”), where the masses are norm
ized to the total mass of the system (so a remnant mass r
of [0,1] includes 100% of the mass).

From Table 1 it can be seen that there is little signi
cant difference between the twoN ∼ 100 cases, with the
possible exception that〈e〉 for the three last mass bins
the εn = 0.5 case appear systematically higher than th
n

e

for the εn = 0.8 case, possibly indicating that these ca
(for εn = 0.5) “froze out” earlier by virtue of the enhance
dissipation; however, the trend is well within the stand
deviations of the measurements. On the other hand,
N ∼ 100 cases tend to have systematically higher mean
maximum spin and lower mean and maximum elonga
than theN ∼ 1000 case for the majority of mass bins,
might be expected if the coarser (N ∼ 100) piles are more
resistant overall to reshaping, by the cannonball stacking
gument given earlier. This trend, though weak, seems t
borne out by examining plots analogous toFig. 2 for the
N ∼ 100 cases (not shown). Finally, theξ2 statistic is uni-
formly lower in all mass bins for theN ∼ 1000 case com
pared to the other models, showing that on average hi
resolution gives rise to more remnants near the fluid lim
However, the interpretation of these results is complica
by the fact that lower resolution remnants have larger
length measurement uncertainties. A better approach w
be to test configurations with resolution significantlyhigher
than theN ∼ 1000 cases, rather than lower, but this is c
rently computationally prohibitive.

3.2. Case study: Amalthea

A separate investigation we conducted offers more
sight into resolution effects on rubble pile dynamics.
2002, the Galileo spacecraft obtained a bulk density m
surement of 850± 200 kg m−3 for Amalthea (Anderson
et al., 2002; NASA JPL Solar System Dynamics we
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ensit
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ye (the first
Fig. 4. Critical bulk densities for various configurations located at Amalthea’s orbit around Jupiter. The top dotted line indicates the Roche limit (a bulk density
of at least this value is required for a perfect fluid to remain stable). The long-and-short-dashed line is the best measured value of Amalthea’s dy, with
the gray region indicating the 1-σ uncertainty in the measurement. The long-dashed line is the limit for a test particle on a 2: 1-axis-ratio, synchronousl
rotating proloid. The bottom short-dashed line is the limit for a test particle on a sphere. The filled diamonds show the measured limits for prolate rble piles
of increasingN . The filled squares show the same for a spherical rubble pile. The squares and diamonds are connected by solid lines to aid the e
segment for the spherical pile is dotted to represent the fact that a sphere made up of 2 particles does not really resemble a sphere).
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site10), a ∼ 160 km moon located∼ 1.8 × 105 km from
Jupiter. Previous to the encounter it was largely assu
Amalthea would have a density perhaps comparable t
(∼ 3500 kg m−3). Amalthea’s anomalously low density le
it to be characterized as a “rubble pile”(Anderson et al.
2002), although it is also possible the moon instead
tensile strength with large microporosity. We consider
rubble pile model here.

The classical Roche limit for an infinitesimal, hom
geneous fluid body of Amalthea’s mean density to ma
tain an equipotential surface in a circular orbit arou
Jupiter is∼ 2× 105 km (Roche, 1847; also seeLang, 1986,
Eq. (3-246); Jupiter parameters from JPL website abov
which isoutsideAmalthea’s present orbit. Within the me
surement uncertainties, this suggests, if Amalthea really
rubble pile, that its constituent fragments may be sufficie
coarse that they do not behave collectively as a fluid in t
present configuration. To test this idea, we conducted a
ries of simulations using spherical and prolate rubble p
(Amalthea has a∼ 2 : 1 axis ratio) to determine whether w
could rule out certain configurations for Amalthea (with
usual caveats that we are only simulating idealized ru
piles).

10 http://ssd.jpl.nasa.gov/.
-

Figure 4summarizes the results of this study in a plot
model resolution (number of particlesN ) vs. critical bulk
density (minimumρ to resist disruption). The figure show
the best estimate of Amalthea’s density (gray region cent
around 850 kg m−3), with fiducials at 1100 kg m−3 (the crit-
ical density for a Roche fluid at Amalthea’s present dista
from Jupiter), 230 kg m−3 (the limiting density for a tes
particle to remain on the surface of a synchronously ro
ing rigid sphere at Amalthea’s mean distance from Jupi
and 440 kg m−3 (the corresponding limiting density for
test particle on the tip of a 2: 1-axis-ratio proloid with long
axis pointing toward Jupiter). The latter two values were
tained by adding the first-order tidal term−2GMJ /r3

A to
the right-hand side of Eq.(A.3) in Appendix A, whereMJ

is the mass of Jupiter andrA is Amalthea’s mean distanc
and settingq2 → 1 andq2 = 0.5, respectively. We exam
ined models withN varying between 2 and∼ 3× 104. The
proloids had the same axis ratios as measured for Amal
within numerical limitations (cf. Section2.3.1). All bodies
were synchronously rotating, with longest axis (for the p
loids) pointing toward Jupiter, as is the case for Amalt
today. For each model, the bulk density was varied in
crements as small as 5 kg m−3 in some cases until breaku
occurred; these points are shown on the plot with error
corresponding to the transition between onset of tidal dis

http://ssd.jpl.nasa.gov/
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bance (reshaping without mass loss) to complete disrup
Cases with largeN are less well sampled due to the comp
tational expense of those models. ForN ∼ 3 × 104, only a
rough upper limit to the critical density for the spherical ca
was established.

It can be seen fromFig. 4 that asN increases, both th
spherical and prolate cases initially become more resis
to disruption but then gradually become less resistant.
transition can be understood by noting that it is twice as e
to separate two equal-size spheres from each other u
tides (theN = 2 case; note that the “spherical” model in th
case is identical to the prolate model) than it is to remove
infinitesimal test particle from the surface of a single sph
using tides,for the same total mass and bulk diameter. As
N grows, the model starts to approach the test particle c
in the sense that a single particle on the periphery beco
small compared to the overall size of the body, yet the c
stituent particles are still large enough to not behave
a granular continuum at equilibrium, owing to cannonb
stacking. Eventually however,N becomes large enough th
individual particles no longer present a significant poten
barrier, so the body can react more easily to the tidal torqu
and start to flow. Evidently largerN than we were able to
achieve is needed to determine the critical density at w
this trend saturates, though other limitations of the num
ical model may cause the upwardly rising curves to fla
out prematurely.

Within the 1-σ uncertainties of Amalthea’s bulk den
sity it is evident that none of the configurations we tes
can actually be ruled out. Only the theoretical fluid confi
uration exceeds the 1-σ range, but only just barely. How
ever, we note that the two-particle configuration (in wh
Amalthea would consist of two giant blocks presuma
with a common regolith envelope) nonetheless has a hi
critical density than the mean measured density of Amalt
Conversely, configurations consisting of tens to hundred
solid components have the lowest critical density. We m
therefore speculate that Amalthea has the highest pr
bility of being a shattered body that is largely compos
of hundreds of competent fragments. But we cannot
clude finer granular configurations, or the possibility t
Amalthea is microporous with tensile strength. Regardl
we have demonstrated that perfect rubble piles vary in t
response to tidal stress depending on the number of p
cles and that, given accurate measurements of bulk den
the resulting limits from simulations have promise to pla
some constraints on the internal configurations of real b
ies.

4. Conclusions

We have carried out simulations investigating the spin
shape limits of initially prolate, perfect rubble piles. We fi
that: (1) unlike perfect fluids, rubble piles can maintain
range of shapes even at zero spin, due to the reshaping
,

-

,

r-

rier presented by individual particles (cannonball stackin
(2) for the same reason, rubble piles can spin faster th
perfect fluid without losing mass, up to a limit in our ca
that appears to be well represented by theHolsapple (2001)
limit for granular material in a prolate configuration with
friction angle of 40◦; (3) reaccumulating rubble piles tend t
ward the fluid/granular limits; and (4) coarse configuratio
of a few large particles are more resistant to reshaping
fine configurations of many small particles.

The implications of this study are that: (1) numeric
rubble piles appear to behave in a manner consistent
theoretical expectations for real granular material, lend
support to their validity as analogs for real bodies, though
caution that this only applies to the yield limits (the point
which material starts to flow); and (2) observing the sha
and spins of small bodies in the Solar System can place
its on their possible internal configurations. We also confi
Holsapple’s (2001)assertion that asteroid shapes and sp
are consistent with rubblized and/or granular configuratio
Further, only a tiny amount of strength would be requi
for a body to survive beyond the limits shown inFig. 2;
thus bodies found in that region cannot be assumed t
“monolithic.” One possibility is that geometrical interloc
ing between (necessarily non-spherical) fragments coul
providing strength in these cases, a notion that we will
vestigate in future work (see below).

It is important to note that most asteroid configuratio
are inconsistent with fluid shapes (e.g.,Pravec et al., 2002
Washabaugh and Scheeres, 2002), which might seem to sug
gest asteroids are less likely to bereaccumulatedrubble
piles. However, in their lifetime, asteroids undergo ma
non-disruptive but nonetheless energetic collisions that
alter their spin states and shapes(Asphaug et al., 1998
Paolicchi et al., 2002), moving the bodies further awa
from the fluid curves. In addition, the YORP thermal effe
(Bottke et al., 2002)11 can dramatically alter spin states ov
an asteroid’s lifetime, at least for those bodies with diam
ters below a few tens of kilometers. Indeed, YORP has b
invoked as a possible formation mechanism for asteroid
naries via mass shedding as the spin rate exceeds the c
threshold(Bottke et al., 2002). Although we did not explic-
itly search for binaries in our simulations, the fact that ma
outcomes are qualitatively similar to tidal disruption, a
that such events can lead to binary formation(Richardson
and Scheeres, 2002; Walsh and Richardson, 2004), suggests
this is a plausible mechanism. With large, bulky, interlo
ing components, or a little bit of cohesion between sma
components, a slowly spun-up fragmented body could a
mass shedding (which would cause it to restabilize as it lo
angular momentum) until the body has made it some

11 The Yarkovsky–O’Keefe–Radzievskii–Paddack or YORP effec
caused by anisotropic re-radiation of thermal energy following solar h
ing of a non-spherical body, resulting in a net torque on the body relativ
its spin axis.
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tance past the cohesionless breakup limit, whereupon it
catastrophically disrupt(Weissman et al., 2003).

The present study was intended to assess the relatio
between numerical idealized rubble piles and fluids/gran
media. We have made a first step toward that goal. Fu
studies could investigate a greater range of starting sh
(e.g., obloids or simply random triaxial shapes) and spin
entations (the present study was restricted to spin aroun
largest inertia moment), use higher resolution (more p
cles), search for binary formation following mass shedd
look for asymmetric final shapes (we assumed triaxial s
metry), and explore the effect of surface friction (we d
not include this in our models). Perhaps of even gre
interest however is to move away from idealized mono
perse spherical particles to a range of particle sizes (w
can affect the bulk density via drainage of small partic
through the cracks between large particles) and ultimate
a range of particle shapes. One approach to the latter g
to implement composite shapes consisting of spheres f
together, such as dumbbells, cubes, pyramids, etc., w
would require solving the Euler equations of rigid body m
tion with torques (see, e.g.,Richardson, 1995), but which
would allow the simpler methods of collision detection b
tween spheres to be retained. This facility has been inco
rated intopkdgrav and testing is currently underway.
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Appendix A. Spin limit for a particle on a rigid proloid

A test particle at the tip of a rigid proloid of dimen
sionsa3 = a2 < a1 (so q3 = q2 < 1), rotating with angula
frequencyω (unnormalized for this derivation), will barel
remain at rest if the gravitational acceleration on the par
is just balanced by the apparent outward acceleration d
the rotation. For an ellipsoid of uniform mass densityρ, the

12 http://www.povray.org/.
p

s

s

t

mass elementdm = ρ dV , so the gravitational acceleratio
is

∫∫∫
V

Gρ dV s/|s|3, whereG is the gravitation constan
ands is a vector pointing between the mass element and
test particle (seeDanby, 1992, Section 5.5, for an alterna-
tive approach; alsoHarris, 2002, Appendix). Expressing the
triple integral in cylindrical coordinates(r,φ, z), with the
particle located atz = +a1, the equilibrium condition may
be written as

ω2
maxa1 = Gρ

a1∫
−a1

a2

√
1−z2/a2

1∫
0

2π∫
0

r(z − a1)

[(z − a1)2 + r2]3/2

(A.1)× dφ dr dz,

where we have exploited the symmetry of the ellipsoid, c
tered at the origin with the long axis directed along
z-axis, and taken just the magnitude of the net accelera
(it would be directed toward the center of the ellipsoid).

The integrals overφ andr are straightforward, leaving

ω2
maxa1 = 2πGρ

(A.2)

×
[

2a1 −
a1∫

−a1

(z − a1) dz√
(z − a1)2 + a2

2(1− z2/a2
1)

]
.

Settinga2 = q2a1, we obtain (usingMathematica13)

ω2
maxa1 = −2πGρa1q

2
2

(A.3)×
2
√

1− q2
2 + ln(−−2+q2

2+2
√

1−q2
2

q2
2

)

(1− q2
2)3/2

.

Defining the eccentricitye ≡
√

1− q2
2 and simplifying, we

obtain Eq.(3).
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