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a b s t r a c t

We present a new particle-based (discrete element) numerical method for the simulation of granular
dynamics, with application to motions of particles on small solar system body and planetary surfaces.
The method employs the parallel N-body tree code pkdgrav to search for collisions and compute particle
trajectories. Collisions are treated as instantaneous point-contact events between rigid spheres. Particle
confinement is achieved by combining arbitrary combinations of four provided wall primitives, namely
infinite plane, finite disk, infinite cylinder, and finite cylinder, and degenerate cases of these. Various wall
movements, including translation, oscillation, and rotation, are supported. We provide full derivations of
collision prediction and resolution equations for all geometries and motions. Several tests of the method
are described, including a model granular ‘‘atmosphere’’ that achieves correct energy equipartition, and a
series of tumbler simulations that show the expected transition from tumbling to centrifuging as a func-
tion of rotation rate.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The understanding of granular dynamics is taking an increas-
ingly prominent place in the field of planetary science. Indeed,
we now know that granular material, in the form of regolith, is cov-
ering the uppermost layer of most solid bodies in our solar system,
from planets and their satellites to asteroids and comets. This pres-
ence of a regolith layer plays a particularly important role in the
surface geology of asteroids. The same can be stated, although to
a lesser extent, for bodies like Mars and the Moon, whose surface
gravities are also smaller than that of Earth. Thus, flows of granular
materials driven by different gravitational conditions are particu-
larly important in the understanding of the geology of small bodies
and planets. The exploration of the Moon and Mars in the next two
decades will require deployment of landing vehicles on surfaces of
loose granular material. Space missions to small bodies also in-
volve measurements by landers (e.g., the Rosetta space mission
of the European Space Agency) and sampling devices capable of
coping with a wide range of surface properties. Therefore, under-
standing how granular materials, as a function of their properties
(angle of friction, size distribution of their components, etc.), react
to different kinds of stresses is of great interest for the design of
landers and sampling devices of space missions. The same holds

true in the framework of mitigation strategies against a potential
impactor, which involve an interaction with the body’s surface.

The presence or relative absence of gravitational acceleration on
granular flow is of importance for understanding the geology of
small bodies and planets, and to clarify the environments that
may be encountered during planetary exploration. Bodies with
low surface gravity can be very sensitive to processes that appear
irrelevant in the case of larger planetary bodies. For instance, seis-
mic vibration induced by small impacts can occur throughout a
small body and can be at the origin of motion of its granular sur-
face. Such a mechanism has been proposed to explain the lack of
very small craters on both Asteroid 433 Eros (Richardson et al.,
2004) and Asteroid 25143 Itokawa (Michel et al., 2009). Shaking
can also drive size sorting/segregation in granular media. This
has been observed on Earth (Rosato et al., 1987), as well as on Eros
(Robinson et al., 2002) and Itokawa (Miyamoto et al., 2007). In par-
ticular, on Asteroid Itokawa it has been observed that the neck is
formed mainly by centimeter or smaller-sized regolith but that
both the head and body are covered by meter-scale boulders. This
finding has led some to suggest that subsequent impacts on an
asteroid could provide the energy and driving mechanism for seg-
regation to occur (Asphaug et al., 2001; Miwa et al., 2008), leading
to a phenomenon commonly called the ‘‘Brazil-nut effect.’’ How-
ever, it was then found for Itokawa that an erosion mechanism
was not sufficient to explain the selective location of coarse mate-
rial in the potential lows and highs, and that other factors, such as
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cohesion, rotation, or avalanches may be involved (Sánchez et al.,
2010). In fact, rotational spin-up of a small body as a result of
the thermal YORP effect can lead to regolith motion on the surface
(Scheeres et al., 2007), and even to the escape of material that can
eventually result in the formation of a satellite (Walsh et al., 2008).

All these aspects demonstrate the great importance of under-
standing the dynamics of granular matter for planetary science
applications. The study of granular dynamics requires dealing with
complex mechanical processes and currently constitutes an entire
field of research by itself. As examples of the complexity, it has
been found that granular matter may strengthen under a variety
of conditions, for instance as a result of a slow shift in the particle
arrangement under shear stress or because of humidity (Losert
et al., 2000b). Moreover, while granular materials are a discrete
medium, their flow in response to stress can, under certain condi-
tions, be described by continuum models (Savage, 1998; Goddard,
1990; Losert et al., 2000a). However, many processes cannot be
captured using classical continuum approaches. For example,
highly stressed granular materials exhibit shear localization during
failure (Mueth et al., 2000) but this localization cannot be de-
scribed accurately by existing continuum models (Kamrin and
Bazant, 2007). In addition, situations have been identified in which
material under shear stress weakens when the shear direction is
changed/reversed (Toiya et al., 2004; Falk et al., 2010). Finally, at
low gravity, other physical forces relevant to regolith in the aster-
oid environment, such as van der Waals forces, may exceed the
particle weights and require consideration (Scheeres et al., 2010).

Improving our understanding of the dynamics of granular mate-
rials under a wide variety of conditions requires that both experi-
mental and numerical work be performed and compared. Once
numerical approaches have been validated by successful compari-
son with experiments, then they can cover a parameter space that
is too wide for or unreachable by laboratory experiments.

There are several different approaches that have been used to
perform modeling of granular materials (Mehta, 2007). One com-
monly used technique is the discrete element method (DEM).
DEM is a numerical method for computing the motion of a large
number of particles of micron-scale size and above. Though DEM
is very closely related to molecular dynamics (in which atoms
and molecules are allowed to interact for a period of time by
approximations of known physics), the method is generally distin-
guished by its inclusion of rotational degrees of freedom, inelastic
collisions, and often-complicated geometries (including polyhedra;
e.g., Cleary and Sawley, 2002; Fraige et al., 2008; Latham et al.,
2008; Szarf et al., 2010).

However, the DEM method remains relatively computationally
intensive, which limits either the length of a simulation or the
number of particles. Several DEM codes, and related molecular
dynamics codes, take advantage of parallel processing capabilities
to scale up the number of particles or length of the simulation (e.g.,
Cleary and Sawley, 2002; Kacianauskas et al., 2010).

Hard-sphere particle dynamics have been used successfully in
many granular physics applications. Hong and McLennan (1992)
used hard-sphere molecular dynamics to study particles flowing
through a hole in a two-dimensional box under the influence of
gravity. Huilin et al. (2007) used an Eulerian–Lagrangian approach
coupled with a discrete hard-sphere model to obtain details of par-
ticle collision information in a fluidized bed of granular material.
Also Kosinski and Hoffmann (2009) compared the standard hard-
sphere method including walls to a hard-sphere model with walls
that also accounts for particle adhesion. The van der Waals type
interaction is presented as a demonstration case.

An alternative to treating all particles separately is to average
the physics across many particles and thereby treat the material
as a continuum. In the case of solid-like granular behavior, the con-
tinuum approach usually treats the material as elastic or elasto-

plastic and models it with the finite element method or a mesh-
free method (e.g., Elaskar et al., 2000; also see Holsapple (2001,
2004), Holsapple and Michel (2006, 2008), and Sharma et al.
(2006, 2009) for use of analytical and continuum approaches in
modeling asteroid shapes). In the case of liquid-like or gas-like
granular flow, the continuum approach may treat the material as
a fluid and use computational fluid dynamics. However, as ex-
plained previously, the homogenization of the granular-scale phys-
ics is not necessarily appropriate, and the discreteness of the
particles and the forces between particles (and walls) need to be
taken into account (Wada et al., 2006). Therefore limits of such
homogenization must be considered carefully before attempting
to use a continuum approach.

Recently, numerical codes have been developed to address spe-
cifically the dynamics of granular materials in the framework of
planetary science. For instance, Sánchez et al. (2010) simulated
the particles forming an asteroid by means of soft-sphere molecu-
lar dynamics. In this approach, particles forming the aggregate
have short- and long-range interactions, for contact and gravita-
tional forces respectively, which are taken into account using
two types of potentials (see Sánchez et al. (2010) for details).

In this paper, we present our method to simulate the dynamics
of granular materials, along with a few basic tests that show its
ability to address different problems involving these dynamics. A
more complete validation by comparison with a well-documented
laboratory experiment of seismic shaking is the subject of a follow-
up paper (Murdoch et al., 2011, in preparation). We use the N-body
code pkdgrav (Stadel, 2001), adapted for hard-body collisions
(Richardson et al., 2000; Richardson et al., 2009). The granular
material is therefore represented by hard spheres that interact
via impulsive, point-contact forces. Advantages of pkdgrav over
other many discrete element approaches include full support for
parallel computation, the use of hierarchical tree methods to rap-
idly compute long-range interparticle forces (namely gravity, when
included) and to locate nearest neighbors (for short-range Hooke’s-
law type forces) and potential colliders, and options for particle
bonding to make irregular shapes that are subject to Euler’s laws
of rigid-body rotation with non-central impacts (cf. Richardson
et al., 2009). In addition, collisions are determined prior to advanc-
ing particle positions, insuring that no collisions are missed and
that collision circumstances are computed exactly (in general, to
within the accuracy of the integration), which is a particular
advantage when particles are moving rapidly.

Here we focus on the implementation of a wide range of bound-
ary conditions (‘‘walls’’) that can be used to represent the different
geometries involved in experimental setups, but more generally
provide the needed particle confinement and possible external
forcings, such as induced vibrations, for small-scale investigations
of regolith dynamics in varying gravitational environments (differ-
ent surface slopes, etc.). Our approach is designed to be general and
flexible: any number of walls can be combined in arbitrary ways to
match the desired configuration without changing any code,
whereas many existing methods are tailored for a specific geome-
try. The long-term goal is to understand how scaling laws, different
flow regimes, segregation, and so on change with gravity, and to
apply this understanding to asteroid surfaces, without the need
to simulate the surfaces in their entirety. We present the full detail
of our numerical method in Section 2, describe basic tests of the
method in Section 3, and offer discussion and conclusions in Sec-
tions 4 and 5, respectively.

2. Numerical method

This section details the numerical method employed in our
granular dynamics simulations. We use pkdgrav, a parallel
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N-body tree code (Stadel, 2001) that has been adapted for hard-
body collisions (Richardson et al., 2000; Richardson et al., 2009).
In what follows we present the general strategy of searching for
and resolving collisions among particles, and between particles
and the ‘‘walls’’ of the simulated apparatus. This is followed by
detailed derivations of the collision equations for the four wall
‘‘primitives’’ that we have developed so far, namely the infinite
plane, finite disk, infinite cylinder, and finite cylinder, plus degen-
erate cases of these.

2.1. General strategy

In our approach, we predict when collisions will occur based on
trajectory extrapolation at the beginning of each integration step.
We use a second-order leapfrog integrator in pkdgrav: each step
consists of ‘‘kicking’’ particle velocities by a half step (keeping par-
ticle positions fixed), ‘‘drifting’’ particle positions at constant veloc-
ity for a full step, recomputing accelerations due to gravity, then
performing a final half-step velocity kick (see Richardson et al.
(2009) for details). Collision searches are performed during the
drift step by examining the trajectories of enough neighbors of
each particle to ensure no collisions are missed. Since there is no
interparticle gravity for the granular dynamics experiments dis-
cussed here (only a configurable uniform gravity field), the equa-
tions of motion are particularly simple, but we nonetheless use
the full machinery of the N-body code for these simulations—the
tree is still used to speed up neighbor searches, and parallelism re-
duces computation time for large simulations. Also, more complex
gravity fields for which there is no analytical solution for particle
motion will be used in the future.

The condition for two particles with initial vector positions r1

and r2 and velocities v1 and v2 to collide after a time interval t
(measured from the start of the drift step in this case) is

jr2 � r1 þ ðv2 � v1Þtj ¼ s1 þ s2; ð1Þ

where s1 and s2 are the radii of the particles (treated as perfect hard
spheres), or

jqþ mtj ¼ s1 þ s2; ð2Þ

where we have introduced the relative position q � r2 � r1 and
velocity m � v2 � v1 (Fig. 1). To collide, the particles must be
approaching one another, so q � m < 0. We assume the particles are
not initially touching or overlapping, i.e., we require q > s1 + s2,
where q � jqj. Eq. (2) can be solved for t by squaring both sides
and applying the quadratic formula1:

t ¼
�ðq � mÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq � mÞ2 � ½q2 � ðs1 þ s2Þ2�m2

q
m2 ; ð3Þ

where m � jmj and the sign ambiguity is resolved by taking t to be
the smallest positive value of any real roots. If t is between zero
and the drift step time interval (i.e., the simulation time step), the
collision takes place during this integration step. Collisions are trea-
ted as instantaneous events with no flexing and a configurable
amount of energy loss due to restitution (parameterized by the nor-
mal coefficient of restitution 0 6 en 6 1, where 0 means perfect
sticking and 1 means perfect bouncing) and surface coupling
(parameterized by the transverse coefficient of restitution
�1 6 et 6 1, where �1 means reversal of transverse motion on con-
tact, 0 means complete damping of transverse motion, and 1 means
no surface coupling). For completeness, the collision resolution
equations for perfect spheres are (Richardson et al., 2009, Appendix
B; also see Richardson, 1994, Fig. 1):

v01 ¼ v1 þ
m2

M
ð1þ enÞun þ

2
7
ð1� etÞut

� �
;

v02 ¼ v2 �
m1

M
ð1þ enÞun þ

2
7
ð1� etÞut

� �
;

x01 ¼ x1 þ
2
7

lð1� etÞ
I1

ðs1 � uÞ;

x02 ¼ x2 �
2
7

lð1� etÞ
I2

ðs2 � uÞ;

where the primes denote post-collision quantities, M = m1 + m2 is
the sum of the particle masses, u = m + (r2 � r1) is the total relative
velocity at the contact point (with ri = xi � si, i = 1,2, where xi is
the spin vector of particle i; si ¼ ð�1Þði�1Þsin̂, and n̂ ¼ q=q),
un ¼ ðu � n̂Þn̂, ut = u � un, l is the reduced mass m1m2/M, and
Ii ¼ 2

5 mis2
i is the moment of inertia of particle i; the factors of 2/7 re-

sult from using spheres. These equations come from conservation of
linear and angular momentum combined with the following state-
ment of energy loss:

u0 ¼ �enun þ etut : ð4Þ

The approach for handling wall collisions is similar: first the time to
collision is determined, then the collision is resolved. The collision
condition is that the distance of the particle center from the point
of contact on the wall must equal the particle radius, i.e.,

jrimpact � cj ¼ s; ð5Þ

where c is the vector position of the point of contact and we have
dropped the subscript i. (For the derivations that follow, we have
adopted the convention that the wall corresponds to i = 1 and the
particle to i = 2; this minimizes the number of minus signs in the
equations.) Because c depends on the particular wall geometry, it
is best to consider each geometry in turn and exploit any symme-
tries to determine more conveniently when (if at all) this contact
condition is satisfied for a given particle and wall pair. Note that of-
ten a wall consists of a combination of more than one geometry (for
example, a finite disk is a round portion of a plane plus a surround-
ing ring, i.e., a cylinder of zero length)—the collision prediction rou-
tines for walls in pkdgrav return a list of possible collision times,
one for each ‘‘face’’ (for the finite disk example, there are 3 faces:
one flat side, the opposite flat side, and the perimeter ring), with
the smallest positive time corresponding to the face that will be
struck first.

In pkdgrav, after all neighbors of a given particle have been
checked for possible collisions, every wall is checked also. What-
ever body (whether particle or wall) that gives the shortest time
to collision is taken to be the next collision event. That collision
is resolved, collision times are updated depending on whether
the collision that just happened changes future collision circum-
stances, and the next collision is carried out until all collisions

Fig. 1. Diagram illustrating the quantities used for predicting the collision of two
spheres (cf. Eqs. (1)–(3)). Although the diagram depicts a collision in two
dimensions, the derivations apply to the full three-dimensional case.

1 In practice, a version of the quadratic formula optimized to reduce round-off error
is used in pkdgrav—cf. Press et al., 2007.
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during the current drift interval have been handled. Walls are treated
as having infinite mass, so the restitution equations reduce to:

v0 ¼ v � ð1þ enÞun �
2
7
ð1� etÞut; ð6Þ

x0 ¼ x� 5
7

s�2ð1� etÞs� u; ð7Þ

where

u ¼ v þx� s ð8Þ

(for a static wall), en and et are specific to the wall (see below), and
s � �sn̂, with n̂ being the unit vector in direction (r + v t) � c, i.e.,
from the point of contact (which depends on the wall geometry)
to the particle center. To account for any wall motion, u in Eq. (8)
is adjusted as needed (see below).

The parameters of each wall type are specified by the user at
run time via a simple text file. Information common to each wall
that must be specified includes the origin (a vector reference
point), orientation (a unit vector), en and et for the wall (which
override the particle values during a particle–wall collision), and
color and transparency (for drawing purposes). In addition, each
geometry has a unique set of parameters particular to that geom-
etry, e.g., radius in the case of the finite disk and cylinders, and
length for the finite cylinder. Also, simple motions are supported
for each geometry; e.g., a plane or disk can have translational
and/or sinusoidal oscillatory motion, while a cylinder can rotate
around its symmetry (orientation) axis. Oscillations are treated
by updating the wall position in stepwise fashion, holding the
velocity constant between timesteps. In pkdgrav, a single function
is used to get the position and velocity of a particle relative to any
(possibly moving) wall at a given time. Finally, a wall can be
‘‘sticky,’’ meaning any particles that come into contact with it be-
come rigidly held, or ‘‘absorbing,’’ meaning any particles that come
into contact with it are removed from the simulation. These latter
options are encoded as special cases of the wall normal coefficient
of restitution (0 indicating sticky, <0 indicating absorbing). The
sticky wall is particularly useful for creating a rough surface (cf.
Section 3.2); the absorbing wall is helpful when particles are no
longer needed, such as when they have moved beyond the flow re-
gime of interest.

For a particle hitting another particle that is rigidly stuck to a
wall, Eqs. (6) and (7) also apply when resolving the collision (the
stuck particle is treated as having infinite mass), with n̂ pointing
from the center of the stuck particle to the center of the free parti-
cle, and en and et being the usual particle values (i.e., not the values
specific to the wall). Detection of collisions with stuck particles is
handled by setting the stuck particles’ velocities equal to the
instantaneous velocities of their host walls at the start of the step.
In the case of particles stuck on rotating cylinders, the component
X� ½ðR� sÞn̂� is added to the particle velocities, where X is the cyl-
inder’s rotation vector and R is its radius, and in this case n̂ is the
perpendicular from the cylinder rotation axis to the particle center
at the start of the step (the sign of s depends on whether the par-
ticle is on the outer [positive] or inner [negative] surface). The posi-
tions of particles stuck on moving/rotating walls are updated at the
end of the drift step. Collisions with particles stuck on rotating cyl-
inders can optionally be predicted to higher order using a quartic
expression that accounts for the curvilinear motion (cf. Richardson
et al., 2009, Eq. (A.4)).

For resolving collisions with moving walls, and particles stuck
to moving walls, each wall’s instantaneous velocity at the start of
the step is subtracted from u in Eq. (8) before applying Eqs. (6)
and (7). For cylinder rotation, with the rotation axis parallel to
the symmetry axis of the cylinder, X� ðRn̂Þ is subtracted, where
n̂ is as defined for those equations. For particles stuck to rotating
walls, the stuck particle itself is given an extra speed component

(see above), which is taken into account when resolving the colli-
sion outcome.

2.2. Specific geometries

The following sections detail the implementation of the sup-
ported wall geometries in pkdgrav.

2.2.1. Infinite plane
The parameters for the infinite plane are the origin O and nor-

mal bN, plus optional velocity V, oscillation amplitude A, and oscil-
lation angular frequency X (so the relative vector displacement
after time T due to oscillation, measured from the start of the sim-
ulation and evaluated at the start of the step, is A sinðXTÞbN). The
origin can be any point in the plane (the choice is arbitrary).

To simplify the equations in this and subsequent derivations,
we define the relative position vector q � r � O and separate it into
perpendicular and parallel components, qN and qT, respectively,
where qN � qN

bN, qN � q � bN, and qT � q � qN (so bT � qT= j qT j,
which is only defined if jqTj > 0 and means bT generally has a time
dependence; for completeness, we also define qT � q � bT). It is
important to note that qN and qT are signed quantities (vector com-
ponents), unlike q defined previously, which is an unsigned magni-
tude. We similarly define the relative velocity m � v � _O, with
corresponding perpendicular and parallel components.

Returning to the specific case of the infinite plane, the collision
condition is jqN,impactj = s, i.e., that the perpendicular distance from
the particle center to the surface (the height above or below the
plane) at the time of impact is equal to the particle radius
(Fig. 2). For this geometry, and measured from the start of the drift
step, the time to impact is

t ¼
s�qN
mN

if qN > 0;

� sþqN
mN

if qN < 0;

(
ð9Þ

where the first condition corresponds to impact with the ‘‘upper’’
face (the surface out of which the normal vector bN points) and the
second corresponds to the opposite ‘‘lower’’ face. (We take this
two-case approach to avoid having to solve a quadratic; cf. Sec-
tion 2.2.3.) Note qNmN < 0 is a requirement for collision (otherwise
the particle is moving away from or parallel to the plane). For com-
pleteness, the wall position at the start of the step is O ¼ Oð0Þþ

Fig. 2. Geometry of sphere-plane collision. Here the plane is depicted as a finite,
thick disk for illustration only; in reality the plane has zero thickness and infinite
extent. For simplicity, velocity vectors are not shown. The unit vector bT is in the
plane, while bN is perpendicular to it (for clarity of presentation, the vector
representing bT is given length jqTj, i.e., the distance from the plane origin to the
contact point). Note n̂ ¼ �bN and q ¼ qN

bN þ qT
bT, where in this scenario qN must

equal s, the radius of the impacting sphere. The geometry is similar for a sphere–
disk collision (Section 2.2.2), where the disk in the figure would have radius R but
still have no thickness.
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VT þ A sinðXTÞbN, where O(0) is the origin at the start of the simula-
tion, and the wall velocity is _O ¼ V þXA cosðXTÞbN.

To resolve the collision, Eqs. (6) and (7) apply, with n̂ being
either bN or �bN, depending on which face was struck; specifically,
n̂ ¼ sign½qN;impact�bN.

2.2.2. Finite disk
This geometry uses the same parameters as the infinite plane

(Fig. 2) but now includes the finite radius R of the object. The origin
O is the geometric center of the disk. Collision prediction proceeds
in three stages: first, Eq. (9) is used to determine the impact time
(if any) with the infinite plane that contains the disk (i.e., taking
R =1); second, the position the particle would have relative to
the (possibly moving) disk at that impact time is checked to deter-
mine whether jqT,impactj < R, i.e., that the separation of the particle
center from the disk origin, projected onto the plane, would be less
than the disk radius, indicating actual contact with the flat surface
of the finite disk; third, the impact time (if any) with the disk
perimeter, i.e., a ring, is checked (see Section 2.2.5)—the smallest
positive time for impact with both faces and the perimeter is taken
to be the next impact time with this object.

Collision resolution is the same as for the infinite plane, unless
the particle has made contact with the perimeter, in which case the
collision is treated as a ring bounce (Section 2.2.5).

2.2.3. Infinite cylinder
The parameters for the infinite cylinder are the origin O, sym-

metry-axis orientation bN, radius R, and optional angular frequency
X (with bN as the spin axis). The origin is any point along the sym-
metry axis. In the current implementation, cylinders are fixed in
space, and since the rotation does not change the orientation (it
only affects the tangential motion and spin of particles that come
into contact with the cylinder, assuming et – 1), O is constant (so
_O ¼ 0). The collision condition is jqT,impactj = R ± s, i.e., the perpen-
dicular distance from the particle center to the cylinder wall is
equal to the particle radius. Note that particles can either be inside
(assuming R > s) or outside the cylinder; each face is considered in
turn. Fig. 3 illustrates the geometry.

To find the collision time (if any), note qimpact = q + mt, where re-
call q � r� O; m � v � _O ¼ v in this case, and t is the impact time

measured from the start of the drift step. Substituting into the col-
lision condition equation,

jqT þ mT tj ¼ R� s: ð10Þ

Taking the square,

q2
T þ 2ðqT � mTÞt þ m2

T t2 ¼ ðR� sÞ2: ð11Þ

This is a quadratic equation for t and can be solved in the usual way.
For completeness,

t ¼
�ðqT � mTÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqT � mTÞ2 � m2

T q2
T � ðR� sÞ2

h ir
m2

T

: ð12Þ

Note there are four solutions, two each for impacts with the inner
face (corresponding to R � s on the right-hand-side of Eq. (10))
and outer face (R + s). Again, for each face, the smallest positive
(real) value for t is chosen. If mT = 0, there will be no impact (the par-
ticle is either stationary with respect to the cylinder, or moving par-
allel to the cylinder’s symmetry axis). If the particle is outside the
cylinder (so jqTj > R + s), a collision can only occur if qT � mT < 0; for
an infinite cylinder, the collision can only be with the outer face.
If the particle is inside the cylinder (so jqTj < R � s), all solutions
are real (i.e., there must be a collision, assuming mT – 0); further-
more, only collisions with the inner face are possible (even in the
case of a finite cylinder). Together these facts can be used to reduce
the computation time involved with this geometry. Note however,
unlike other collision circumstances handled by pkdgrav, in the
case of an interior bounce involving a cylinder (or a ring), it is pos-
sible for the particle to hit the same object two or more times in one
integration step without an intervening collision with another
object.

To resolve the collision, Eqs. (6) and (7) apply, with n̂ being eitherbTimpact, if the outer face was struck (requiring jqT,impactj = R + s), or
�bTimpact, if the inner face was struck (requiring jqT,impactj = R � s).
Recall a cylinder can be spinning, in which case XbN � qT;impact is
subtracted from the total relative velocity u in Eq. (8) before apply-
ing the collision equations.

2.2.4. Finite cylinder
This geometry uses the same parameters as the infinite cylin-

der, but now includes the finite length L of the object. The origin
O is the geometric center of the cylinder. In a manner similar to
the finite disk case (Section 2.2.2), collision prediction proceeds
in three stages: first, Eq. (12) is used to determine the impact time
(if any) with the infinite counterpart to the cylinder (i.e., taking
L =1); second, the position the particle would have relative to
the cylinder at that impact time is checked to determine whether
jqN,impactj < L/2, i.e., that the separation of the particle center from
the cylinder origin, projected onto the cylinder’s orientation axis,
would be less than half the cylinder length, indicating actual con-
tact with the surface of the finite object (not the ends); third, the
impact times (if any) with the cylinder ends are checked (see Sec-
tion 2.2.5)—the smallest positive time for impact with both faces
and the cylinder ends is taken to be the next impact time with this
object. Three special cases for this geometry are supported: L = 0 is
a ring (Section 2.2.5); R = 0 is a line (so there is no inner surface);
and L = 0 = R is a point, which is treated as a special case of an infin-
itesimal ring.

Collision resolution is the same as for the infinite cylinder, un-
less the particle has made contact with either end, in which case
the collision is treated as a ring bounce (Section 2.2.5).

2.2.5. Ring
This is a special degenerate case of a zero-length cylinder, but it

is also needed for both the perimeter of a finite disk and the ends of

Fig. 3. Geometry of sphere–cylinder collision. Shown is a finite cylinder of radius R
and length L, with origin O at the geometric center. For an infinite cylinder, L ?1
and O can be anywhere along the symmetry axis. For ease of illustration, only the
case of exterior impact is shown; interior impact is similar, except n̂ has opposite
sign. The unit vector bT is the perpendicular pointing from the cylinder axis to the
point of contact, while bN points along the cylinder axis (for clarity of presentation,
the vectors representing bT and n̂ are given length R and s, respectively, where s is
the radius of the impacting sphere). Note n̂ ¼ bT (for exterior impact) and
q ¼ qN

bN þ qT
bT, where in this scenario qT must equal R + s; qN is simply q � bN.
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a finite cylinder. The parameters are inherited from whatever base
type needs to consider ring collisions, i.e., in addition to the origin
O and orientation bN, the parameters are the radius R of either the
finite disk or the finite cylinder, and either V, A, and X for the disk
or X for the cylinder—see the corresponding sections above.

Solving for the impact time of a sphere of radius s with a thin
ring is equivalent to finding the first intersection of a ray with a
torus of tube radius s, a common problem in computer ray tracing.
We use the approach developed by Wagner (2004), for which the
possible impact times t are roots of the quartic equation

a4t4 þ a3t3 þ a2t2 þ a1t þ a0 ¼ 0; ð13Þ

where

a4 ¼ a2; ð14Þ
a3 ¼ 2ab; ð15Þ
a2 ¼ b2 þ 2acþ 4R2m2

N ; ð16Þ
a1 ¼ 2bcþ 8R2qNmN ; ð17Þ
a0 ¼ c2 þ 4R2 q2

N � s2� �
; ð18Þ

and

a ¼ m � m; ð19Þ
b ¼ 2ðq � mÞ; ð20Þ
c ¼ q � q� s2 � R2; ð21Þ

for which q and m have the usual definitions (so the ray is given by
q + mt). However, this derivation only applies to the special case
O = (0,0,0) and bN ¼ ð0;0;1Þ, i.e., a ring centered at the origin of a
Cartesian coordinate system and lying in the xy plane (so the nor-
mal is in the +z direction). For the general case, q and m must first
be transformed (rotated) into the torus frame according to

q0 ¼Mq; ð22Þ
m0 ¼Mm; ð23Þ

where the primes indicate post-rotation quantities,

M ¼ bXjbYjbN� �T
; ð24Þ

and bX and bY are constructed from bN using Gram–Schmidt orthon-
ormalization (note rotation around the torus symmetry axis is
unimportant, so we are free to choose any bX and bY so long asbX; bY , and bN are mutually orthogonal). Note MbN ¼ ð0;0;1Þ, as
required.

We solve the quartic using Laguerre’s method (Press et al.,
2007), a root-finding scheme optimized for polynomials that does
not require prior bracketing of the roots.

There are several special cases that are checked for before com-
mitting to solving the quartic. In the case of R = 0 (a point), Eq. (3)
applies immediately, with s1 = 0 and s2 = s. In the case of qT = 0
(particle center on the ring symmetry axis) and jmNj = jmj (particle
moving parallel to the symmetry axis), an arbitrary point is chosen
on the ring and Eq. (3) is used to find the impact time. Also, as
usual, if m = 0 (a = 0), there can be no collision.

To resolve the collision, Eqs. (6) and (7) apply, with

n̂ ¼ ðqimpact � RbTimpactÞ=s: ð25Þ

(So in the degenerate case of R = 0, i.e., contact with a point,
n̂ ¼ qimpact=s.) For the special case of the particle center lying on
the orientation axis, with R 6 s (indicating the particle has struck
an entire end perimeter perfectly and thus bTimpact is undefined),
n̂ ¼ sign½qN;impact�bN, i.e., the same as for a plane bounce
(Section 2.2.1).

2.3. Overlap handling

The derivations above make the tacit assumption that particles
are neither touching nor intersecting any geometric shapes
(including other particles) at the start of the drift interval, i.e., legit-
imate impact times t should always be positive. Unfortunately, due
to finite computer precision, sometimes a particle ends up in con-
tact with or interpenetrating another object at the start of the step,
e.g., a collision during the previous step may have been missed, or
round-off error led to an overlap. The simplest fix is to allow t to be
negative (or zero) to correct such situations. It does, however,
greatly complicate the decision logic when computing t for the var-
ious wall geometries discussed above.

As an example, in the case of the infinite plane, a particle is
touching or overlapping if qN 6 s, in which case the smallest non-
positive t for impact is chosen. In practice, a modified version of
Eq. (9) is used when computing t: both faces are considered regard-
less of which side the particle center is on, allowing for the possi-
bility of initial touching/overlap (which is revealed by one—but not
both—of the t’s being negative, or one being negative and the other
being zero). Note that it is still the case that collisions are ignored if
mN = 0 or qNmN P 0, regardless of whether the particle is touching or
overlapping the surface—generally overlaps are a tiny fraction of
the particle radius, whereas the condition qNmN > 0 with qN < s im-
plies the particle has penetrated more than a full radius.

In the interest of brevity, we do not provide exhaustive case-
by-case touching/overlap remedies for all geometries here. It is
sufficient to note that overlaps do happen, particularly in close-
packed situations where a great many collisions can occur during
a single timestep, but the errors are typically very small (many
orders of magnitude smaller than the particle radius) and can be
corrected by allowing t to be negative (or zero). The test suite
described in Section 3 was designed to stress the code and shows
that any overlap artifacts encountered are negligible. Pkdgrav
incorporates other overlap strategies for situations involving inter-
particle gravity and/or more complex aggregated particle shapes,
but discussion of these strategies is beyond the scope of this paper.

3. Basic tests

A suite of simple tests was developed during the coding stage to
exercise each new feature/geometry as it was added. Examples in-
clude dropping particles into a cylinder bisected by an inclined
plane, ‘‘rolling’’ a perfectly balanced sphere on the inside edge of
a vertical ring, and bouncing hundreds of spheres on an oscillating
disk inside a cylinder. Here we report on two tests designed to
demonstrate correct dynamic behavior of the granular assembly.
In the companion paper (Murdoch et al., 2011, in preparation),
we present a detailed study of grain motions on a vibrating plate.

3.1. Model atmosphere

For this test, a ball of approximately 1000 close-packed particles
is dropped from rest into the top half of an infinitely long vertical
cylinder bisected by an infinite horizontal plane. A uniform gravity
field points vertically downward (there is no interparticle gravity)
and collisions among the particles and between particles and the
walls are elastic (so there is no dissipation). The particles are
roughly equally divided among three different masses: 1, 3, and
10 (arbitrary units; for this simulation, the cylinder radius is 1.0,
the particle radius is 0.022 for all masses, the drop height of the
center of the particle ball is 1.0, and the acceleration in the vertical
z direction is �2.5 � 109; internally, the universal constant of
gravitation G � 1). The expected behavior, after the transient
splash, is that the particles achieve energy equipartition, with the
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smallest-mass particles reaching a scale height three times higher
than that of the medium-mass particles and about 10 times higher
than that of the most massive particles.

Fig. 4 shows ray-traced snapshots of the system, from the initial
condition to the final equilibrium state. Fig. 5 shows the evolution
of the mean heights of the three particle mass populations. The
‘‘height’’ of a particle is the distance separating its bottom surface
from the plane, i.e., the z coordinate of its center minus its radius,
with the horizontal plane located at z = 0. Our hypothesis is that
the height z of a particle with mass m is drawn from a probability
distribution PmðzÞ ¼ e�z=hm=hm, where hm is the scale height associ-
ated with particles of mass m. The best estimate of hm for our mod-
el (for a given m) is found by maximizing the likelihood

lnL ¼
X
i2m

ln PmðziÞ þ const: ð26Þ

Substituting for our model Pm, we find L is maximized when
hm ¼

P
i2mzi=Nm, where Nm is the number of particles of mass m;

in other words, the best estimate of hm is the average height of all
particles with that mass. This is what is shown in Fig. 5 (solid lines).
The measured scale heights show the expected inverse proportion-
ality with mass, but exhibit some fluctuations. In fact, a perfect
match to the model is not expected due to finite-size effects: in
the limit of large particle sizes compared to the cylinder diameter,
the bottom layers may become fully occupied, which is not pre-
dicted by the functional form of Pm used here. To test this, a few
runs varying the cylinder-to-particle diameter ratio were carried
out and showed larger discrepancies from the ideal scale height ra-
tios for smaller diameter ratios.

We also performed Kolmogorov–Smirnov (K–S) tests to compare
the height data with the expected distributions Pm(z). Fig. 6 shows
the K–S curves (solid lines) for the final snapshot in Fig. 4 compared
to the normalized cumulative probability distributions Cm(z)/
Cm(zmax) (dotted lines), where CmðzÞ ¼

R z0

0 Pmðz0Þdz0 ¼ 1� e�z=hm and
zmax is the largest value of z (among particles of mass m) for this
snapshot. The normalization ensures the cumulative probability
distribution has a value of unity at z = zmax (each curve has a differ-
ent zmax, but the K–S statistic is insensitive to scaling of the indepen-
dent variable, which is why there are no tick marks on the
horizontal axis of Fig. 6). For this particular snapshot, which repre-
sents an arbitrary instant after equilibrium has been reached, we
find K–S probabilities of 0.89, 0.08, and 0.70, corresponding to
masses 1, 3, and 10, meaning we cannot reject the null hypothesis
that the data is drawn from Pm at those confidence levels. For the
middle mass, this is not very convincing, but we find there is signif-
icant variation between snapshots. Taking the average probabilities
from 50%, 60%, 70%, 80%, 90%, and 100% of the way through the sim-
ulation, we find mean K-S probabilities of 0.77 ± 0.27, 0.40 ± 0.33,

and 0.72 ± 0.16 (the errorbars denote 1 standard deviation from
the mean). Moreover, if we repeat the analysis for a cylinder that
is half as wide, the probabilities drop to 0.22 ± 0.31, 0.05 ± 0.06,
and 0.62 ± 0.35. We must caution that because the mean and max-
imum z values measured from the data were used in the model for
the K–S test, the distribution of the K–S statistic may not be fully
consistent with the formula used to compute the null hypothesis
probability (cf. Press et al., 2007). Repeating the analysis using the
expected values of hm (see below), the mean K–S probabilities for
the radius 1.0 cylinder do not change significantly. Regardless, there
is no way to avoid using zmax to insure the cumulative probability is
normalized, so the K–S test probabilities must be considered formal
values only.

Finally, we can apply the principles of hydrostatic equilibrium
and the energy equipartition theorem to derive the expected scale
heights hm and compare these with the measured values for each

Fig. 4. Snapshots from the model atmosphere test (Section 3.1) showing (a) the initial condition, (b) splash, and (c) final equilibrated state. The particle colors red, magenta,
and blue correspond to particle masses 1, 3, and 10, respectively (particle radii are the same for all masses). The scale heights of the three populations are expected to be
inversely proportional to their masses. The full vertical extent of the smallest-mass particle distribution is not shown. Gravity is directed down in the figure. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Evolution of the mean particle heights in the model atmosphere test. The
colors red (top line), magenta (middle line), and blue (bottom line) correspond to
particle masses 1, 3, and 10, respectively. The dotted horizontal lines are the
corresponding expected scale heights assuming hydrostatic equilibrium, the ideal
gas law, and energy equipartition. The timestep for these simulations was 10�8 in
system units. The snapshots of Fig. 4 correspond to timesteps 0, 30, and 1,000,
respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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mass population. Treating the particles as an ideal gas at constant
temperature T (an ideal isothermal atmosphere), the number den-
sity n of particles is proportional to the pressure P. In hydrostatic
equilibrium,

dP ¼ �qg dz; ð27Þ

where q = mn and g is the (assumed constant) gravitational acceler-
ation. Substituting q = m/(kBT) from the ideal gas law, where kB is
the Boltzmann constant, and integrating, we find

P ¼ P0 exp �mg
kBT

z
	 


; ð28Þ

which, since P is proportional to q, gives the desired scale height

hm ¼
kBT
mg

: ð29Þ

Now, the total energy of the system, which remained constant to
better than 1 part in 104 for the duration of all the model atmo-
sphere tests we performed (the starting value was 2.9869 � 1015

in system units), should be roughly equally divided among the par-
ticles once equilibrium is achieved. The energy of a given particle in
our system is

E ¼ 1
2

mv2 þmgz; ð30Þ

where v is the particle speed. Applying the equipartition theorem,
which states in part that for each degree of freedom x that contrib-
utes xa to the energy, the average energy corresponding to that de-
gree of freedom at thermal equilibrium is kBT/a, the average energy
per particle is

hEi ¼ 3
2

kBT þ kBT ¼ 5
2

kBT ð31Þ

(recall v incorporates three degrees of freedom, one for each compo-
nent of the velocity vector in three dimensions). Equating this to the

total energy divided by the number of particles (exactly 991 in our
simulation), solving for kBT and substituting into Eq. (29), we get ex-
pected hm values of 1.88, 0.626, and 0.188 for our particle masses of
1, 3, and 10, respectively (notice these are in the correct 10:3:1 ra-
tio; the values are shown as the dotted lines in Fig. 5). Averaging as
we did previously for the K–S probabilities, we find measured hm

values of 1.89 ± 0.06, 0.628 ± 0.045, and 0.185 ± 0.007 (cf. Fig. 5),
in quite good agreement. For the simulation where the radius is
halved, the values are 1.89 ± 0.15, 0.720 ± 0.034, and 0.204 ±
0.011, in worse agreement, as might be expected due to the greater
severity of the finite-size effect.

In summary, we find that this test of the integrator with particle
and wall bouncing gives results consistent with what would be ex-
pected in a real system.

3.2. Tumbler

Brucks et al. (2007) carried out a series of laboratory
experiments to measure the dynamic angle of repose b of glass
beads in a rotating drum (tumbler) at various effective gravita-
tional accelerations. The beads had diameter (not radius)
d = 0.53 ± 0.05 mm and occupied about 50% of the volume of a
tumbler of radius R = 30 mm and length L = 5 mm. A tumbler with
R = 45 mm was also used, but we restrict our comparison to the
smaller one for this test. The inner wall of the cylinder was lined
with sandpaper to provide a rough surface. A centrifuge was used
to provide effective gravitational accelerations between 1 and 25g
(where g = 9.81 m s�2 is Earth-norm gravity). The angular rotation
speed of the tumbler X was varied to achieve a range of Froude
numbers (‘‘Fr’’) for the system, where Fr is defined as the ratio of
centripetal to effective gravitational acceleration at the cylinder
periphery2:

Fr � X2R
geff

: ð32Þ

Fig. 3 of Brucks et al. (2007) shows b as a function of Fr for various
geff obtained in their experiment. Our aim for this test was to com-
pare simulated results for geff/g = 1 and Fr P 0.001. Smaller Fr num-
bers are computationally challenging due to the limited motion of
the particles (but the b curve is essentially flat for Fr [ 0.01 any-
way). Different geff, particularly geff/g < 1 (a regime Brucks et al.,
2007 could not explore), will be the subject of future work.

We constructed the simulated experimental apparatus using an
infinite horizontal cylinder of radius R (30 mm) cut into a short
segment by two infinite vertical planes separated by a distance L
(5 mm). For the purpose of this test, the planes were ‘‘frictionless’’
(en = et = 1). To keep the tests tractable, a fixed particle radius of
s = 0.53 mm was used, i.e., twice the size of the glass beads used
in the experiment (thereby providing nearly a factor of 10 savings
in particle number, so each run would take of order a day, instead
of more than a week). The initial conditions were prepared in
stages, alternately filling the ‘‘bottom’’ of the cylinder (i.e., by
removing one plane and having gravity point down the length of
the cylinder), closing and rotating the cylinder to allow particles
to stick uniformly to the inner cylinder wall (to mimic the rough-
ness provided by the sandpaper in the real experiment), refilling to
get the desired volume fraction (about 50%), rotating some more,
and then allowing the particles to settle. There were 6513 particles
total, of which 568 ended up stuck to the cylinder wall.3 This start-
ing condition was used for all the runs. For particle collisions, the

Fig. 6. Cumulative probability distributions for the height data (solid lines) and
model (dotted lines) corresponding to the final snapshot in Fig. 4. The colors red
(middle lines at small z), magenta (bottom lines at small z), and blue (top lines)
correspond to particle masses 1, 3, and 10, respectively. The K–S statistic measures
the maximum vertical deviation of the data from the model (see text). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

2 Occasionally the square root of the quantity on the right-hand-side of Eq. (32) is
found in the literature, i.e., Fr ¼ X

ffiffiffiffiffiffiffiffi
R=g

p
; we use the expression in Eq. (32) to compare

our results more easily with Brucks et al. (2007).
3 In order to allow for the finite diameter of the stuck particles, the cylinder was

actually R + 2s = 31.06 mm in radius.
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normal coefficient of restitution en = 0.64 (an estimate for glass
beads derived by Heißelmann et al., 2009) and the tangential coeffi-
cient of restitution et = 0.8 (to provide some roughness; this value is
poorly constrained).

As an aside, initially this experiment was conducted with sur-
face coupling (i.e., et < 1 for the cylinder) instead of sticky walls.
Although, for sufficiently fast cylinder spin, the particles also start
to tumble in this setup, the particle spins quickly align with the
cylinder spin (so that xis �XR, within a factor of a few) and the
particles settle to the bottom of the cylinder, sloshing around
slightly. A rough surface instead provides a constant, somewhat
random perturbation that ensures the tumbling behavior persists
among the loose particles.

Fig. 7 shows ray-traced snapshots after achieving equilibrium
for eight different Froude numbers (0.001, 0.01, 0.05, 0.1, 0.3, 0.5,
1.0, and 1.5). For the sub-critical cases (Fr < 1), the total simulated
run time was about 2.5 s, with a fixed timestep of about 5 ls. For
Fr = 1.0 and 1.5, the run time was �0.5 s with a timestep of
�1 ls (these latter cases achieve equilibrium faster, but the more
rapid cylinder rotation dictated a smaller timestep). Also shown
for the sub-critical cases is the estimated slope, which was mea-
sured by fitting straight lines to sample surface points over several
snapshots and taking the average. Only particles to the left of cen-
ter were considered for these measurements, as particles tend to
pile up on the right. As expected, for Fr = 1.0, it can be seen that
centrifuging has begun; by Fr = 1.5, a thin layer of free particles
persists along the inner surface of the upper-right quadrant of
the cylinder. For Fr < 1, b depends on the rotation rate, with
roughly the expected dependence from the experiments. A study
by Taberlet et al. (2006) shows that the shape of the granular pile
in these kinds of experiments depends on interactions with the end
caps, with friction leading to ‘‘S’’ shapes and lack of friction leading
to straighter slopes (as in our case). They also found that larger L
(i.e., using a longer cylinder, for a fixed particle size) leads to
straighter slopes. Testing such dependencies in our approach will
be the subject of future work.

Fig. 8 shows the measured values of b from the simulations
(filled squares), with 1-r uncertainty errorbars, along with data ta-
ken from Fig. 3 of Brucks et al. (2007) for the R = 30 mm tumbler.
The experimental data show systematically larger dynamic slopes
compared with the simulated data, but both follow a similar trend
with Froude number. Some of the discrepancy in slope may arise

from the different R/s ratio for the data sets, namely about 110
for the experiment while only 57 for the simulations. Increasing
the ratio for the simulations to match the experiments would re-
quire a factor of 8 more free particles (as well four times more
stuck particles), which was beyond the scope of these tests. We
note that the R = 45 mm tumbler used in the experiments, with
R/s � 170, exhibits equilibrium dynamic slopes about 10 deg high-
er than for R = 30 mm (Brucks et al., 2007, Fig. 3).

There are other caveats to consider as well. The simulated parti-
cles are identical in size and are perfectly spherical; deviations from
uniformity of the glass beads used in the experiments may increase

Fig. 7. Snapshots of the simulated tumbler experiments taken at the end of each run. The Froude number (Eq. (32)) is indicated. View size is about 7.5 cm across each frame.
The view is down the cylinder axis, and rotation is in the clockwise rotation direction (at this viewing angle, the short cylinder itself cannot be seen). The blue particles along
the inner surface of the cylinder are ‘‘glued’’ in place to provide roughness. Where shown, the yellow line indicates an estimate of the surface slope (also see Fig. 8). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Plot of dynamic repose angle as a function of Froude number for the
simulated tumblers (filled squares) and from the experiments of Brucks et al. (2007,
open squares connected with dashed line, from their Fig. 3). Errorbars for the
simulated points are 1-r uncertainties from averaging slope estimates over several
snapshots. The simulated points are shifted down and to the right compared with
the experiments, which may be due partly to the difference in particle-to-tumbler
radius ratio. See main text for discussion.
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the dynamic slopes (this could also give rise to a higher slope at
small Froude numbers, where the experimental results did not ap-
pear to be as sensitive to R/s). Furthermore, the adopted en and et

values for the simulations are mostly educated guesses; more
experimentation is needed. The simulation used frictionless confin-
ing planes, whereas the flat walls in the experiment were com-
prised of a metal plate and a glass plate, both constrained to
rotate with the cylinder, and neither of which were frictionless. In
the simulations, the cylinder rotation rate was imposed instanta-
neously at the start, which may have caused spurious bulking as
the assemblage reacted to the sudden shear stress. A better ap-
proach (not implemented here) would be to accelerate the tumbler
gradually to the desired rotation rate. A related issue is that the dy-
namic angle of repose may be affected by the initial packing fraction
of the particles, which depends on the dominant interparticle
forces. In the absence of interparticle friction, random close packing
is expected, whereas with friction, random loose packing is a more
likely starting condition (Makse et al., 2000), and may lead to a dif-
ferent dynamic angle of repose. This difference was not explored
here but will be part of a future investigation. Finally, certain minor
run parameters required to keep the simulations tractable in the
particle-based, collision–prediction approach may result in exces-
sive particle energy, leading to shallower simulated slopes; experi-
mentation with these thresholds is needed.

4. Discussion

The model atmosphere scenario presented in Section 3.1 is an
example of a dilute granular flow in which particle–particle and
particle–wall interactions are dominated by near-instantaneous,
inelastic, two-body collisions. Our numerical approach, in the con-
text of granular dynamics literature, can be characterized as hard-
sphere DEM (see Section 1), which is particularly well-suited to
simulating dilute granular flows (Mehta, 2007). In the dilute re-
gime, soft- and hard-particle methods should give equivalent re-
sults, but so-called event-driven simulations, in which no
computations are needed between collision events, are typically
much faster (Luding, 2004). However, within dense granular flows
in which many-body interactions dominate and particles have
long-lived contacts with many neighbors, it is possible that the
assumptions of the event-driven and hard-sphere DEM models fail
(Delannay et al., 2007).

In a rotating tumbler (cf. Section 3.2), there exists a region of
long-lived contacts but also a faster flowing layer. By varying the
Froude number, it is possible to investigate many different re-
gimes, from the fast-flowing regime with a large Froude number
to the regime when the Froude number is low and most contacts
are longer-lived. Thus the tumbler is an intermediate regime be-
tween dilute and dense flows, providing a convenient test of the
range of applicability of our hard-sphere method. Indeed, the tum-
bler has been studied in detail with many different numerical tech-
niques; we provide a brief overview in the following.

McCarthy et al. (1996, 2000) and McCarthy and Ottino (1998)
used a soft-sphere model to compare simulations of non-cohesive
granular materials in a slowly rotating drum to experimental data.
In order to limit the number of particles necessary in the simula-
tions they proposed a ‘‘hybrid’’ simulation technique. This method
involves using a geometrical model to determine the bulk motion
of the particles and then performing particle dynamics simulations
on only the particles contained within and bordering the avalan-
ching wedge. They found a favorable match between experiment
and simulation, at low computational cost, but with the tradeoff
that the method is tailored to a very specific geometry.

Kharhar et al. (1997) used a similar technique to separate the
granular material in the rotating drum into a ‘‘rapid flow region’’

and a ‘‘fixed bed.’’ A continuum model in which averages are taken
across the layer was used to analyze behavior of the flowing layer.
The motion of grains on the free surface of a granular mixture in a
rotating drum was also investigated by Monetti et al. (2001) using
Monte Carlo simulations of a two-dimensional lattice gas model.
The model takes into account rotational frequency, frictional
forces, and the gravitational field.

Soft-sphere methods have also repeatedly and successfully been
used to describe granular material in a rotating drum (Dury et al.,
1998; Dury and Ristow, 1999; Rapaport, 2002; Pohlman et al.,
2006; Taberlet et al., 2006). This has also extended been to two-
dimensional simulations of irregular-shaped particles by Poschel
and Buchholtz (1995).

Hard-sphere methods have not been commonly used for rotat-
ing drums, however Gui and Fan (2009) did perform numerical
simulations of motion of rigid spherical particles within a 2-D tum-
bler with an inner wavelike surface. The rotation of the tumbler
was simulated as a traveling sine wave around a circle.

The observed behavior in our tumbler simulations shows that
the code correctly models the transitions from global regimes with
increasing Froude number. The differences between experiment
and simulation are larger at lower Froude number and start to
decrease at higher Froude number. This suggests that our hard-
sphere model is more suited to the dilute flow regimes of high
Froude number rather than dense flow regimes of low Froude
number. Soft-sphere DEM is typically used for dense granular flows
(Zhu et al., 2007), as the detailed characterization of interparticle
contacts is more suitable for this regime. However, hard-sphere
methods can approach experimental and soft-sphere simulation
results for very low friction materials. For example, Pohlman
et al. (2006) found an angle of repose of only 16.9�, for low friction
(l = 0.1) chrome steel beads at a Froude number of 4.94 � 10�5.
This is within a few degrees of our expected results at this Froude
number.

In summary, our approach currently favors dilute or fluid flows
over dense granular flows, but we are in the process of implement-
ing a soft-sphere method. Whether regolith in low-gravity environ-
ments, such as the surface of an asteroid, when reacting to external
stresses, is more appropriately modeled as a dilute or dense gran-
ular flow is the subject of ongoing investigation. Regardless,
numerical methods will play an important role in the study of
these environments.

5. Conclusions

We have added new features to an existing, well-tested
N-body code that allow convenient modeling of granular dynamics
in a variety of conditions. Details of collision detection and reso-
lution involving four principal supported wall geometries (infi-
nite plane, finite disk, infinite cylinder, and finite cylinder) and
associated degenerate cases (point, line, and ring) were provided.
Two dynamical test suites were presented, one for a model
‘‘atmosphere’’ showing the correct equilibrium distribution of
scale heights among a polydisperse population of dissipationless
balls, and the other for a tumbler that showed correct qualitative
behavior as a function of surface wall properties and cylinder
rotation rate. Application of these new capabilities to numerical
simulations designed to investigate collective grain behavior on
vibrating plates will be presented in Murdoch et al. (2011, in
preparation). Planned future code development includes adding
support for rigid and semi-rigid particle aggregates (cf. Richard-
son et al., 2009) that would allow study of more complex particle
shapes in simulations of granular dynamics, and implementing
a soft-sphere model to better match the properties of dense
granular flows.
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