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ABSTRACT

A tree code method that incorporates a local shearing disc model and fourth-order
integration algorithm is applied to the problem of planetary rings, with particular
emphasis on the dynamics of Saturn’s B ring. The new code, described in detail elsewhere,
allows for particle self-gravity, a distribution of particle sizes, and surface friction (particle
spin). Important changes made to the original code, to ensure an accurate treatment
of collisions under severe high-density conditions, are described in detail. Comparison
with work by Wisdom & Tremaine for the case of equal-size particles and mean self-
gravity shows excellent agreement. Similar analysis is performed for the new regimes
of self-gravity and particle size distributions, and it is shown that the condition for
viscous instability is still not satisfied for these models. Particle spins lie generally within
a rotational energy equipartition envelope, and are retrograde on average in the rotating
(orbital) frame but exhibit a large spread in obliquity. The mean z-directed spin in the
fixed frame for most models varies between about 0.2 and 0.4 times the orbital angular
velocity, similar to the 0.3 value found by Araki for the equal-size case, while the x
and y spin components are generally an order of magnitude smaller. All three spin
components have Lorentzian distributions at equilibrium. It is found that aggregates
readily form even for conservative size ranges, and the development of gravitational
wakes reported by Salo is confirmed. It is proposed that the density variations seen
in the models presented, which are the most realistic to date, may account in part for
observed non-uniformities in Saturn’s outer rings.
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1 INTRODUCTION

It has been recognized for some time that techniques used in
numerical simulations of Solar system formation can often be
applied to studies of planetary ring dynamics, and vice versa
(e.g. Ward 1984). The most important feature common to
both systems is a flattened Keplerian disc which describes the
mean motion of the constituent particles. These ring particles
or planetesimals interact with each other, causing the system
to evolve with time to some equilibrium state, or through a
series of quasi-equilibrium states. Processes important to both
regimes include energy dissipation due to collisions and ve-
locity randomization due to gravitational interactions (Petit &
Hénon 1987; Aarseth, Lin & Palmer 1993). Other mechanisms
that play a role in these systems include resonance trapping,
merging, fragmentation, and gas drag (Beaugé, Aarseth &
Ferraz-Mello 1994), and, in the case of diffuse planetary rings,
electromagnetic effects as well (e.g. Burns 1984).

* E-mail: richards@cita.utoronto.ca

A new code for simulating planetesimal dynamics was
presented in an earlier paper (Richardson 1993, hereafter Pa-
per I). The code (called box_tree) was developed with Solar
system formation in mind, but in fact was derived largely
from a method of local planetary ring simulations by Wis-
dom & Tremaine (1988, hereafter WT). The code incorporates
a fourth-order force polynomial integration algorithm with
individual time-steps (Aarseth 1985) and a full hierarchical
tree code (e.g. Barnes & Hut 1986) to deal with gravitational
interactions between particles.

The motivation for using numerical methods to study
planetary rings (notably the rings of Saturn) stems from the
inherent complexity of such systems. Analytical treatments
(e.g. Goldreich & Tremaine 1978) have been limited to systems
of identical non-self-gravitating particles and are necessarily
only crude approximations of the true behaviour, providing a
very coarse picture of the dynamical evolution of the rings.
Local planetary ring simulations were developed as a first
step towards numerically modelling the fine irregular structure
of Saturn’s rings. Unsolved problems include understanding
the azimuthal asymmetry seen in Saturn’s A ring and the

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994MNRAS.269..493R&db_key=AST

23 VNRAS, 2697 J493R

rt

494 D. C. Richardson

strong optical depth variations seen in the B ring, structure
that is not attributed to resonances with known satellites.
Possible explanations include viscous instability, liquid-solid
phase transitions, or unstable density waves (sce WT for a
short review). Recent work (discussed below) suggests that
formation of aggregate particles may play an important role.
The latest numerical codes are on the verge of being able to
differentiate between these possibilities.

In this paper, the original planetary ring problem as for-
mulated by WT is reconsidered with the aid of box_tree. The
new code allows the introduction of full self-gravity, a general
particle size distribution, and surface (tangential) friction giv-
ing rise to particle spin, but with a speed advantage provided
by the tree code to make realistic simulations practical in a
workstation environment. Most of the analysis performed by
WT will be applied to the new niodels, with appropriate modifi-
cations. It will be shown that the stratification seen in the mean
self-gravity model still develops with equal-size self-gravitating
particles, but evolves into complex three-dimensional aggrega-
tion when a realistic size distribution is introduced. It will
also be shown that the condition for viscous instability is not
satisfied in any of the models tested.

Recent work by Salo (1991, 1992a,b) has been directed at
adding similar refinements of self-gravity and size distributions
to the WT scheme. In particular, Salo (1992b) reports on the
formation of gravitational wakes in Saturn’s A and B rings
using a low optical depth model, a find that is confirmed
for the B ring in this paper. Salo shows that metre-sized
aggregates form in the wakes and suggests that these may
explain some of the non-uniformities seen in Saturn’s outer
rings. Salo uses vectorized code on an IBM mainframe (210
Mflops), but employs a less sophisticated integration algorithm
with constant time-steps (Salo, private communication), which
may limit accuracy in higher optical depth regimes. A proper
study of the aggregates will probably require the improved
accuracy of the code presented here in order to treat particle
interactions in the clumps in a self-consistent manner. It is
hoped that the current study will complement Salo’s work and
provide new insights into the planetary ring problem.

The numerical method is described in detail in Section 2,
with particular emphasis on the changes that have been made
to box_tree for the current project. First, however, a short
summary of the original box_tree code and the WT method
is presented (Section 2.1). The equilibrium properties of the
simulation models are given in Section 3, beginning with a
description of the common parameters. A comparison with
WT’s results is given in Section 3.2, while new results are
discussed in the remaining subsections. A summary and further
comments are presented in Section 4.

2 NUMERICAL METHOD

In what follows, a basic familiarity with the work of WT is
assumed. A brief summary of the box_tree code is given
first, but the reader is referred to Paper I for a fuller presen-
tation. Extensions and modifications to the code needed to
incorporate initial mass distributions and to improve collision
treatment for the self-gravity case are discussed in detail in the
remaining subsections.

2.1 Summary of ‘box_tree’ and the WT method

The box_tree code is built on the premise employed by WT
that a dense planetary ring can be divided into self-similar
patches orbiting the planet, where the patch or box size L is
larger than the radial mean excursion of the constituent parti-
cles but much smaller than the orbital distance. A convenient
coordinate system to use is one centred on the box, with the
x-axis pointing radially outward from the planet, the y-axis
pointing in the direction of motion, and the z-axis pointing
out of the orbital plane according to the right-hand rule. Un-
der these conditions it is possible to linearize the equations of
motion:

« +39%x +2Qy,

X = F
y = F,-20x, )
4 F,— Pz,

N

where & = (¥, %,,%) is the gravitational force per unit
mass due to the ring particles and Q@ = Qf is the angular
velocity of the box centre about the planet.

In order to provide realistic boundary conditions, the
‘central’ box is surrounded by eight ghost boxes in the orbital
plane, each containing images of the central particles with
the same relative positions. The number of particles N in the
central box remains constant with time (merging is disabled
for these simulations); particles leaving the central box are
replaced with their appropriate ghost images entering from
one ‘of the surrounding boxes. The boxes with x = +L expe-
rience shear with respect to the central box, complicating the
boundary conditions.

A tree code (cf. Barnes & Hut 1986) is incorporated into
box_tree for fast calculation of inter-particle gravitational
forces. It is convenient to use a two-dimensional (2D) tree
fitted over the central box since the disc system is relatively
flat. Speed and accuracy are controlled by the opening-angle
parameter O¢: larger values permit shorter calculation times
but give less accuracy. For the simulations discussed here,
0c was fixed at 0.6 rad, offering considerable speed-up while
introducing a mean error in the force calculations of less than
1 per cent (cf. Paper I). The speed increase is achieved by
performing multipole expansions of the gravitational force
over cells of dimension smaller than the distance times Oc,
rather than summing over each of the individual particles. In
general, the CPU time increases as O(N log N) when using the
tree code, as compared with O(N?) for a traditional direct
method. Because of the unique geometry of the flattened disc
system, the coefficient in front of the tree code scaling law is not
as large as for traditional systems (e.g. Hernquist 1987), so that
the tree becomes beneficial for N as small as 25 central particles
(225 total). For a given value of N, however, the CPU expense
may increase rapidly with optical depth (density), depending
on the model used (see Section 3). A typical self-gravity run
with N = 50 equal-sized particles and 7 2 2.5 takes between
12 and 24 CPU hours to complete 30 orbits on a Sparc IPX
(on the order of 10° collisions), about a factor of 2 faster than
a direct method. Faster CPU times could be achieved, but it
was decided that accuracy (particularly with regard to collision
detection) was a more important consideration for this project.
See Paper I for a detailed description of the modifications made
to the traditional tree code for the planetesimal problem.

Particle predictions are carried out using a fourth-order

. polynomial integration algorithm with individual time-steps
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based on a technique given by Aarseth (1985). It should be
stressed that this algorithm was used even for those mod-
els that did not incorporate self-gravity (inter-particle grav-
itational forces). In WT, advancement proceeded from colli-
sion to collision using an iterative search, since equation (1)
can be solved exactly for the homogeneous case & = 0; in
box_tree, there is no prior knowledge of collision events.

2.1.1 The WT method

The basic technique used by WT for local simulations of
planetary rings is to fill the central box with a representa-
tive population of particles in a configuration that is not at
equilibrium, and then to allow the system to evolve to a stable
configuration. The final state consists of a balance between en-
ergy dissipation from collisions and excitation by gravitational
pumping, largely determined by the coefficient of restitution
(Goldreich & Tremaine 1978). A number of simulations at
different dynamical optical depths t were performed by WT,
for three different models of restitution coefficient and mean
self-gravity (see Section 3.1 for details). The box_tree code
has been modified to allow easy reproduction of the WT ex-
periments, as well as extension beyond their simulations.

An attempt was made to conform as much as possible
to the initial conditions and analysis method used in WT. In
particular: box sizes were fixed by the number of particles
and the desired optical depth (cf. Section 2.2.1); initial particle
positions were chosen randomly within the box, with a uniform
distribution in z up to a pre-set distance above and below
the plane; particles were placed in pairs symmetrically (mass-
weighted in the case of non-uniform sizes; see Section 2.2)
to make the centre of mass coincide with the origin; particle
velocities were chosen randomly in each coordinate with a
uniform distribution up to Q times the maximum particle
radius, with the velocity of the last particle being set so that
the centre-of-mass velocity was zero. Most runs consisted of
30 orbits of 50 central particles (slightly more particles than
were used in WT). Collection of statistics was performed at
fixed intervals, typically every tenth of an orbit. Quantities
measured included the CPU time, the number of collisions,
the velocity dispersion in each coordinate, the filling factor at
the midplane (z = 0), the mean free path, the local viscosity,
and the vertical particle distribution. Non-local viscosity data
were collected for every tenth collision. Equilibrium properties
were determined by estimating the onset of equilibrium from
a plot of the number of collisions per particle per orbit, and
averaging the desired quantities over the equilibrium interval.
Errors reported are the standard deviation of the mean. It was
found that a simple estimate of equilibrium onset is sufficient;
a precise determination makes little difference to the results.
Note that the WT technique of inhibiting the ‘sliding phase’
— where two or more particles come to rest and begin to
roll around one another (cf. Petit & Hénon 1987) — was also
incorporated into box_tree.

2.2 Initial mass function

The initial mass function (IMF) used to generate particle
masses is derived from

n(m) oc m®,
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where n(m)dm is the number of objects with mass in the
range [m,m + dm], and « is a dimensionless parameter. Let
N(m) be the cumulative distribution, such that dN/dm = n(m).
Integration between my,, and m gives

met! m \ot!
N(m) = 2o —1 -1
(m) a+1 [(mm;,,) ]’ a7 -1

The total number of particles N is simply N(mmax). Let f =
N(m)/N and solve for m:

m=mmin{1+f [(%)“—1]}_ @)

This equation is equivalent to

1
m= [(1— fym} + fmihl] =T,

which is less computationally efficient but somewhat more in-
tuitive. Masses are chosen by replacing f with uniform deviates
between 0 and 1, or, for a smooth distribution, with values
varied monotonically from 0 to 1 in steps of N~*.

To obtain a size (radius) distribution in place of a mass
distribution, write

dN oc R“dR.

Assuming constant particle density (m oc R?), a substitution of
variables gives

dN o m 5 dm.

Hence the correct size distribution can be obtained by setting

o —2
a:

. 3

in equation (2).

For large N, global properties of the mass distribution
(e.g. total mass, mean mass, mean radius, etc.) can be well
approximated by integrating appropriate powers of m in equa-
tion (2). For example, the mean mass can be estimated by
setting f = x/N and integrating the IMF in the range [0, N]
in x to give

o+2 o+2
m~<o¢+1> myte —mi e wk—1,-2
~ R .
a+2/ \ mEtl — mt! ’

min
For N as low as 50, this estimate is still good to about 10 per
cent.
Values of Myin (Rmin), Mmax (Rmax), and o (o) used in the
simulations are given in Section 3.1.

2.2.1 New definitions

Non-uniform particle sizes complicate the definitions of some
of the basic model parameters. For example, the box size in
each simulation is determined by the dynamical optical depth
7. For non-uniform particle sizes, 7 is defined by
N 2

= ———Z"=L12”R" : )
If necessary, the sum in equation (4) can be estimated using
the technique described above.

New expressions for the local and non-local viscosities
must also be derived for the case of non-uniform particle
sizes. Using the notation of WT, the local viscosity is given by
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- _ 3 <D imiXiyei >,
T I S )

where X; is the radial speed of particle i, jr; = y; + $Qx; is the
tangential speed relative to the mean shear at x;, and <->,
denotes a time average measured from the onset of equilibrium
to the end of the run. The non-local viscosity, which arises from
collisional transport of angular momentum, is given by

v o= __3_ 1 2m>(x>—x<)Aj1>
ML 2Q NAT m ’

where the subscripts ‘<’ and ‘>’ denote particles with x < xo
and x > xo, respectively, where x, is the radial coordinate of
the impact point (that is, the surface contact point between the
two particles), Ay, is the change in y velocity of the particle
with x > xp, and the sum is over all collisions between the
onset of equilibrium and the end of the run, a total time AT.

(6)

>

2.3 Collision detection

The two-body collision detection algorithm outlined in Paper I
proved inadequate for some of the simulations discussed here,
particularly in self-gravity models at high optical depth (z 2 2).
As mentioned in Paper I, collisions are detected after they have
actually occurred; that is, two particles are said to have collided
if the sum of the colliders’ radii exceeds the separation of their
centres. The goal is to minimize the penetration distance prior
to detection. Under the severe conditions of the planetary
ring problem, where high optical depths give rise to large
collision frequencies and a mean free path smaller than the
mean particle size, the penetration distance can be quite large
using the previous method (~ 50 per cent). The new technique,
which entirely replaces the old one, can be divided into four
distinct parts: (1) a time-step based on the distance between
sphere surfaces rather than centres and the introduction of
a more sensitive time-step formula for self-gravity models;
(2) an improved collision prediction procedure; (3) position
corrections after a collision has been established; and (4) a
check for ‘missed’ collisions. These aspects will be discussed in
more detail below.

2.3.1 New time-step formulae

If inter-particle gravity is not treated in the simulation (as for
the WT models), the following formula is used to calculate the
optimal time-step of a particle given the position and velocity
of its nearest approaching neighbour:

ét=n [—r*b‘(}? +R2)] s

(™

where # is the dimensionless time-step coefficient, r is the
magnitude of the relative position r = r,—r; measured between
the centres of the particle and its neighbour, R; + R; is the
sum of the particle radii, and v is the magnitude of the relative
velocity v = v, — v;. An approaching neighbour is defined as
one for which r - v < 0 (particle trajectories are generally well-
behaved when there is no inter-particle gravity, so approaching
neighbours are the most likely colliders). The parameter ¢
determines what fraction of the finite size of the particles is
included. If ¢ = 0, the sizes are ignored and the equation
reduces to the traditional time-step formula. If ¢ = 1, the
‘true’ particle separation is used, measured from surface to

surface along the line connecting the particle centres. Since the
latter case can result in very short time-steps, the computation
time may increase significantly when there are many close
encounters and collisions. The CPU dependence turns out to
be more or less exponential with . In fact, ¢ = 0.99 is typically
twice as fast as ¢ = 1 but still gives very good accuracy, so
this value was adopted for the original WT mean self-gravity
model. The ¢ adjustment was not required for the other WT
models.

Equation (7) is inadequate for ‘true’ self-gravity mod-
els. Consider, for example, a very close encounter in which
the particle trajectories undergo considerable distortion. The
above formula may give good results during the approach,
but immediately after the encounter the second particle will
be ignored in favour of a different approaching particle when
determining the new time-step. This neglects the strong gravi-
tational effects that will still be present after closest approach.
Hence, for the self-gravity case, the r - v < 0 criterion is no
longer safe. Further, the time-steps will generally be too large
immediately following a collision, since the quantity r - v may
change sign in just a few time-steps due to the mutual grav-
itational attraction. In short, the time derivatives of the total
force acting on a particle must be taken into account when
choosing a time-step to allow for complicated interactions with
close neighbours. A simple formula is

7
}a
where & is the magnitude of the force per unit mass. This
breaks down, however, under certain symmetric conditions,
and is not sufficiently sensitive at very small separations, es-

pecially in a strong tidal field. A more robust version, used by
Aarseth (1985), is

T G 72
st= nZZ T ®)
FF + F?

Note that information regarding the closest neighbour is only
implicit in this formula, contributing the larger part of the
force derivatives. Identification of the closest neighbour is
only used for collision determination (Section 2.3.2). This for-
mula is expensive to compute, especially if box_tree first
needs to convert from divided differences to the Taylor series
terms (which is usually the case), but the benefits gained from
increased sensitivity far outweigh such considerations.

To save time, equation (7) could be used when the nearest
neighbour is approaching and equation (8) when it is receding.
However, since it is short-range interactions that are of crucial
importance in these simulations, only equation (8) was used
throughout the self-gravity models (with one exception — see
Section 3.5). It should be noted that the time-step coefficients 5
in equations (7) and (8) need not be the same, but, in the form
they are given here,  values in the range 0.005-0.05 generally
give good results.

ét=n

2.3.2 Improved prediction procedure

Potential colliders are identified as part of the force calculation
procedure in order to minimize the number of predictions and
distance measurements to be performed. Conveniently, the tree
code automatically eliminates particles that are too far away to
be likely colliders when it applies the opening-angle criterion
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to its nodes (cf. Paper I). The closest particle (with r-v <0 if
there is no self-gravity) is noted, along with its position and
velocity predicted to first order and appropriately adjusted if
the neighbour is a ghost. After the fourth-order semi-iteration
correction to the current particle position and velocity, a check
is made to see whether a collision may have occurred using
the distance versus sum-of-radii criterion. If so, and if inter-
particle gravity is included in the simulation, a check is made to
ensure that the particles are indeed approaching one another,
and are not left over from a previous collision.

If the pair satisfies these conditions, then a collision is
probable. The position and velocity of the collider are pre-
dicted to high (third) order, adjusted for ghosts, and the sum-
of-radii and r - v checks are repeated. If the particles are no
longer found to be colliding, a ‘near miss’ message is gener-
ated and the collision is not recognized. Otherwise, a position
correction is performed to adjust the particles so that they
are just touching (Section 2.3.3), and r - v is checked for the
last time. Though unlikely, it is possible that position correc-
tion prevents the particles from actually colliding. Otherwise
box_tree proceeds to calculate the post-collision velocities.

Though tedious, these tests are needed to ensure correct
behaviour under close-packed conditions.

2.3.3 Position corrections

Ideally, a collision should be detected the instant it occurs. Un-
fortunately, such precision is impractical so a certain amount
of ‘penetration’ or temporary overlap is unavoidable. For low
collision rates, errors introduced by such penetrations can
be ignored, but when there are many collisions, especially be-
tween the same particles, two major problems arise: (1) angular
momentum is not conserved because the collision equations
(Section 2.4) assume the particles are just touching; and (2)
self-gravitating particles may ‘collide’ again after their first
bounce, before they have completely separated. The latter prob-
lem is potentially disastrous because under extreme conditions
the particles involved will simply ‘sink’ into one another. A
naive solution to this problem would be to switch off the
gravitational attraction between particles with » < R; + Ry,
simulating a surface normal force. Unfortunately, a third par-
ticle could simply bounce into either of the first two before
they drift apart, resulting in another sinking problem. Intro-
duction of normal forces between all touching particles in an
arbitrary aggregate, and inclusion perhaps of a restoring force
at the surface to simulate ‘stickiness’ (see Watanabe (in prepa-
ration) for an example of sticky strings), is beyond the scope
of the current project.

The most straightforward solution, which also addresses
the problem of angular momentum conservation, is simply to
displace the particles so that they are just touching before
applying the collision equations. There are two ways of ac-
complishing this: (1) moving the particles outward along the
line connecting their centres; or (2) tracing the particles back
along their respective velocity vectors. The latter solution has
the advantage, for small displacements, of reproducing the
‘true’ geometry just prior to the collision. However, to be con-
sistent, the particles should really be advanced forward in time
after resolving the collision, but this introduces far too many
complications to be practical. Hence the post-collision posi-
tions and velocities will still be slightly inaccurate with this
method. A more serious problem is that, for grazing collisions
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(which are quite frequent in a shearing disc), the displacements
can become arbitrarily large and unrealistic.

The first method, displacing the colliders along the line
connecting their centres, ensures a minimum displacement,
namely half the penetration depth. Since the depth of pene-
tration can be controlled somewhat by the choice of time-step
coefficient (Section 2.3.1), this is a desirable property. The dis-
advantage is that the collision geometry is altered slightly, and
it is possible (though unlikely) that the particles involved may
no longer be colliding after the displacement. However, given
the simplicity of the technique, and the fact that it effectively
eliminates the sinking effect for self-gravitating particles, this
method has been implemented in the code. In equation form,
the particle offsets are given by

adj Ar adj Ar
Y =r— (T)r, Bl=r+ (T r,

where
R1 + R2 —r

5 .
A further refinement would be to weight the offsets according
to particle mass, to minimize the effects of offsets on the larger
particles. Note that ¢ = 1 (Section 2.3.1) can no longer be
used with these corrections in place, as it would result in zero
time-steps following collisions.

For completeness, a simple procedure for backtracking
along particle velocity vectors is also given here. Write

= 4 dmAt (i=1,2),

Ar =

where, to allow for particles moving in roughly the same or
opposite directions,

1= -1, r-v<0 2y = -1, r-v,>0
1= , roo>0">"" 1, rmn<0

To force the particles just to touch, set
59 = r9? = (R + Ry

Now solve the quadratic to obtain At, rejecting the root with
the larger absolute value (both roots should be negative):

0" £ /00— 0 [ — (R + RY]
t=

A P ’

where v* = kyv; — kyv;. This procedure is evidently more com-
plicated than the first, but may be more suitable for isolated
collisional systems that are not subjected to a strong tidal field.

2.3.4 Missed collisions

As explained in Paper I, particles that have just collided must
be reinitialized; that is, their force polynomials must be re-
calculated. This is because the particle velocities (and hence
any force derivatives containing velocity terms) have suffered a
discontinuity as a result of the collision. Part of the reinitializa-
tion involves finding the closest neighbour and recalculating
the time-step. Normally the closest neighbour would be the
original collider, but at high optical depth it is quite possible
for two or more particles to collide with and hence overlap
the same particle during the same time-step. The position cor-
rection described in Section 2.3.3 can worsen the situation, by
adjusting the current particle or its original collider into new
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positions that overlap other particles. Under the new colli-
sion scheme, a check is made to see whether the new closest
neighbour has indeed penetrated the current particle. If so, the
current particle is assigned a very small step to ensure that
it will be updated immediately, forcing collision resolution. In
this way it is possible for many particles to bunch together
tightly in a self-consistent manner. To do any better would
probably require testing for multiple colliders at the outset,
which for the current project would be an unnecessary added
complication (especially since the assumption of spherical par-
ticles, for instance, is only an approximation).

For regimes with ¢ < 3.5, it was found that setting of
At = 10715t as the new time-step worked quite well, where
t is the current simulation time. A relative value is favoured
over an absolute value, as the former is not subject to precision
limitations. However, at very high optical depths (3.5 < 1 < 4),
there is a danger of entering a nearly infinite loop in the form of
a repeated series of position adjustments and missed collision
corrections to the same particles (picture three particles in a
straight line, all touching). To avoid this, more moderate values
of At should be used, based on the time-step and update time
of the missed collider. Thus, if a repeated series of corrections
begins to take place, it will not be too long before another
particle disturbs the cycle. A reasonable formula is

At = 0.01(tg + 6t — 1), )]

where ty and 6t are the last update time and current time-step
of the missed collider, respectively. The factor of 0.01 was
determined empirically: the smaller the value, the closer the
equation approaches the original formulation.

2.4 Collision resolution

Once a collision event has been firmly established, the post-
collision velocities (both linear and angular) of the colliders
must be determined. The following derivation is appropriate
for rough spheres of arbitrary mass.

Consider two uniform colliding spheres with masses m;
and my, radii R; and Ry, located at ry, r, in a Cartesian space,
with linear velocities v;, v, and angular velocities (spins) oy,
o, (Fig. 1). Let r = r, —r; and v = v, — v; be the relative
position and velocity of the spheres, respectively, and define a
new coordinate system in the collision plane with orthogonal
axes n (normal component) and ¢ (transverse component).
The normal component is directed along the line connecting
the centres of the two spheres (7 = r/r). Also define vectors
connecting the sphere centres to the point of impact: R; = R#,
R, = —Rh. Hence define the (linear) spin velocities at the
point of impact: 6; = @w; X R;, i = 1,2. Let 6 = 6, — 6, be
the relative spin velocity at the point of impact and u = v + o
be the total relative velocity. Lastly, let M = m; + m, be the
total mass of the two-body system, and denote the moments
of inertia of the spheres by I; and I, respectively (I; = %miR,-z
for uniform spheres).

24.1 Governing equations

In the following treatment, all post-collision quantities are
denoted by primes (/). The linear impulse suffered by body 1
as a result of the collision is given by m;(v; —v;). By Newton’s
Third Law, this must be the negative of the impulse suffered
by body 2, hence

Figure 1. Diagram illustrating the basic collision definitions.

mi(vy —v;) = —my(vy — v2). (10)
By inspection, equation (10) is a statement of linear momentum
conservation. The two spheres also suffer impulsive torques:

Li(o] —w1)) = mRy x (v] —vy),
Loy — @) = mR; x (v, —v,).

(1

It is straightforward to show that equations (10) and (11) to-
gether imply that angular momentum about the centre of mass
of the two-body system is conserved. Finally, an expression for
the energy loss resulting from the collision can be written as

U = —e.u, + €u,, (12)

where €, and ¢, are the normal and transverse coefficients of
restitution, respectively, and u, = (u - #)f and u, = u — u, are
the corresponding components of the total relative velocity.

2.4.2  Post-collision velocities
Solution of equations (10)—(12) for | yields
vy +op(f X v)) X i = v +oap(R X v;) X A
+ g7 (e + (- eu], (13)

where
=R R
L L

and

_ mum

=
In the case of uniform spheres, & = %u‘l. Solving by compo-
nents and combining the results, the post-collision linear and
angular velocities are given by

Vo= n+t % [(1+en)un + Bl —€)uy], (14)
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v = o= [+ e+ B(L— el (15)
o, = w1+ﬁ;‘—1(1—e,)(1z,xu), (16)
o, = mz-ﬁg(l—et)mzxu), (17
where

1

p= 1+au

For uniform spheres, f = % It can readily be shown that
equations (14)—(17) reduce to equations (65-1)—(65-4) of Araki
& Tremaine (1986) for the equal-mass case, though the results
were derived independently.

A simple test was developed for checking the integrity
of the collision code: seven equal-size randomly distributed
inelastic spheres were started from rest in a plane (no particles
touching) and allowed to interact. For reasonable values of 7,
the system quickly collapses and comes to rest at the system
centre of mass in a symmetric configuration with negligible
net linear and angular momentum, as required. This check
has been incorporated as part of the standard box_tree test
suite.

3 EQUILIBRIUM PROPERTIES
3.1 Model parameters

Six models were investigated for this paper, the first three re-
producing the earlier WT results as a check, and the remainder
exploring the new regimes of self-gravity, mass ranges, and par-
ticle spin. Initial conditions were as described in Section 2.1.1
for all models. Initial disc thicknesses varied, initially 10 parti-
cle radii but later 15 when problems developed in packing the
box. Generally, initial disc thickness is not important so long as
the initial configuration is not too close to equilibrium. Except
for special cases investigated in the last model, the number of
particles was kept fixed at N = 50, and integration was for 30
orbits. For the first five models, 20 values of dynamical optical
depth © were used, ranging from 0.2 to 4.0 in steps of 0.2 (WT
studied 0.2 < © < 3.0). A few 7 values were chosen in each
model for more detailed study. The models are

(i) velocity-dependent (normal) coefficient of restitution as
obtained from experiment by Bridges et al. (1984): €,(v,) =
min [0.341;; 0234 1], with v, in cm s~! (note that the factor of
0.34 is actually given as 0.32 in the original Bridges et al.
paper);

(ii) velocity-independent restitution coefficient €, = 0.5;

(iii) e, = 0.5 as for model (ii) with mean self-gravity vertical
frequency enhancement g = 3.6 such that 7 = #, — g?Q%z in
equation (1);

(iv) velocity-dependent €, as for model (i) with full inter-
particle gravity using the tree code with ¢ = 0.6 and monopole
and quadrupole time-step coefficients of 0.001 and 0.01, respec-
tively (cf. Paper I);

(v) velocity-dependent €, as for model (i), velocity-
independent transverse restitution coefficient €, = 0.5, full
self-gravity, and a smooth size distribution (cf. Section 2.2)
with o = =3 (a = —%). The exponent was chosen on the
basis of observational data obtained by Voyager (Cuzzi et al.
1984). For this preliminary model, a conservative size range of
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Table 1. Some equilibrium values of ¢, for models (i) and (ii).

Model 7 g, (cm/s) WT g, (cm/s)
() 0.2 0.0454 +£0.0004  0.0450 £ 0.0007
(i) 1.0 0.0294 +£0.0002 0.0292 4 0.0003
(ii) 1.0 0.0217 +£0.0001  0.0218 1+ 0.0003
(ii) 20 00187 +£0.0001 0.0193 4 0.0002

0.5-1 m was chosen (the observed range is ~1 cm—5 m for the
R3 power law);

(vi) as for model (v) but with several test cases for larger
values of N and greater size ranges, including a comparison
with work by Salo (1992b). Only a few values of t were
investigated, owing to the significant CPU expense of these
models.

Particle radii of R = 100 cm and a transverse coefficient of
restitution €, = 1.0 were used for all models except models (v)
and (vi). The density of water ice (p = 1 g cm™®) was used
for the particles in models (iv) and (v), and p = 09 g cm™3
was used for comparisons with Salo (1992b) in model (vi).
Models (i), (i), and (iii) had a time-step coefficient n = 0.05
in equation (7) (Section 2.3.1) while models (iv), (v), and (vi)
used # = 0.005 in equation (8). Models (i) and (ii) had ¢ = 0
while model (iii) used ¢ = 0.99. Any other exceptions will be
noted as appropriate.

3.1.1 Units

Units have been chosen so that GMg = 1, where G is the
gravitational constant and Ms is the mass of Saturn. Lengths
are in units of the radius of the B ring measured from the
planet centre (Rg ~ 10'° cm). Times and speeds are measured
relative to the orbital time and speed at Rp, where Qp =
1.95 x 10~* rad s~!. Most quantities have been converted back
to familiar units for presentation. Note that 1 g cm™> = % in
the new units.

3.2 Models (i)—(iii): comparison with WT

Table 1 gives equilibrium z velocity dispersions (o,) for two
dynamical optical depths in model (i) and two in model (ii).
The fourth column lists the equilibrium values found by WT
(these are the only numerical values available from the paper;
most results were presented graphically). The agreement is
excellent and demonstrates the stability of the technique. The
errors in the WT data are consistently larger, presumably due
to the fact that fewer particles and a shorter integration time
were used.

A vertical distribution histogram is given in Fig. 2 for
model (i) with © = 0.2 (compare with fig. 3 of WT). The
dashed curve is the analytical model of Goldreich & Tremaine
(1978):

1(2) = Npax EXP (—-%gzﬂzzz/af) , (18)

which is a good approximation at low optical depth. It can be
seen that box_tree reproduces the expected behaviour quite
well.

Fig. 3 is a plot of the filling factor at the midplane FF(0)
versus dynamical optical depth for models (i) and (ii). This
should be compared with fig. 15 of WT. Note the change in
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Figure 2. Histogram of the relative particle number density as a
function of height above and below the z = 0 plane averaged over the
equilibrium interval for model (i) with t = 0.2. The curve represents
equation (18).
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Figure 3. Filling factor at the midplane versus optical depth for models
(i) (circles) and (ii) (diamonds). Note the turn-up in the model (ii) curve
for 7> 2.5.

behaviour of the two curves for t 2 2.5: the model (i) curve
seems to have reached a constant slope while the model (ii)
curve bends upward. This behaviour is suggested in the WT
data, but the extended range in 7 in Fig. 3 allows the effect to be
seen more clearly. The behaviour can be understood by noting
that the velocity-dependent coefficient of restitution makes
collisions more elastic in model (i) as the velocity dispersion
decreases, ie. at higher optical depth. The filling factor still
increases because the particles become more confined with

optical depth, but the increase levels out as the collisions
become more elastic. The constant coefficient of restitution in
model (ii) allows the particles to bunch more strongly together
with increasing 7, beyond the confinement effect.

Comparison with model (iii) begins with a plot of the
Cartesian components of the velocity dispersion (Fig. 4). This
plot in analogous to fig. 17 of WT. The dispersions are even
more nearly equal in the box_tree run, emphasizing the fluid
nature of the ring in this model. The splitting at 7 2 3.6
is not understood. The most intriguing feature of the plot,
however, is the strong downward spike near t = 2.4, which is
not seen in the WT data. A corresponding feature is also seen
in a plot of the filling factor (Fig. 5; compare with fig. 20 of
WT). Blow-ups of the regions are shown in Figs 6(a) and (b).
From the magnified plots, it would appear that some kind of
critical point lies in the region 2.45 < 7 < 2.55. Fig. 7 gives
the vertical distribution for t = 2.5. The histogram shows that
the system has developed almost perfect stratification, with
three equally populated layers in the middle and two strongly
underpopulated layers on the outside. This can be understood
by noting that N = 50 and 7 =~ 2.5 give a box size of L ~ 8R in
equation (4). This would result in 4 x 4 packing on three levels,
with two particles left over, presumably one either side. Note
that, for close-packed sheets of spherical particles, the spheres
on one level fill the gaps between spheres on neighbouring
levels, hence the peaks in Fig. 7 do not occur at exact multiples
of the particle size (except for the plane of particles at z = 0).
Fig. 8 illustrates what close packing actually looks like as seen
looking down on the shearing plane. It should be emphasized
that such layering is probably unphysical as it depends on the
ratio of the particle size to the (arbitrary) box size.

Other critical values of 7 can be estimated by choosing
positive integers n such that L = 2xnR and n?> < N. For N = 50,
there are 4 possible critical points in the range 0.2 < 7 < 4.0,
namely 2.45 (3 layers, 2 particles left over), 1.57 (2 layers, O left
over), 1.09 (1 layer, 14 left over), and 0.80 (1 layer, 1 left over).
The number density would be expected to vanish nearly at
z =0 for an even number of layers since the particles would
straddle the midplane, rather than lie completely within it.
This behaviour only partly explains the apparent oscillations
in FF(0) for model (iii), however, because a local minimum
occurs at T ~ 1.3, not t = 1.57 as might be expected (although
a test was performed to confirm that n(0) does indeed vanish
for © = 1.57). A number density histogram for t = 1.3 shows
the z = 0 level to be moderately populated (Fig. 9; compare
with fig. 23 of WT). This discrepancy comes about because
the overall increasing trend in FF(0) causes the critical values
of 7 to be shifted somewhat from their expected values.

3.3 Model (iv): Improved self-gravity model

The first step towards a more realistic planetary ring simula-
tion is the inclusion of full particle self-gravity. As a test of the
reliability of the force calculations, the full 0.2 < t < 4.0 range
was tested as before. Note that model (iv) lies somewhere be-
tween model (iii) and the zero-gravity case: the enhancement
of the vertical frequency in model (iii) represented the contri-
bution of the entire disc, whereas in model (iv) only the gravity
of the central particles and their ghosts is included. Compen-
sation for this could be made by increasing the particle density
p, or introducing a smaller z frequency enhancement than was
used in model (iii), but such detail was not considered impor-
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Figure 4. Cartesian components of the equilibrium velocity dispersion versus optical depth for model (iii). The x (radial) component is traced by
diamonds (dotted line), y by squares (dashed line), and z by circles (solid line). Note the event near © = 2.4; this region is magnified in Fig. 6(a).
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Figure 5. Filling factor at the midplane versus optical depth for model
(iii). A blow-up of the region near t = 2.4 is shown in Fig. 6(b).

tant for these experiments. The particle number N was kept
at 50: a plot of equilibrium velocity dispersion versus particle
number was found to be essentially flat for N 2 20 (cf. fig. 1
of WT).

Fig. 10 shows the equilibrium velocity dispersions for
model (iv) (compare with Fig. 4). Note that ¢, remains consis-
tently smaller than o, and g, in this case. The blip near 7 = 2.5
still occurs, but with reduced significance. However, the filling
factor (Fig. 11) shows that close packing still occurs to some
extent in this model, though not as strongly. This behaviour is
consistent with the reduced nature of the gravity enhancement
compared with model (iii). The close packing is also notice-
able in a plot of normalized v versus t (Fig. 12), where the
slope goes negative in the region of T = 2.5, indicating a vis-
cous instability associated with the (unphysical) close packing.
With the exception of another unphysical point at © = 4.0,
the slope of 7v remains positive. Lastly, Fig. 13 shows the
vertical distributions for 4 values of 7, clearly demonstrating
that stratification persists in this model.

These models show that inclusion of particle self-gravity
yields results that are similar to the mean self-gravity model. As
will be shown below, however, full self-gravity becomes much
more important once an initial size distribution is introduced
into the system.

3.4 Model (v): size distribution model with rough spheres

Size distributions complicate the dynamics of numerical sim-
ulations considerably in the presence of self-gravity. As the
system evolves, the largest particles gravitationally excite the
smaller ones, making dynamic equilibrium harder to attain.
The problem becomes more acute at low optical depth where
there is little collisional dissipation. At higher optical depths,
aggregates may form and further complicate the dynamics.
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Figure 6. Blow-ups of the 2.2 < t < 2.6 regions for the velocity dispersions (a) and filling factor (b) of model (iii). The transition is rapid but

smooth.
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Figure 7. Vertical distribution of particles for model (iii) with 7 = 2.5.
Five stratified layers have developed at this critical t value.

Another problem is posed by the nature of the power-law
distribution itself. As pointed out by Salo (1992a), N must be
chosen large enough to provide statistically sound sampling of
the size distribution. These aspects will be examined in greater
detail in Section 3.5.

As a first test, and to provide a bridge between WT’s
simulations and later work by Salo, a series of runs in the
spirit of model (iv) was performed for the conservative size
range AR = 50-100 cm. Although the size only varies by
a factor of 2, the mass varies by a factor of 8, providing a
good range of gravitational forces for this preliminary model.
In addition, surface friction was incorporated in the form of
a constant tangential coefficient of restitution, €, = 0.5, in
order to investigate the equilibrium distribution of particle
spins. All spins were initially zero with respect to the local
frame. The choice of N = 50 was checked in the usual way by
verifying that the equilibrium velocity dispersion varied little
for N € [10,100] with ¢ = 1; N = 50 also provides adequate
sampling of the size distribution given the limited range.

Figs 14-16 show the usual statistical quantities for this
model. The velocity dispersions (Fig. 14) behave much the same
as for model (iv) (Fig. 10; note change in scale). The midplane
filling factor (Fig. 15) is seen to attain and sustain a higher
level, consistent with the improved packing efficiency of a size
distribution. The curve is quite smooth with the exception of
an unexplained blip at 7 ~ 3.3. The viscosity curve (Fig. 16)
is very smooth and shows no evidence of viscous instability in
the range 0.2 < 7 < 4. Note that the size distribution effectively
eliminates the ‘crystallization’ phenomenon found in models
(iii) and (iv) for certain critical values of 7.

Figs 17-19 give the height, spin, and obliquity distribu-
tions for ¢ = 0.5, 1.0, 2.0, and 3.0. The vertical distribution
(Fig. 17) is similar to Fig. 13, though the dips are not as
well defined and the mean height is smaller due to the tighter
packing. The spin distribution (Fig. 18) evidently varies little
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Figure 8. View looking down on to the ring plane for model (iii),
T = 2.5, during the equilibrium phase. The central box plus all 8 ghost
boxes are shown (450 particles in all, most hidden behind the top
layer). At this critical = value, several stratified sheets have formed,
with particles lined up in y (bottom to top) to minimize resistance to
the shearing flow.
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Figure 9. Number density histogram for model (iii) with = = 1.3.
Though this value of 7 gives a local minimum in FF(0) (cf. Fig. 5), the
midplane is still moderately populated.

with optical depth. The dashed curve superimposed on each
histogram is given by

n(w) = we™. (19)

This curve is drawn for reference only, without physical jus-
tification. Note that in all cases each particle has suffered at
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least one collision, so there are no zero spins remaining. The
distribution in obliquity, or the angle y between the spin axis
@ and the positive z-axis Z (Fig. 19), also varies little with
optical depth, but shows a strong tendency toward retrograde
spin (p > 90°). Recall that all spin properties are with respect
to the local (rotating) frame of reference; in the fixed frame,
the spins would be slightly prograde on average.

Further aspects of this model will be presented in the
following section.

3.5 Model (vi): large-NV models

In order to model a realistic size range at optical depths of
order unity or higher in a statistically valid way, larger values
of N must be used. Conversely, for a given value of N, the size
range is constrained. For example, suppose a conservative box
size¢ L = 10Ryy is imposed. If 1 = 1 and Ry, = 5 m, then
Rpin can be determined for a given value of N by integrating
the equivalent of equation (2) in R. This gives
20

Rinin N (20)
where #5 = In(5/Ry;n) and sizes are measured in metres. Equa-
tion (20) can be solved iteratively for Ry,. Models (vi.1-5)
and (vi.7) were obtained by choosing N = 200, 400, 600, 800,
1000, and 3200, respectively, in equation (20). The results are
summarized in Table 2. Also included in the table are the
four runs T = 0.5, 1.0, 2.0, and 3.0 from model (v), labelled
models (v.1-4). Model (vi.6) reproduces a run by Salo (1992b)
and will be discussed in more detail below. The table shows
the chosen equilibrium interval AT for each run, as well as
the mean midplane filling factor (error bars omitted to con-
serve space). The mean z spin as seen from the fixed inertial
frame u*, the mean spin magnitude and obliquity as seen in
the local frame, the mean vertical distance from the plane, and
the mean velocity magnitude are given for each run, split into
three cases according to size bin. The quantity p* = @, + Q
is included for comparison with Araki (1991), who found
u* ~ 0.3 for the equal-mass case. None of the quantities is
mass-weighted since the binning automatically differentiates
between the low- and high-mass regimes. It was found that
five size bins gave adequate sampling (usually at least four
particles in the largest bin): AR, = %AR. The top line of each
set is for Rpjn < R < Ryin + AR,, the middle line is for the
complete range Rpyin < R < Ry, and the bottom line is for
Rpmax — ARy < R < Rppax. The number of particles in each bin
is listed in the column labelled Nj.

Note that the quantity y* varies between 0.15 and 0.45
when averaged over all particles in each model (omitting model
(vi.7) for now), and there is a suggestion that the value de-
creases as the size range increases, possibly due to a stronger
random contribution from the increasing number of smaller
particles. This is supported by the fact that the mean z spin
in the large particle bins is typically much larger than that for
the small particle bins (recall that, at t = 0, @, = 0 and so
uw* =1 for all particles initially). Evidently there is a preferred
prograde spin of about 0.3 for the particles when viewed from
the planet frame (for reference note that, in such a frame,
Earth’s Moon would have a prograde spin of unity). The other
statistical quantities in the table will be discussed below within
the contexts of models (v) and (vi).
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Figure 10. Equilibrium velocity dispersions for model (iv).
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Figure 11. Midplane filling \factor for model (iv).

The data for models (v.1-4) confirm the trends shown
in Figs 14-19. The data also show that the smallest parti-
cles have the largest spin, consistent with equipartition of
rotational energy (this will be illustrated for model (vi.1)
below). Interestingly, the smallest particles also have their
mean spin axes most nearly orthogonal to the mean or-
bital axis, though the peak of the distribution is rather

Figure 12. Dimensionless height-averaged kinematic viscosity times t,
versus 7. The local contribution (circles) is much smaller than the total
contribution (diamonds) for moderate to large 7. The slope changes

sign near the critical point © ~ 2.5, indicating a regime of viscous
instability.

wide (Fig. 19). It should be noted, however, that, when
the Cartesian components of the particles’ spins are av-
eraged separately, the x and y components turn out to
have means < Q, leaving the spin in z dominant (ie.
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Table 2. Binned equilibrium data for models (v) and (vi).

Model

N

AR

AT

FF(0)

Planetary rings
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T Ny m ) n v
(m) (orb) (V) Q) ©) (m) (cm/s)
20 037 2474001 1059+£05 076940007 00482 +0.0003
(v.1) 50 05010 05 430 0243 50 036  1853+0008 1138403 064040004 00414 +0.0002
4 032 0984001 13541 037340008  0.298 +0.0004
20 022 2204001 1107405 074440005  0.0385+0.0003
v.2) 50  050-1.0 10 330 0465 50 0264  1676+0007 1187403  0623+£0002 00336+ 00001
4 036 0874001 1380+£09  0389+£0008  0.0245+0.0003
20 023 2344001 1088405 107440007  0.0400 +0.0004
(v.3) 5 050-1.0 20 430 0631 50 027 178640007 1161403 092340002 00358 +0.0004
4 036 0924001 1333409  054+001  0.0291 +0.0005
20 023 2454002 1082405 1384001 00399 +0.0003
(v.4) 50  050-10 30 3-30 0690 50 0264 1880+0008  1154+03 122840003  0.0366+0.0003
4 0.29 0.99 +0.01 136609 0824001  0.0306+0.0004
135 038 400 +0.02 999+0.1 310£001 02192 40,0009
(vil) 200 L1550 10 3-10 0373 200 0432 3224001 1023+£01 2964001  02124+0.0009
5 0707  0.655+0006  1168+07 3234003 0236 +0.002
326 019 7.39 40,03 97.140.1 484 +0.06 0.274 + 0.001
(vi2) 400  070-50 10 410 0178 400 027 6431002 97.8+0.1 480+ 0.06 0.269 + 0.001
4 043 117+ 001 1203+05  625+008 0.332 +0.003
518 013 1016+003  9560+006  581:+008 0.313 £0.002
(vi3) 600 05550 10 3-10  0.145 600 020 9134003 95974007  S577+008 0.310 £ 0.002
4 0990  1044+0006  886+05 72401 0.368 + 0.003
715 018 12394004  9466+008 4134003 0.309 +0.002
(vi4) 800 04650 10 25 0193 800 023  1136+004  9499+008  408+003 0305 +0.002
4 086  1.217+0.008 97+1 70401 0.385 + 0.004
914 012 14404008 94174006 4284004 0.302 + 0.002
(vi5) 1000 040-50 10 1-3 0177 1000 016 13404008  9468+007 4234004 0.299 + 0.002
4 0.76 1114002 1029404 69+0.1 0.376 +0.004
2820 0.128 124401 9498+004  486+004 0.341 £ 0.002
(vi6) 3200 050-50 04  1-3 00854 3200  0.197 112401 95274005  469+004 0335 +0.002
16 0979 0764001 922402 580+ 005 0350 +0.003
3109 —031 1442 58+6 70405 027 +0.02
(vi7) 3200 02050 10 0-04 001 3200 —029 1442 59+6 70405 027002
3 0.71 0.49+0.06 10345 71404 040+ 003
1 W ~ 0.3 as discussed above). This implies that the com-
N l l [ . . . .
_ =1.0 ponents of the spin vectors that lie in the orbital plane
. T =05 T = 1. ! . o . .
0.8 \ are isotropically distributed. As will be illustrated below,
\ .
\ the mean component spins for all models have Lorentz
\ . .
0.8 % \ profiles. Finally, note that the smallest particles have the
\ largest z excursion and mean velocity, consistent with en-
0.4 ﬂ AN ergy injection by gravitational scattering off the largest
I AN particles.
\ . . .
0.2 | pK Models (vi.1-5) were studied for shorter intervals because
~ . . . . .
S of the increased CPU expense. This increase is due primar-
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Al T~
L —
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Figure 13. Number density versus |z| histograms for model (iv) for ©
= 0.5, 1.0, 2.0, and 3.0. Stratification is still seen in this model.

ily to the scaling with N, but there is also an increase due to
inhomogeneities in the particle distribution, namely the forma-
tion of cigar-shaped clumps or aggregates. These associations
tend to pack quite tightly, increasing the force derivatives on
the constituent particles and resulting in shorter time-steps
according to equation (8). Fig. 20 illustrates one such aggre-
gate. This snapshot of model (vi4) was taken at t = 3 looking
down the z-axis. Animations of the formation and evolution of
these aggregates show several common features: (1) they have
a characteristic pitch angle A ~ 30° measured with respect to
the positive y-axis (the direction of mean orbital motion); (2)
they tend to form around the largest particles; (3) they form
and ‘dissolve’ within a few fractions of an orbit; (4) they are
not seen when inter-particle gravity is switched off; (5) they
do not form if the particles are equal-size (the model (v) runs,
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Figure 15. Midplane filling factor for model (v).

where the size range was small, developed loosely grouped
associations). Aggregate formation will be discussed further
below.

Particle aggregates help explain some of the anomalies
seen in Table 2 for models (vi.1-5), namely the fact that the
largest particles now seem to be dominant in the z excursion
and mean velocity, contrary to the case of models (v.1-4).
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Figure 16. The quantity v (normalized) versus v for model (v). There
is no evidence of viscous instability.

Evidently the aggregates behave like ‘super-particles’, trapping
the smaller particles and reducing their contributions to the
dispersions. The larger particles, meanwhile, are strongly per-
turbed by the clumps, so their contributions are increased.
The mean spin as a function of particle moment of inertia
for model (vi.1) is shown in Fig. 21. The plot demonstrates
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as well defined since smaller particles can start filling the gaps between
larger particles.
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Figure 18. Relative number density as a function of spin magnitude

o (in units of Q) for model (v). The dashed curve is given by equa-
tion (19). There is little dependence on optical depth for this model.

that, in the equilibrium state, rotational energy is distributed
according to moment of inertia: smaller particles generally
spin faster or have a greater range of spin energy. The dashed
line shown in the plot is the isocurve Iw? = I, Q?, tracing an
upper envelope to the spin distribution.

Model (vi.6) was designed to be a direct comparison with
a recent result by Salo (1992b, fig. 1, B ring). The box size,
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Figure 19. Relative number density as a function of spin obliquity
(angle between spin and orbital momentum vectors) for model (v).
Again there is little dependence on 7. The plots show that most
particles are spinning retrograde with respect to their orbital motion
when viewed from the rotating frame.

Figure 20. View of model (vi4) at t = 3 looking along the negative
z-axis. The box is 50 m on a side.

dynamical optical depth, and size distribution were identical,
as was the velocity-dependent (normal) coefficient of restitu-
tion. Tangential friction was included in model (vi.6), unlike
the Salo model, but was not expected to affect the dynamics
appreciably. The run was only carried out for 3 orbits owing
to the CPU expense, but reached an acceptable equilibrium
after 1 orbit. A combination of equations (7) and (8) was used
for computing time-steps to improve the speed. Fig. 22 shows
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Figure 21. Mean spin as a function of moment of inertia for model
(vi.1). The spins lie below an equipartition envelope Iw? = I Q2.
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Figure 22. n/npax versus |z| for model (vi.6) after 3 orbits.

a very smooth vertical distribution, packed tighter than the
curve given for the theoretical equal-size case without self-
gravity. The spin distributions (all three components plus the
spin magnitude) are shown in Fig. 23. Lorentzians of the form
1/(w? + 10) have been drawn for the ws, ,, and w, distri-
butions as an aid to the eye. Similar Lorentz distributions in
spin components occur for all models that include spin effects.
The curve for the spin magnitude distribution is equation (19)
with o weighted by a factor of 0.2 to approximate the actual
width of the distribution. The spin rates are much higher in
this model, again dominated by the smaller particles. The spin

obliquities are shown in Fig. 24. The obliquity distribution is
very broad (FWHM ~ 120°), and only very slightly retrograde
on average.

Fig. 25 shows snapshots at ¢ =0 and 3 (left and right),
with views along the negative z-axis (top) and along the posi-
tive y-axis (bottom). The top right image should be compared
with fig. 1 of Salo (1992b). The system has evidently devel-
oped the gravitational wakes or density transients reported by
Salo, and predicted by Julian & Toomre (1966) for rotationally
supported discs that undergo gravitational perturbation. The
snapshot shows that aggregates are generally associated with
these unstable waves. Indeed, the equilibrium state for model
(vi) in general appears to be the continual formation and dis-
solution of such structures. Their orientation can be explained
qualitatively by the differential rotation of the disc: any con-
densations that form suffer from shear in the +y-directions rel-
ative to their centres of mass, twisting and pulling the clumps
into configurations that minimize the net differential force un-
til other disruptive impacts occur. The observed pitch angle
(~ 30°) is consistent with values found by Salo (1992b) for
three-dimensional simulations. Also note the evolution in z
illustrated by the images at the bottom of Fig. 25: the system
was started very flat (only a few Ry,) to encourage faster
attainment of equilibrium; by ¢t = 3 the system has relaxed
into a typical equilibrium configuration.

The last model to be considered, model (vi.7), provides the
most realistic simulation so far of conditions at the centre of
Saturn’s B ring, with a large size range AR = 0.2-5 m and op-
tical depth of unity. Unfortunately, because of the high density
and large particle number, it is also the slowest to compute,
taking several CPU days on a DEC Alpha workstation just to
follow one complete orbit. Fig. 26 is a snapshot of the system
at t = 0.27, already showing the formation of a transient den-
sity feature. The central box and surrounding ghost boxes are
shown to emphasize the presence of the density enhancement.
Though not yet at equilibrium, the statistical properties for
this system given in Table 2 are consistent with trends seen
in the other model (vi) runs (with the exception of the mean
z spin: only ~ 60 per cent of particles have collided at this
point).

An important trend seen in the table for the model (iv)
runs with 7 = 1 is that the mean spin magnitude, z excursion,
and velocity generally increase as the size range is extended, de-
spite the fact that the runs all have the same dynamical optical
depth. The apparent decrease in u* with increasing size range
has already been mentioned. Together, these facts suggest that
an accurate numerical determination of the equilibrium prop-
erties at the centre of Saturn’s B ring must include the true
size distribution. This means that even larger simulations are
needed.

A disturbing aspect of some of the large-scale features
reported here is that they can be comparable in size to the
central box, and indeed may even extend beyond the box
(see Fig. 26 for example). For a model that employs periodic
boundary conditions, this means that such a structure may
actually interact with itself, confusing the interpretation of the
results. One possible consequence is that such structures break
up and re-form more often in these models than they would
in reality, or at least are truncated in size. Another related
problem is that the mean velocities are fairly large in model
(vi), implying large radial excursions (which are in fact seen
in animations), possibly invalidating the local nature of the
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Figure 24. Obliquity distribution for model (vi.6). The FWHM is

approximately 120°, or 2/3 of the complete range. On average, the
spins of the particles are slightly retrograde.

model. These problems can only be addressed, however, with
larger box sizes, again necessitating much larger values of N
to test models with comparable density.

4 CONCLUSIONS

New simulations of Saturn’s B ring performed using a modi-
fied version of box_tree have been presented. The code suc-
cessfully incorporates particle self-gravity, size distributions,
and spin, thereby extending the original work of WT. The
most important changes to box_tree involved improving the
time-step formulae and the collision detection techniques, to
allow accurate treatment of collisions under close-packed and
strong gravity conditions. Comparisons with WT models were
presented and showed excellent agreement overall. Improved
detail allowed a closer look at layering phenomena. Extensions
into the self-gravity and small size distribution regimes showed
behaviour similar to the earlier models, and there was still no
evidence for overall viscous instability. Larger size ranges at
moderate optical depth gave rise to aggregate formation and
gravitational wakes, also seen in similar simulations by Salo.
The most realistic simulation so far (AR = 0.2-5 m, © =
1) was presented, and also formed density transients. Since
all size range models showed the rapid development of some
form of association, it must be concluded that such systems
strongly favour aggregate formation on very short time-scales
(less than one revolution), and this may help explain the non-
uniformities seen in Saturn’s outer rings. It should be noted
that the wake lengths in these local simulations may be limited
by the choice of box size. Finally, particle spins in these later
models were found to lie inside a rotational energy equiparti-
tion envelope at equilibrium and were retrograde on average
in the local frame, though the particles generally had a large
spread in obliquities.
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Figure 25. Views of model (vi.6) at time ¢ = 0 (left) and ¢t = 3 (right), looking down on the z-plane (top) and along the y-axis (bottom). Notice the
symmetry in the starting conditions, recalling the mass-weighted balancing about the centre of mass. The evolved system shows several transient

density features. Here the box is 170 m on a side.

Even with all the enhancements discussed here, the code
still only provides a rough picture of the dynamics in Saturn’s
rings. Merging (bonding) and fragmentation, for example, were
not included and may turn out to play an important role.
In particular, frost layers on centimetre-sized particles have
been shown to increase dramatically the chance of sticking
(Hatzes et al. 1991; Bridges, Supulver & Lin 1994). On a
related subject, work is going on to improve the elasticity
models of ice particle collisions: recent results suggest that
collisions are more elastic than previously thought (thereby
increasing the mean equilibrium thickness of the disc and
possibly reducing the compactness of aggregates), and it has
been found that the transverse coefficient of restitution may
also be velocity-dependent (Supulver, Bridges & Lin 1994).
Other enhancements that need to be made in future include
the introduction of non-spherical particles (e.g. ellipsoids with
a distribution in axial ratio), although to keep track of position
angles and evaluate torque effects correctly will be challenging.
Models should also be run for the other main rings, notably
A and C.

The most basic improvement needed, however, is a fur-
ther reduction in CPU expense to allow modelling of the full
(known) dynamic range of Saturn’s rings, or planetary rings
in general, in a practical amount of time. Larger box sizes are
also required to guarantee that aggregates and wakes do not

interact too much with their ghost images in the sliding box
model. Speed improvements can always be achieved by reduc-
ing the accuracy of the integration, but this introduces the risk
of spurious results. The box_tree code is still under devel-
opment, and the expectation is that as much as another factor
of 2 in speed may be achievable for a given accuracy. The
code may also benefit from incorporating the new Hermite
integrator (Makino & Aarseth 1992), which both simplifies
and speeds up particle updates.

The Cassini mission to Saturn offers the exciting possi-
bility of testing recent numerical studies of planetary rings
directly. To make the most of this opportunity, it is important
that as many improvements as possible be made to existing
techniques. Some basic refinements have already been men-
tioned, but there are also many aspects of existing models that
need to be explored further in order to determine the best
approach towards future development. Particle aggregates in
particular merit much further study: the maximum aggregate
size needs to be determined, requiring larger scale simulations;
a better picture of how the aggregates form and dissolve needs
to be obtained; and a determination of the role aggregates
may play in reducing the rate of angular momentum transport
is also needed. As computing facilities improve, these problems
will become increasingly easier to address.

As has happened in the past, it is hoped that the develop-
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Figure 26. View looking down the z-axis at model (vi.7) after one
quarter of an orbit. The view includes the ghost boxes, each of size 50
m. The optical depth is unity. A transient density feature is already
forming; note how it seems to extend beyond the central box.

ments made here in studying planetary rings will also benefit
the study of Solar system dynamics in general.
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