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We present our implementation of cohesion in the parallel N-body code pkdgrav in order to model small
bodies that are not fully monolithic but that have at least some degree of cohesion. Small bodies of our
Solar System show a great diversity in shapes, sizes and morphologies. However, we do not have direct
information on their internal structure. The response of small bodies to various kinds of processes, such
as impacts, depends on their internal properties in a way that is not yet well understood. It is therefore
important to model the different kinds of structures that can represent a small body, and to study their
influence on the way a body responds to the different processes undergone during its lifetime. Here, we
present a preliminary study to serve as validation of our implementation of cohesive forces into pkdgrav.
This study consists of comparing low-speed laboratory impact experiments on sintered glass bead
agglomerates from a previously published work against our numerical simulations, which replicate those
impact conditions. The experimental targets are numerically modeled as agglomerates of soft spheres
bound together by spring-like forces that mimic their cohesion. First we check that the strength proper-
ties of the numerical target are identical to the real ones by successfully modeling numerically the Bra-
zilian disk test, a standard experimental test to measure the tensile strength of various kinds of materials.
We then reproduce in simulation two experiments that were performed using different impact condi-
tions. The numerical results show that the outcome is very sensitive to the exact location of the impact
point, as observed in experiments, and we find, in each case, satisfying agreement with experimental out-
comes. This gives us confidence that we can apply our model in future studies to low-speed collisions
between aggregates, as occurred during the early phases of our Solar System’s history, and investigate
a wide range of parameter space (e.g., material properties such as cohesion) as well as target shapes
and/or sizes of individual spherical components, and the influence of the initial target rotation. Also in
future studies will also apply our model to other processes such as rotational fragmentation of cohesive
aggregates resulting from YORP spin-up.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we present the implementation of cohesion into a
numerical model aimed at the study of the dynamics of granular
materials that comprise the surfaces and, in some cases, the interi-
ors of small Solar System bodies. For validation, we simulate im-
pact experiments into small targets of sintered spherical glass
bead agglomerates.

Space mission images of small bodies have shown a great diver-
sity of shapes, sizes, and morphologies. Moreover, the bulk densi-
ties that have been measured for some of these small bodies
suggest that their internal structure contains some degree of
porosity, as the values are systematically smaller than the bulk
densities of meteoritic analogues (Consolmagno et al., 2008). For
instance, the NEAR-Shoemaker spacecraft performed a fly-by of
the Asteroid (253) Mathilde in 1997, which allowed the determina-
tion of the bulk density of this C-type asteroid (Yeomans et al.,
1997). Its value is about 1.35 g/cm3, which suggests a porosity frac-
tion up to 40% when compared to the bulk density of carbonaceous
chondrites. Both observational and numerical works suggest that a
large fraction of small bodies, possibly down to a few hundreds of
meters in size, consist of rubble piles, whose strength is dominated
by self-gravity (e.g., Benz and Asphaug, 1999). However, such grav-
itational aggregates may also contain some cohesion, with the
smaller components of the small-body population likely domi-
nated by cohesion, since these typically spin too fast to be able
to retain their shape if gravity alone were the only source of
strength (Holsapple, 2007).
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Our knowledge of the internal makeup of small bodies is still very
poor; the response of small bodies to various kinds of influences—
processes such as impacts or shaking—depends on their surface
and/or internal properties in a way that is not yet well understood.
In turn, such processes can then modify this makeup. Since we do
not have precise knowledge of either, it is important to create models
that can represent small bodies in order that we are able to study the
influence of different properties on the way a body may respond to
the different processes it undergoes during its lifetime. We recently
adapted the parallel N-body code PKDGRAV to the modeling of the evo-
lution of the granular materials that may comprise the surface and
the inside of small bodies (see Richardson et al., 2011; Schwartz
et al., 2012). In particular, bodies that are not fully monolithic, but in-
stead have at least some degree of cohesion, may be represented as
gravitational aggregates composed of solid blocks linked together by
gravity and/or cohesive forces. Perrine et al. (2011) have added the
ability to rigidly stick hard-sphere particles together in PKDGRAV,
without the ability to bend or flex these bonds. In the newly adapted
version of PKDGRAV presented in this paper, agglomerates of soft
spheres bound together by spring-like forces that mimic their cohe-
sion can be used to represent these bodies. In the study we present
here, we use this newly adapted version of the code to represent
material constructed in a real-world, Earth-based laboratory, and
numerically calculate how this material reacts to the stresses of pro-
jectile impact and of confining pressure. Our results are then com-
pared to the laboratory results. Our intention is not to particularly
add to the interpretation of those results, but rather to demonstrate
that we can reproduce them adequately as a first step toward devel-
oping a multi-purpose numerical tool.

A number of codes have already been developed in the general
field of cohesive granular systems. For instance, Richefeu et al.
(2009) used a 3-D discrete element method (DEM) with spherical
particles enriched by a capillary force law to model the overall
cohesion of wet granular materials. Also using a discrete element
approach, Delenne et al. (2009) introduced a local cohesion law
that accounts for the transition from capillary to cemented bond-
ing in granular materials partially saturated with an aqueous solu-
tion. Then, Radjaï et al. (2010) treated the solid binding matrix
filling (fully or partially) the interstitial space in a cohesive granu-
lar media by using a Lattice Element Method, which was based
upon a lattice-type discretization of the particles and material ma-
trix. More generally, different approaches are used to model gran-
ular materials. One approach is to treat the material as a
continuum by averaging the physics across many particles. In the
case of solid-like granular behavior, the continuum approach usu-
ally treats the material as elastic or elasto-plastic and models it
with the finite element method or a mesh-free method (e.g., Elas-
kar et al., 2000; see also Holsapple (2004), Holsapple and Michel
(2008), and Sharma et al. (2009) for use of analytical and contin-
uum approaches in modeling asteroid shapes). However, the
homogenization of granular-scale physics is not necessarily appro-
priate for capturing the discrete nature of the particles and the
forces between them and between them and their wall-boundaries
(Wada et al., 2006). Therefore, limits of such homogenization must
be considered carefully before attempting to use a continuum ap-
proach. Discrete element numerical coding, on the other hand, is
typically carried out by way of a hard-sphere or soft-sphere ap-
proach (termed the Hard- and Soft-Sphere Discrete Element Meth-
od, referred to as HSDEM and SSDEM, respectively, hereafter). In
particular, SSDEM is commonly used in the study of granular mate-
rials, and has often been applied to industrial problems (Cleary and
Sawley, 2002; Kosinski and Hoffmann, 2009; also see Radjaï and
Dubois (2011) for a comprehensive overview). However, in com-
parison with the continuum approach, DEM is not well-suited to
the treatment of supersonic motion, particle fragmentation, or
phase-changing material. Within the appropriate regimes, which
are vast, only very recently has it started to be applied to the realm
of planetary science. Granular physics codes are now developed or
adapted specifically for planetary applications by various groups
(e.g., Wada et al., 2006; Sánchez and Scheeres, 2011; Tancredi
et al., 2012) using various integration schemes and implementa-
tions of the types of friction between grains. Other codes using a
continuum approach (e.g., SPH hydroxides) have also been devel-
oped to investigate, for instance, collisions between porous aggre-
gates (Sirono, 2004). The advantages and deficiencies between
these codes and ours cannot be easily assessed, however the spe-
cifics of our newly adapted version of pkdgrav is that it uses a
sophisticated tree-code to compute in parallel contact forces be-
tween particles along with self-gravity. In addition, a set of fric-
tional forces, including static, dynamic, twisting, and rolling
frictions has been introduced, all of which were not necessarily
implemented or used in some of these mentioned codes.

In the following validation test of our numerical approach, we
compare low-speed, laboratory impact experiments on glass bead
agglomerates against simulations using the same impact condi-
tions on numerical models of those targets. The impact experi-
ments were performed in Japan at the Kobe University, the main
results of which have been published by Machii and Nakamura
(2011). In Section 2 we briefly present the experiments and the
outcomes that we will consider in this paper for comparison with
simulations. Section 3 briefly describes the numerical code PKDGRAV

and its adaptation to address granular material physics and cohe-
sion (see Schwartz et al. (2012) for details). Comparison between
experiments and simulations are then presented in Section 4. Con-
clusions and perspectives are provided in Section 5.

2. Impact experiments

Machii and Nakamura (2011) performed their impact experi-
ments on sintered glass bead agglomerates using a gas gun in Kobe
University in Japan. Impact speeds ranged between 40 and 280 m/s
and the sintered agglomerates used as targets contained �40%
porosity. Two kinds of targets were manufactured to differ in their
bulk strength; the difference between the groups comes from the
sintering times in the oven (8 h and 20 h). The size ratio of the
beads to each target was 0.19, with the average bead size measur-
ing �5 mm in diameter. The experiments showed that the energy
density required to catastrophically break the agglomerate is much
less than that required for previously investigated sintered glass
bead targets with the same porosity (e.g., Setoh et al., 2010). How-
ever, the sizes of the beads that comprised those targets and the
size ratio of the beads to the targets were both 100 times smaller
than the agglomerates used by Machii and Nakamura (2011). The
authors suggest that this weaker strength is probably due to the
much smaller number of cohesive links (necks) that a stress wave
must travel through in this study, which minimizes the energy dis-
sipation at the necks (this theory will be investigated and quanti-
fied in a future numerical study). Also, the fact that the particles
are larger and less numerous enables them to move more freely
and thus to be broken more easily. Catastrophic disruption of an
agglomerate was shown to occur when the projectile kinetic en-
ergy was a few times the total energy needed to break all of the
necks of the agglomerate. The distribution of fragment size and
number was shown to be extremely dependent upon the impact
point of the target.

3. Numerical method

3.1. The N-body code PKDGRAV: hard- and soft-sphere
implementations

To model the targets and the impact experiment, we use the N-
body code PKDGRAV, a parallel gravity code originally designed for
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Fig. 1. A (spherical) particle in overlap with one of its neighbors. Both the particle
and its neighbor feel an attractive force due to their cohesive bond and a repulsive
SSDEM force (gravity is not considered in this figure). The shaded circle gives the
relative position of the neighbor such that d is zero, and thus these two forces
cancel; therefore, the net force acting on the two particles is zero when q0 describes
the separation between their COMs, where d is the fractional deviation of q from q0.
The dotted circle gives the relative position of the neighbor when the strain, �, is
zero, and thus the cohesive ‘‘spring’’ that forms the bond between the particles is at
rest, which occurs at a separation of z. Here q gives the ‘‘current’’ separation
between the particle and its neighbor, the latter inscribed by a dashed circle; thus in
this case, they feel a net attractive force since q > q0, which means that the cohesive
force exceeds the SSDEM repulsive force. Here s1 and s2 are the radii of the particle
and its neighbor, respectively, and seff we take to be the effective radius between
them. When q = s1 + s2 = 2seff,� = �max.

S.R. Schwartz et al. / Icarus 226 (2013) 67–76 69
collisionless cosmology simulations (Stadel, 2001) and adapted for
collisional Solar System applications (Richardson et al., 2000,
2009).

The original version of PKDGRAV only considered hard-sphere par-
ticles (HSDEM). In HSDEM, collisions are analytically predicted and
treated as instantaneous, using coefficients of restitution to ac-
count for normal and tangential energy dissipation. The inclusion
of walls of various geometries (boundaries) provides for the possi-
ble interaction of grains with experimental set-ups or small-body
surfaces (see Richardson et al. (2011) for more details).

Recently, a Soft-Sphere Discrete Element Method was intro-
duced in PKDGRAV (Schwartz et al., 2012), based initially on the work
of Cundall and Strack (1979). In this case, collisions between spher-
ical particles are not predicted in advance, and are not instanta-
neous. Instead, collisions are simulated by allowing particles to
overlap with each other; to first order, this represents the slight
surface deformation that occurs during the contact between real
particles. When an overlap occurs, the various types of contact
forces (e.g., static, dynamic, sliding, rolling frictions) are treated,
and collisions are integrated through their full duration rather than
analytically predicted in advance of the collision. This is particu-
larly important in dense granular regimes and/or when collision
durations (stress wave propagation speeds) are non-negligible.
The reader is referred to Schwartz et al. (2012) for more details
on the implementation of SSDEM in PKDGRAV and for a short review
of other approaches to model these systems of granular materials.

3.2. Adding cohesion in PKDGRAV

In order to account for the potential presence of cohesion be-
tween grains within a granular medium such as regolith on the
surfaces of solid celestial bodies, we have implemented a cohesive
force into PKDGRAV. This added cohesive force acts between bonded
particles’ centers of mass (COMs) as a restoring force that opposes
distention of the bond. Here we call the particle and the neighbor
to which it is bound, particle 1 and particle 2, respectively.

A single bond is defined by an equilibrium separation z(�, t) (a
zero-strain-length) between the two particles’ COMs, and a maxi-
mum strain �maxð _�Þ beyond which the bond has no effect, where
the strain �(t) � [q/z] � 1. We define q � r2 � r1 as the relative po-
sition between the particle and neighbor COMs, and so q � jqj is
the scalar distance between the COMs (thus, when q = z(�, t), the
length of the ‘‘spring’’ at rest, the strain, �, vanishes). These vari-
ables are shown schematically as part of Fig. 1 (additional param-
eters that appear in the figure are introduced later in this section).

While �ðtÞ < �maxð _�Þ, a particle feels a cohesive force dependent
upon the current strain �(t), the current strain-rate
_�ðtÞ � un=zð�; tÞ, and the effective area of interaction Aeff, where
u � v2 � v1 is the relative velocity between the particle and the
neighbor to which it is bound, un is the normal component of this
relative velocity.

We define the default behavior, which treats �maxð _�Þ as a con-
stant ½�maxð _�Þ ! �max�, independent of the strain-rate, z as a con-
stant independent of the effect of persistent strain [z(�, t) ? z],
and the force on the particle due to its attached neighbor as a linear
combination of a strain (elastic) component and a strain-rate (plas-
tic) component. We also require that cohesive bonds are to be bro-
ken once � exceeds �max. We also take in default Aeff � ps2

eff , and
seff � (s1 + s2)/2, the mean radius of the particle and its neighbor.
If we consider particles as effectively representing a continuum
deformable agglomerate, this is an appropriate choice for the effec-
tive area of interaction, Aeff, especially for spheres of similar size.
Although not the only option, this choice can also be justified for
the area of interaction in the case of this study, when the spheres
are treated as discrete particles and not a continuum (see
Section 3.3).
In this default configuration, from the time at which the bond is
formed, up until the time at which � exceeds �max, the force on a
particle due to its cohesive bond (it may have multiple bonds),
assuming implicit dependencies on t of the strain and the strain-
rate, is given as

F1;coh ¼ Y�Aeff n̂þ cz _�; ð1Þ

where n̂ � q=jqj is a unit vector that gives the direction from the
particle’s center to the neighbor’s center, Y is an elastic Young’s
modulus, and c is a viscous damping term with the value for critical
damping given as ccrit �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4lYAeff=z

p
, with l being the reduced mass

of the two-particle system. Repulsive forces related to the cohesive
bonds (for � < 0) can be switched on or off; we leave it off by default
(this is not to be confused with the normal component of the
SSDEM force, which always active). Newton’s Third Law gives the
force felt by the neighbor due to the cohesion with the particle as

F2;coh ¼ �Y�Aeff n̂� cz _�: ð2Þ

This treatment is equivalent to a Hooke’s force law for springs with
a speed-dependent damping term. Using the default implementa-
tion, as we do in this study, gives four parameters that define a
cohesive bond: z, Y, �max, and c. Also supported however, are more
complicated force dependencies such as van der Waals force laws, a
strain- and time-dependent zero-strain-length (creep), and cohe-
sive strain limits that are dependent on strain rates. Although for
the sake of this study, and for both simplicity and computational
efficiency, we deliberately only approximate the actual cohesion
physics using a simple model that nonetheless appears to capture
the important experimental outcomes for our application.

In order to allow for more realistic (non-idealized) behavior of
cohesive agglomerates, each cohesive element (particle–particle
bond) has its own values for z, Y, and �max, where the distribution
of strength (Y) and maximum strain (�max) are typically fit by a
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gaussian distribution around specified mean values (hYi and
h�maxi).

Note also that these cohesive forces are central forces, and thus
energy and momentum are conserved (although c > 0 saps energy
from the system). Forces are only applied along the line that con-
nects the two particles’ centers, thus there is no coupling with
angular or tangential degrees of freedom.

3.3. SSDEM and cohesion

When the separation between the COMs of two bound particles
is both greater than the sum of their radii, i.e., q > s1 + s2, and great-
er than z (with 0 < � < �max), they feel a restoring force along the
line that connects their two centers. However, in order to account
for the existence of a physical neck that joins two sintered particles
together (even if the atomic diffusion involved in the formation of
the neck is not modeled explicitly), we must also consider coupling
of translational and rotational degrees of freedom. This coupling
would need also apply to the case of particles that feel mutual
attraction through surface-surface interactions by way of van der
Waals forces. However, this study does not model this type of
cohesion, which requires a different prescription than the one used
here. We describe in the following our strategy to couple transla-
tional and rotational degrees of freedom involving particles bound
together with a physical neck that exists between them.

3.3.1. Building cohesive agglomerates
Setting z < 2seff implies that cohesive equilibrium occurs while

particles are penetrating each others’ surfaces. If we imagine a set-
up of two mutually bound particles in isolation with zero-strain-
length less than the sum of their radii, in HSDEM this amounts to
the two particles pushing up against each other with some com-
pressive force, but without ever penetrating (inter-particle pene-
tration is not allowed in HSDEM). In SSDEM, this results in the
particles penetrating each other with SSDEM repulsive forces com-
ing into balance with cohesive forces and any force that may exist
between the particles (e.g., gravity). In such a case, the particles’
translational and rotational degrees of freedom are coupled. Fur-
thermore, it means that particles are subject to the full robust
treatment of SSDEM contact forces (Schwartz et al., 2012) together
with cohesion. Including both elastic and plastic components, the
net normal force on a particle as a result of its interaction with
its neighbor, due to both cohesion and the SSDEM normal force
is given as

F1 ¼ Y�Aeff n̂þ cz _�� knxn̂þ Cnun; ð3Þ

where kn is the SSDEM normal elastic coefficient given in units of
kg/s2, Cn is the SSDEM normal plastic coefficient given in kg/s (there
also exist tangential analogues, kt and Ct, respectively), and x is the
amount of interparticle penetration as defined in Schwartz et al.
(2012).

A number of studies have developed methodologies to allow for
the representation of non-spherical shapes using ensembles of
spherical particles (e.g., Gotteland et al., 2009; Azéma et al.,
2012). Our approach also allows us to build up arbitrarily shaped
objects consisting of spheres in various states of overlap with each
other. The spheres need not be of uniform size or mass, and can
have differing strength parameters, which provides us the freedom
to simulate complex combinations of cohesive agglomerates with
explicitly defined internal strength distributions. In this study,
we use this approach to simulate individual particles bound to-
gether. Similarly, we have the ability to use a nearly identical ap-
proach for the simulation of a continuum solid, with each
‘‘particle’’ effectively acting as a tracer representing a section of
the material.
In order to create the models for an object comprised of individ-
ual particles bound together, we must define, along with the
SSDEM parameters, the COM position, the mass, and the radius
for each particle of which it is comprised. Next, to account for
cohesion within the object, we use pkdgrav’s tree code and per-
form, for each particle, a search for other particles with which it
is in overlap. For each of these overlaps, we assign a unique
Young’s modulus Y based upon our specification, and then solve
for z such that the cohesive restoring force in Eq. (2) just cancels
the SSDEM repulsive force when the object is at rest and in a state
of internal equilibrium. We define q0 for a pair of overlapping par-
ticles to be the separation between their centers when the net
force between them is zero for the simulation at equilibrium at
the start of the simulation (this is not to be confused with z, the
separation between their centers when the cohesive force is
zero—typically q0 will be greater than z). The overlap value,
x = s1 + s2 � q0, gives:

z ¼ q0YAeff

knðs1 þ s2 � q0Þ þ YAeff
: ð4Þ

Combining Eqs. (3) and (4), and defining d � [q/q0] � 1, for an
unbroken bond where z 6 q 6 2seff, the force felt by a particle due
to its interaction with its neighbor (ignoring gravity) reduces to:

F1 ¼ d½2knseff þ YAeff �n̂þ ðcþ CnÞun: ð5Þ

The fixed point at q = q0 (when d = 0) can be seen in Eq. (5); when
q > q0, the elastic force on the particle pushes it toward its neigh-
bor, and when q < q0, the elastic force on the particle pushes it away
from its neighbor, showing that the fixed point is stable (the dia-
gram in Fig. 1 describes these lengths and dimensionless variables).
Each particle that comprises these simulated cohesive objects
exhibits this stable equilibrium with each of its neighbors (see Vi-
deo 1). By default we set �max ¼ 2seff

z � 1, breaking the bond between
a pair of particles when they physically separate; this sets the ten-
sile strength. The shear strength of the bond we set to be the static
frictional force limit, such that the bond breaks when the tangential
stress exceeds the product of the coefficient of static friction and the
normal force (see Schwartz et al. (2012) for an outline of our treat-
ment of static friction in SSDEM).

In this study, we use the default definition of Aeff as the mean
cross-section of particles in contact. In reality, the contact area be-
tween sintered particles is smaller than the mean particle cross-
section, especially for weakly sintered particles. However, to avoid
unnecessary complexity, we keep Aeff constant so that we are able
to control how the cohesion force depends on the strain, which in
this study is taken to be linear. In principle, we could use other
methods to set a constant Aeff, but as we will see in Section 4.1, this
choice allows us to be consistent with the experimentally mea-
sured mean force that is required to break these bonds, which hold
the agglomerates together.

When a bond is broken between a particle and its neighbor due
to tangential stress, any future contacts between them are gov-
erned by standard SSDEM without cohesion. When a bond is bro-
ken due to shear stress, we must consider the consequence of
losing the cohesive force while particles are still in overlap. With-
out special treatment, the SSDEM repulsive force would cause the
particles to accelerate away from each other, which is not realistic
behavior. Once their bond is broken, for the sake of future colli-
sions, our approach is to allow particle pairs with broken bonds
to see each other as spheres with contact radii equal to the distance
from their respective centers to the contact point at the time of
tangential failure of their bond. Under the assumption that colli-
sions between formerly bound particles are likely to occur in sim-
ilar orientations, this may be a fair approximation to make. For our
purposes in this study, where re-colliding particles are not com-
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mon or important to the outcome, this approximation should
suffice.

4. Comparison between experiments and simulations

4.1. Numerical representation of the target

Our first task in this study is to use the above methodology to
build a numerical representation of the target that is geometrically
and mechanically as close as possible to the one used in experi-
ments. The sizes of the real glass beads are large enough, and their
shapes spherical enough, such that each bead can be represented
by one spherical particle. The beads have been sintered, and the
bonds between them measured. They are numerically modeled
with cohesive strengths that correspond to the experimentally
measured bonds.

Each 90-bead target was arranged in three layers of 30 beads,
with the top and bottom layers arranged in the same, particular
pattern. To construct the target, we start with its bottom layer
(see Fig. 2): we first distribute the 16 particles that comprise the
outside perimeter of this layer and then fill the inside with the
remaining 14 particles. These 30 particles are placed on a horizon-
tal plane, which is a boundary condition implemented in our
numerical code (see Richardson et al., 2011). Indeed, such a bound-
ary condition is necessary to maintain the configuration of those
particles, when other ones will be distributed on top of them or in-
Fig. 2. Numerical construction of a modeled target. Top: first step in the modeling of the
Bottom: modeling of the second layer over the bottom one. The process is repeated in a s
The left panel shows a top view while the right panel shows a side view. (Particle colorin
interpretation of the references to color in this figure legend, the reader is referred to th
side them. Then, we distribute 16 particles on the outside perime-
ter of a second layer over the bottom one. We then attach elastic
‘‘springs’’ to all these 46 particles and then drop 14 particles inside
to finish the second layer. Then, we model another horizontal plane
slowly moving down onto those layers, in order to push particles
into place. Once done, we remove this plane and add a third layer
of 30 particles on the top of the two bottom layers in a similar way
as previous layers. We numerically compute the motion of those
three layers composed of 90 particles in total under uniform grav-
ity to make them settle. Then we stop the simulations and make
particles overlap with their neighbors by decreasing the distance
between the centers of the particles by 10%, which means that
the values for q0 vary between bonds, but are typically 1.8seff, or
just under 4.5 mm.

The last step is to add cohesion to simulate the sintered parti-
cles. Each bond is characterized by a Young’s modulus and a stress
limit (equivalent to a tensile strength). The cohesive force between
the glass beads of real targets is not perfectly identical for all
bonds. In fact, quite a large variation exists between the strengths
of the experimental bonds (see Fig. 4 in Machii and Nakamura
(2011)). Given that some bonds in the real agglomerate are rela-
tively quite weak and some relatively strong, it is important to rep-
resent this in our numerical model as it has a significant effect on
how the sintered agglomerate breaks apart. Since there is no obvi-
ous way to determine the actual distribution of the bond strengths
from the real target, in the modeled target, we arbitrarily distribute
bottom particle layer placed on a horizontal plane. Middle: completed bottom layer.
imilar way for the rest of the target (see Fig. 3 for an image of the complete target).
g/shading is used to distinguish the different phases in the fabrication process.) (For
e web version of this article.)
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the values of the Young’s modulus, Y, and stress limit to define the
cohesion in the bonds according to truncated Gaussian distribu-
tions, with a mean of 4 ± 1 MPa and 1.59 ± 0.06 MPa, respectively.
These values are based upon experimental bond strengths between
individual pairs of sintered glass beads similar to those used to
form the agglomerates (Machii and Nakamura, 2011). In this way
we represent the fact that there is variation in the strengths of
the bonds in the agglomerate. The stress limit is derived by assum-
ing that the effective area of interaction, Aeff, is the entire cross sec-
tion of a given particle, which is about 19 mm2. In the experiments,
the stress limit is indicated as around 6–10 MPa, considering the
cross section of the fused area of contact of the particles, which
is typically 2–5 mm2. By taking the product of the stress limit with
the particles’ contact area, this means that it requires roughly the
same force to break the bonds in the simulations as was required
in the experiments, which is about 30 N. As we will see in Sec-
tion 4.2, this allows us to obtain a bulk tensile strength that is sim-
ilar to those measured experimentally. At the end of the process,
our modeled 3-layer target is built with properties similar to the
ones used in the laboratory experiments. Fig. 3 shows a compari-
son between a real target and a numerical one, using a ray tracer
to make a realistic looking image.
4.2. Numerical modeling of the tensile strength measurement of the
numerical target

Machii and Nakamura (2011) measured the tensile strengths of
experimental targets using Brazilian disk tests. This test (first
developed by Berenbaum and Brodie (1959)) is a common means
of indirectly measuring the tensile strength of brittle materials,
including rocks and concrete. In order to check that our numerical
targets have a similar tensile strength as those used in experi-
ments, we performed numerical simulations of Brazilian disk tests
on our numerical targets.

Fig. 4 shows the numerical set up of the Brazilian disk test. The
modeled target is placed between two flat plates, which are mod-
eled as horizontal planes. These plates are set in motion towards
each other until the target breaks into pieces. We modeled this test
Fig. 3. Left: experimental target consisting of a sintered glass bead agglomerate. Right: m
side views are shown.
using several strain rates: 0.1, 0.4, 1, 4 and 10 mm/s. The results are
presented in Fig. 5 and show that the tensile strength slightly in-
creases at higher strain rates. The tensile strength of the simulated
target is comparable to those of the real ones constructed by Ma-
chii and Nakamura (2011); they all show significant variance
around about 0.5 MPa.
4.3. Numerical simulations of impacts

In this section we present our numerical simulations aimed at
reproducing the impact experiments of Machii and Nakamura
(2011). The experiments led to a wide range of outcomes depend-
ing on the initial conditions. Some impacts did not break the tar-
get, while others led to the shattering of individual beads. For our
modeling we considered two experiments that led to the frag-
mentation of the target without any shattering of individual
beads, so that the full process can be captured in principle with
our numerical code.

The two considered experiments were performed using differ-
ent projectiles and impact speeds. Both involve the stronger tar-
gets, fused for 20 h, because those involving the weaker targets
showed much more scatter in their results. The first considered
experiment involves a projectile consisting of an individual
3.07 mm glass bead impacting the target at 78 m/s, which corre-
sponds to a specific impact energy, defined as the kinetic energy
of the projectile divided by the target mass, of 8.95 J/kg. The second
experiment involves a 2.85 mm individual glass bead impacting
the target at 56 m/s, which corresponds to a specific impact energy
of 4.29 J/kg. The projectile hit close to the target’s center in each
case. However, because the exact location of the impact point
could not be measured, and given the sensitivity of the outcome
on the exact impact point location, we performed a suite of simu-
lations, varying the impact point position around the target’s cen-
ter. Although we were able to satisfactorily reproduce both
experiments, we report in greater detail only the case of the
78 m/s impactor.

In order to study the case of the 78 m/s impactor, we randomly
assigned 28 impact points all lying within a one-bead-diameter by
odeled target consisting of soft spheres bound together by cohesive forces. Top and



Fig. 4. Numerical set up and simulation of the Brazilian disk test. Left: the target is placed between two horizontal planes that move vertically towards the center of the target
until it breaks. Right: snapshot of the simulation at a time when the target is broken as its tensile strength is reached. The target is broken from its center into two main
pieces, and other smaller ones. (Online only: particles in green are bound to three or more other particles, particles in yellow to two other particles, particles in orange to one
other particle, and particles in red are unbound.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Tensile strength (kPa) of the modeled target as a function of the speed of the plates between which it is placed in the simulated Brazilian disk tests.

Fig. 6. Cumulative mass distributions of fragments from both the 3.07 mm-diameter, 78 m/s projectile impact experiment (red line/small dashes) and simulation (yellow
line/large circles). Left: Of the 1008 simulations run to represent this experiment, the simulation whose fragment mass distribution curve is closest to the curve
corresponding to the experiment (represented on the top row of Table 2) is shown. Right: A simulation whose fragment mass distribution curve differs more significantly
from that of the experiment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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one-bead-diameter rectangular region (0.24 cm2), centered at the
target’s center. Each of the two plots in Fig. 6 show the mass histo-
grams of fragments from the experiment along with the mass his-
togram from a particular simulation. The difference of the two
distribution functions from that of the experiment is quantified
by an area, which characterizes the extent of the disagreement be-
tween the given simulated result and the experimental result. This
area is given by:



Fig. 7. Image of the central region of the target, overlaid with the 28 randomly
selected impact points used to simulate the 3.07 mm-diameter, 78 m/s projectile
impact experiment. Shading shows the quality of the fit, from darkest (worst fit) to
lightest (best fit) as measured by the fidelity parameter A as defined in the text,
averaged over all 36 shots at the given location. Twelve of the 17 best-fitting
simulations, including the top five simulations, came from just one of these impact
points, indicated with a square (see Table 2).
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A ¼
Z mf¼1

mf¼0
jFðmf Þ � Gðmf Þj; ð6Þ

where mf is the mass fraction of the fragment, and Fðmf Þ and Gðmf Þ
are the cumulative mass distribution functions representing the fi-
nal fragment sizes from the simulation and the experiment, respec-
tively. A lower value of A represents a better match to the
experiment. Upon first glance, a Kolmogorov–Smirnov test (K–S
test) seems like the appropriate statistic to quantify by how much
the datasets from the simulation differ from that of the experiment.
However, because the fragment sizes are in integer units of beads,
and for the simulations that fit best most fragments are in fact sin-
gle beads, there is limited discriminatory power. This experiment
had 27 fragments of which only 6 were comprised of more than
one bead, which is not enough to distinguish well between the dis-
tributions using a K–S test. As an alternative, we try to match the
number of single bead fragments and the sizes of the larger frag-
ments by overlaying the histograms and quantifying the area be-
tween them. Using this measure, as well as confirming with
visual qualitative comparisons between the actual and simulated
impact animations, we assess the relative quality of the fit.

For each of the 28 impact points, given in Table 1 and shown
graphically in Fig. 7, we simulated 36 impacts, with target SSDEM
parameters varied around a region of parameter space where the
results from the simulations were close to the experimental re-
sults. The ‘‘fidelity fit parameter’’ A from each of the 36 sets of
parameters is averaged together, and is also shown in the afore-
mentioned table and figure. The same values of kn, Cn, kt, and Ct

were used for each simulation—these are 5.91 � 104 kg/s2;
1.16 kg/s for interacting target particles chosen to correspond to
a normal coefficient of restitution of 0.4; 1.69 � 104 kg/s2; and
1.30 kg/s for interacting target particles, respectively. We chose a
value of kn that would balance several considerations: we wanted
particles in the agglomerate to have a proper amount of overlap,
for their bonds to have the correct Young’s modulus and the cor-
rect range in tensile force required to break the bonds, and also
that the amount of overlap experienced during collisions is reason-
able. There is no consensus about the correct values to use for kt;
we chose to keep it fixed at 2/7 kn, which was suggested as a sen-
sible choice by Silbert et al. (2001), and Schwartz et al. (2012)
shows that a factor of 2/7 relates the oscillation frequencies of
the normal and tangential springs of soft spheres in contact.

The parameters that were varied were the coefficients of static,
rolling, and twisting friction, ls, lr, and lt, respectively (see Table 2
for the best fit values). We find that outcomes were sometimes
Table 1
Simulation impact conditions for the first considered experiment. In each case, the projectile
points are randomly chosen to be within one target-bead radius of the target’s center in eac
as X-offset and Y-offset, respectively. The last column of the table gives the derived fidelity
(6)), averaged over each of the 36 shots at this location. The table is ordered by increasin

X-offset (mm) Y-offset (mm) hAi

0.506856 3.54584 0.110412
4.04949 �0.611243 0.111942
�6.05097 �0.0956444 0.113853

0.906545 3.16675 0.11974
5.57488 �5.02434 0.123184
�5.63123 0.618798 0.124316
�6.75735 �2.75084 0.131877
�4.47548 2.53149 0.142
�3.85291 6.84779 0.148301

4.67133 �3.78316 0.149337
�5.10094 �3.11317 0.150283

4.4179 5.21704 0.158512
4.00789 7.96096 0.167667
7.24145 �6.76692 0.168172
quite different between simulations where one of these parame-
ters differed only slightly. However, much more important in
determining the outcome of a simulated impact was the precise
point of impact on the target. Table 2 shows the 17 best fits, in or-
der, beginning with the best fit as quantified by its A value. It is
worth noting that 12 of these come from a single impact point,
highlighting the dependency of outcome on the precise point of
impact. The histogram from the best fit derived from the criterion
given in Eq. (6) is also shown in Fig. 6 (left image), overlaid with
the experimental histogram.

For one of the impact points, we also performed two similar
simulations using different compilers of the code. The rationale
for testing different compilers is that such dynamical systems are
mass is 0.0382 g, its diameter is 3.07 mm, and the impact speed is 78 m/s. The impact
h the horizontal and vertical dimensions, with the offset from the target’s center given
parameter, A, which is a measure of the goodness of fit relative to the experiment (Eq.
g hAi, with smaller values of hAi implying a better match to the experiment.

X-offset (mm) Y-offset (mm) hAi

�5.4794 �2.18385 0.175271
4.04424 �4.56093 0.201764
7.5203 7.03134 0.214827
�6.40953 �8.23685 0.229588
�7.37184 �7.76246 0.270061
�0.721407 �5.98887 0.286138
�1.28281 0.0986582 0.714857

1.51821 1.8634 0.714857
2.65272 �0.337877 0.714857
3.58045 �0.630038 0.714857
3.6803 �2.13386 0.714857
3.77577 �2.17328 0.714857
�3.85397 0.328069 0.714857
�0.347942 �4.32904 0.714857



Table 2
Best-fit simulation impact conditions for the first considered experiment as given by
the fidelity fit parameter A (shown). The SSDEM parameters of static friction, rolling
friction, and twisting friction, are represented by ls, lr, lt, respectively. The mass of
the largest remnant relative to the target mass is indicated by Mlr/Mt. From the first
experiment, the value of Mlr/Mt was 0.516.

X-offset (mm) Y-offset (mm) ls lr lt Mlr/Mt A

�6.75735 �2.75084 0.141 0.1 0.05 0.511 0.01460
�6.75735 �2.75084 0.14 0.1 0.02 0.511 0.01691
�6.75735 �2.75084 0.143 0.1 0.05 0.511 0.01740
�6.75735 �2.75084 0.141 0.15 0.02 0.511 0.01790
�6.75735 �2.75084 0.148 0.2 0.02 0.533 0.02200
�5.4794 �2.18385 0.145 0.1 0.02 0.522 0.02375
�6.75735 �2.75084 0.142 0.1 0.05 0.489 0.02694
�5.4794 �2.18385 0.144 0.1 0.02 0.489 0.02743
�6.75735 �2.75084 0.147 0.2 0.02 0.489 0.02843

4.04949 �0.611243 0.148 0.1 0.02 0.522 0.04031
�4.47548 2.53149 0.145 0.1 0.02 0.522 0.04031
�6.75735 �2.75084 0.143 0.1 0.02 0.544 0.04573
�6.75735 �2.75084 0.145 0.1 0.02 0.533 0.05015
�6.75735 �2.75084 0.146 0.1 0.02 0.544 0.05042

4.47548 2.53149 0.147 0.1 0.02 0.478 0.05119
�6.75735 �2.75084 0.146 0.15 0.02 0.567 0.05346
�6.75735 �2.75084 0.147 0.1 0.02 0.544 0.05437

S.R. Schwartz et al. / Icarus 226 (2013) 67–76 75
not purely deterministic, and can often be very sensitive to the dif-
ferent round-off and truncation errors that result from the use of
different compilers and computer architectures. Here, we found
that results remained nearly the same.

In our simulations of the other experiment, which used the
2.85 mm projectile moving at 56 m/s, we found that using the val-
ues of 0.144, 0.2, and 0.2 for ls, lr, and lt, respectively, coupled
with a specific impact point best replicated the impact. Fig. 8
shows the mass histogram of fragments from the simulation im-
posed on top of the corresponding mass histogram from the
experiment.
Fig. 8. Cumulative mass distribution of fragments from the 2.85 mm-diameter,
56 m/s projectile impact experiment (red line/small dashes) and best-fitting
simulation (yellow line/large circles). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
5. Conclusions and perspectives

In this paper, we investigated the ability of our implementation
of cohesion and SSDEM in the numerical N-body code pkdgrav to
reproduce low-speed impact experiments on targets composed of
90 large glass beads sintered together carried out at the Kobe Uni-
versity in Japan (Machii and Nakamura, 2011).

First, we numerically reproduced the targets that were used in
the experiments, and checked that they had similar properties, the
tensile strength in particular. To do this, we performed a simulated
Brazilian disk test, on the numerical targets. This test consists of
placing the target between two converging horizontal plates and
measuring the stress at which the target breaks. The tensile
strength of the numerical target measured in simulation was com-
mensurate with the tensile strengths of similar targets measured
in the lab.

Then, we performed suites of simulations to represent two dif-
ferent impact experiments by sweeping the parameter space
around reasonable values. We developed a quantitative argument
for why some simulations match the experiments better than oth-
ers and found that the outcome is sensitive to the exact location of
the impact point on the target, as was observed in the experiments.
For each experiment, we compared qualitatively the outcomes of
the simulations by overlaying the histogram of a given simulation
to that of the experiment and measuring the area between the two;
we found reasonable matches for many simulations. Because of the
difficulty involved in measuring the velocity distributions of frag-
ments from the images, the fragment-size distribution is really
the best measure of the simulation fidelity to the experiments.
We also confirmed, by visually rendering the simulations, the sim-
ilarity in the fragmentation process and the realistic motion of the
ejecta fragments. We compared the simulations to snapshots of
the fragmentation process at different instances and assessed that
the degree of spreading of the fragments in space was essentially
the same in experiment and simulation. By selecting for similarity
in the histograms and a careful visual inspection of the post-impact
evolution of the fragments, we feel confident that we have pro-
duced multiple good simulations of both impact experiments,
and that the outcome is strongly influenced by the precise point
of impact.

We thus performed a satisfying validation test of our imple-
mentation of cohesion and SSDEM for these kinds of processes.
The understanding of impacts on cohesive targets that do not in-
volve the fragmentation of individual components can be impor-
tant in the context of planetary formation. This is especially the
case in the phase when collisional speeds are low and small parti-
cles aggregate. In future studies, we plan to investigate this process
in more detail by covering a wider range of parameter space (e.g.,
cohesion, friction coefficients, etc.), and using targets of various
shapes and/or composed of spheres of different sizes and investi-
gating the effect of initial target rotation. We will also apply our
numerical method to the process of YORP spin-up on asteroids
modeled as cohesive aggregates using as a basis the work per-
formed with pkdgrav’s HSDEM collision routine by Walsh et al.
(2008, 2012) for purely gravitational aggregates.
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