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Abstract:

We describe the design and implementation of the pkdgrav (gravity) and
gasoline (gravity plus hydrodynamics) astrophysical N-body codes. We present
a diverse spectrum of applications using these codes, from cosmological N-body
simulations including gas physics, to solar system formation and granular dy-
namics simulations. Keywords: Parallel Algorithms, Gravity, N-Body, Hydro-
dynamics, Smoothed Particle Hydrodynamics, Cosmology, Planet Formation

1.1 INTRODUCTION

Historically the N-body problem in astrophysics dealt with the evolution of the
Solar System under the influence of gravity. Over the last several decades most
of the attention and computing resources in astrophysics has been focused on
cosmological N-body simulations with larger and larger numbers of particles.
These are indeed some of the largest simulations to be performed in all of
computational science. However, modern questions about the stability and
dynamical chaos of the Solar System require simulations using many billions
of timesteps and sophisticated integration techniques, making this old problem
a present day computational challenge as well. Between this big and small N
there is a diverse range of astrophysical problems open to N-body simulations,
particularly when gas and collisional physics are incorporated into simulation
codes. We show this range in Figure 1.1, where T is the number of timesteps
that a present day “state-of-the-art” simulation would take.



Hydro Collisions

10° N 10* 10° 10

PHY SICS .
< Gravity

10° 10° 10® 10

Nearly Integrable>
Z 10" 10

(0]

10° 10° 10° 106 T 108 10°°  10%? 10

- »-
Galaxy Granular Media Solar System
Large Scale % i
g SLructure F. ormatgn Solar System Formation »Stab' ity

Figure 1.1 The spectrum of astrophysical N-body simulations, showing increasing number
of particles, N, and decreasing number of timesteps, T'. The product of N and T is
roughly proportional to computational work, the combined scales corresponding to present
day “state-of-the-art” simulations. Shown are the various ranges of physics that addressed
by PKDGRAV/GASOLINE. Nearly Integrable: systems where some form of perturbation
theory can be used in the calculation, such as protoplanets orbiting the Sun. Collisions:
systems where collisions between bodies are most relevant to the creation or evolution of
structure. ‘Hydro: systems where gas physics (along with gravity) is used, mainly to address
the problem of galaxy formation. Gravity: systems where gravity alone dictates structure.
On the bottom of the figure the ranges for some of the scientific questions addressed by our
code are shown.

Parallel computers have been very effective in this field despite the difficulties
presented by the non-uniform, spatially and temporally adaptive data struc-
tures required in handling this wide range of applications. A very small set of
generic N-body algorithms are sufficient, reducing the complexity and simpli-
fying the addition of new physical effects. Our code, PKDGRAV (GASOLINE
being the name of its gas physics extension), is used for all of these applications,
all relying on the same generic data structure and algorithmic core.

This paper is organized as follows. The next section discusses design issues
for PKDGRAYV which are generally relevant to all applications, first looking at
serial processing design issues and following with parallel computing considera-
tions. The next three sections deal with specifics for three different application
of PKDGRAV. In Section 3 we discuss Cosmological N-body simulations. In
Section 4 we focus on simulations including gas physics via Smoothed Particle
Hydrodynamics (SPH). Finally, Section 5 discusses the addition of collisional
physics to the code and the new problems that can be addressed by this.

1.2 DESIGN STRATEGY

Central to the design of PKDGRAV was code portability. PKDGRAYV is writ-
ten in C allowing the code to be compiled for any architecture. No calls are
made in the code to any particular parallel message passing or shared memory
library, instead calls are made to small library that was designed to hide the
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architecture, providing higher level primitives needed by the code. This layer of
abstraction has allowed PKDGRAV to run efficiently on both distributed and
shared memory parallel computers and simplified the migration to new archi-
tectures. Some aspects of this MDL library are discussed in more detail below.
Modular design was another principle goal. This has allowed new authors to
add to and modify PKDGRAYV with relative ease. Along with the use of CVS,
parallel development of the code has been very successful and is evidenced by
the fact that each of the authors of this paper (along with Thomas Quinn) have
been significant developers of PKDGRAV.

Improvements in the performance and quality of N-Body simulations has
been sought in four general areas: 1) faster calculation of forces; 2) multistep-
ping, which is the reduction in number of time steps taken by particles in regions
of the simulation where longer dynamical times are expected; 3) volume renor-
malization, where regions of interest are identified and populated with a greater
density of particles than the surrounding volume (Katz et al. 94); 4) the use of
parallel and vector supercomputing techniques. The need for rapid calculation
of the gravitational accelerations has led to two basic approaches. The first uses
grid techniques, relying mainly on the speed of FFT algorithms for the calcu-
lation of the gravitational field. This class includes the PM, P3M (Hockney &
Eastwood 88) and AP3M (Couchman 92) algorithms. PKDGRAV falls into the
second class known as tree codes (Barnes 86; Barnes & Hut 86; Greengard &
Gropp 87; Greengard 88), which use multipole expansions within a hierarchical
description of the mass distribution (a tree structure). Tree codes allow the
mutual gravitational forces on N bodies to be calculated in O(NlogN) time
instead of the naive O(N?).

1.2.1 The Tree

Unlike the more traditional oct-tree, the central data structure used by PKD-
GRAYV is a spatial binary tree. This binary tree forms a hierarchical representa-
tion of the mass distribution, of which the root node or cell encloses the entire
simulation volume. The tree is built in a manner very similar to the quick-sort
algorithm, always recursively bisecting the longest axis of each cell, starting
with the rectangular root cell until 8 particles or fewer remain in a cell. Allow-
ing a maximum of 8 particles at the leaf-cells (or buckets) reduces the storage
required by the tree and provides near optimum amortization in the gravity
calculation. Once the tree has been built we do a bottom-up pass starting from
the buckets and proceeding to the root, calculating the center of mass and the
multipole moments of each cell from the center of mass and moments of each
of its two sub-cells. This build phase requires at most about 5% of the gravity
calculation time.

1.2.2 Calculating Gravity

PKDGRAYV calculates the gravitational accelerations using the well known tree-
walking procedure of the Barnes-Hut algorithm (Barnes & Hut 86), except that
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Figure 1.2 Opening radius for a cell in the tree, intersecting bucket By and not bucket
Bs. This cell is “opened” when walking the tree for B;. When walking the tree for B,
the cell will be added to the particle-cell interaction list of Bs.

it collects interactions for entire buckets rather than single particles. Thus, it
amortizes the cost of tree traversal for a bucket, over all its particles.

In the tree building phase, PKDGRAV assigns to each cell of the tree an
opening radius about its center-of-mass. This is defined as,

2Bma,x
Topen = \/5 9

(1.1)

where Bpax is the maximum distance from a particle in the cell to the center-
of-mass of the cell. 8 is a user specified accuracy parameter which is similar to
the traditional 8 parameter of the Barnes-Hut code; notice that decreasing 6
in Equation 1.1, increases ropen-

The opening radii are used in the Walk phase of the algorithm as follows:
for each bucket B;, PKDGRAV starts descending the tree, “opening” those
cells whose ropen intersect with B; (see Figure 1.2). If a cell is “opened,”
then PKDGRAV repeats the intersection-test with B; for the cell’s children.
Otherwise, the cell is added to the particle-cell interaction list of B;. When
PKDGRAV reaches the leaves of the tree and a bucket B; is opened, all of
Bj’s particles are added to the particle-particle interaction list of B;. Once
the tree has been traversed in this manner we can calculate the gravitational
acceleration for each particle of B; by evaluating the interactions specified in
the two lists. PKDGRAV uses a 4th-order multipole expansion to calculate
particle-cell interactions increasing the accuracy of the forces and improving
floating point performance.

One disadvantage of tree codes is that they must deal with periodic boundary
conditions explicitly, unlike grid codes where this aspect is taken care of im-
plicitly. Although this adds complexity to any tree code, it is possible to incor-
porate periodic boundary conditions efficiently by using a 4th-order multipole
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approximation to the Fwald summation technique (Hernquist et al. 91; Ding
et al. 92).

1.2.3 Multistepping

As the number of particles in an N-body simulation grows, so do the density
contrasts. Hierarchical methods can follow extremely large dynamic ranges in
densities at modest additional cost per force evaluation. However, large ranges
in densities also imply a large range in time scales (x 1/y/density). If we take
the final state of a simulation and weight the computational work done on
particles not uniformly but inversely with their natural timesteps, we find a
potential gain of ~ 50. Temporal adaptivity is one of the last algorithmic areas
where we can target an order of magnitude improvement. PKDGRAV uses an
adaptive leapfrog integrator (Quinn, et.al. 1997), a method where particles are
on adjustable individual timesteps.

The performance gains achievable by using a particular adaptive timestep-
ping scheme are limited by the “fixed costs” required for any level of the
timestep hierarchy. For example, a tree code requires that the tree is built
for all the particles regardless of the number of particles requiring force eval-
uations. Indeed, for a standard particle mesh code, the forces at every grid
point are either calculated or not. The only part of the force evaluation that
is not part of the fixed cost would be the trivial interpolation of the force onto
particles. In this case, essentially all the costs are fixed and no real gain is pos-
sible. In addition to these fixed costs, the method of determining the timestep
level assigned to each particle can incur a significant cost and must also be
accounted for. Finally, inefficiency in calculating forces for a few particles on
modern pipelined, vector or parallel processors, can add an extra “hidden” cost
to any adaptive timestepping scheme. The amortization gains of having sev-
eral particles per bucket are lost if only one of them needs its force calculated.
However, despite these limitations the multistepping speedups for gravity sim-
ulations are typically a factor of 4 or more. With future efforts focused on
reducing or eliminating these fixed costs speedups closer to the theoretical up-
per limits should be realized. Since tree building is currently the dominant fixed
cost limiting PKDGRAYV, the idea of repairing only parts of the tree, instead
of rebuilding it is being investigated.

1.2.4 Neighbour Search

Our calculations always treat of sets of particles with physical properties such
as position, velocity, mass assigned to them. Neighbour searching is not only
useful for analysis but is used during runtime for most applications of our code.
Particularly it is used to perform smoothing operations: to get local smoothed
estimates of physical quantities such as density and to find potential collid-
ers in solar system scale simulations. Local smoothed estimates are the basis
of Smoothed Particle Hydrodynamics (SPH) and density is a useful timestep
estimator for Gravity only simulations.



Fundamentally this is a k-Nearest Neighbour problem. For the applications
discussed below k is normally in the range 6-64. From physical considerations
of momentum and energy conservation we prefer symmetrized interactions so
that all particles are mutual neighbours: a given particle pair undergoes an
exchange type interaction if either is a k-nearest neighbour of the other. For a
single particle this can be thought of as a two part process, a gather operation
from its k-Nearest Neighbours and a scatter operation from particles for which
it is a k-nearest neighbour.

A general smoothed estimate for some quantity f at particles ¢ given particles
J at positions 7; takes the form:

fismOOthed — ijAijWij(ﬁ — 7, hiy hy), (1.2)

=1

where W is symmetric kernel function with compact support, h; is a length
indicative of the range of interaction of particle j and A;; is symmetrized nor-
malizing term (see section 1.4 for a specific example). A symmetric W may be
achieved by assuming W = 1/2W(|7; — 7;|/h;) + 1/2W (|7 — 7;|/h;). Other
methods for symmetrizing W require similar neighbour finding solutions. The
first and second contributions in W may be obtained independently via gather
and scatter operations to particle i respectively.

When all the particles are considered at once a single round of gather oper-
ations accumulates the symmetrized interactions however a small active subset
is more efficiently treated if only inactive particles with active k-nearest neigh-
bours are tested: the k-Inverse Nearest Neighbour problem. Active in this
context means requiring an update to dynamical quantities such as tempera-
ture or velocities based on interactions with other particles. For symmetrized
interactions an active particle always gathers and scatters whereas an inactive
one may scatter or contribute nothing. For practical simulations active subsets
of particles are chosen by timestep. The number of particles in the active sub-
sets range from a few particles out of millions to the nearly the entire set and
they are usually spatially clumped.

Grids and linked lists have been used to locate neighbours however current
applications with large spatial dynamic ranges benefit more from the use of
tree structures. We employ a binary tree structure built by splitting the largest
spatial dimension of the remaining particles bounding box recursively. The leaf
nodes or buckets contain no more than npycket particles. Setting npycket = 8
limits the tree size and is efficient when searching for of order 32 neighbours.

To find the k-nearest neighbour list for particle ¢ we open the bucket that
contains particle ¢ and continue from it up the tree until the particles accu-
mulated fill a priority queue of length k built using the distance |7; — 7| from
the particle . The tree is walked to find and open all buckets that intersect a
ball with radius equal to the largest distance in the queue and the contained
particles distances compared to the first element in the queue (with the largest
distance) and the closest retained. When the walk is complete the queued
particles are the k-nearest neighbours. When one of the other particles in the
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queue needs to find its neighbours it can rebuild the queue to use as an effi-
cient starting guess. The ball radius fgay of the kth-nearest neighbour for each
particle is stored so the operation may be repeated efficiently (in half the cpu
time) with a simple tree walk, ball gather as long as the particle distribution
is unchanged.

When accumulating symmetrized interactions for active subsets of the par-
ticles we need to accumulate scattering interactions efficiently. Physical sim-
ulations are constrained to evolve at a stable pace and thus relative particle
positions change slowly. To find the k-inverse nearest neighbours we solve the
nearest neighbour problem once at the start and estimate an upper bound on
the new ball radius for each particle (1 + €) fgan with € ~ 0.1 estimated from
particle motions. For each node in the tree we calculate the bounding box of
the particles contained treated as spheres with radius (1 + €) fgan. If a given
particle intersects this bounding box it may be an inverse nearest neighbour
of one of the particles contained in that node. We can thus walk the tree to
accumulate scatter interactions. For typical distributions encountered in cos-
mological applications a full gather operation on all particles is comparably
efficient if more than 10-20% of the particles are active. Perfect inverse nearest
neighbour finding without testing all particles has been investigated (Tjaden
& Anderson 00) however in 3 dimensions in excess of 20 k candidate inverse
neighbours must be tested.

Current development aims to reduce the cpu costs of neighbour finding by
accumulating prospective neighbours for entire nodes at once in a similar man-
ner to the gravity tree walking.

Promising techniques for out Neighbour finding applications include com-
putational geometric methods such as the Delaunay tetrahedralization of the
points and walking the tetrahedra for neighbours. Part of the appeal of this
technique is the prospect of efficient repair the the Delaunay tetrahedra using
increment methods that scale as the number of actively moving particles (Joe
89).

1.2.5 Parallel Design

Achieving effective parallelism requires that work be divided equally amongst
the processors in a way which minimizes interprocessor communication during
the gravity calculation. Since we only need a crude representation for distant
mass, the concept of data locality translates directly into spatial locality within
the simulation. Each particle can be assigned a work-factor, proportional to the
cost of calculating its gravitational acceleration in the prior time-step. There-
fore, during domain decomposition, we divide the particles into spatially local
regions of approximately equal work.

Experience has shown that using a data structure for the domain decompo-
sition that does not coincide with the hierarchical tree for gravity calculation,
leads to poor memory scaling with number of processors and/or tedious book-
keeping. That is the case, for instance, when using an Orthogonal Recursive
Bisection (ORB) tree for domain decomposition and an oct-tree for gravity.
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Current domain decomposition techniques for the oct-tree case involve forming
“costzones,” that is, processor domains out of localized sets of oct-tree cells
(Singh 93), or “hashed oct-trees” (Warren & Salmon 95). PKDGRAV uses the
ORB tree structure to represent the domain decomposition of the simulation
volume. The ORB structure is completely compatible with the binary tree
structure used for the gravity calculation. A root finder is used to recursively
subdivide the simulation volume so that the sums of the work-factors in each
processor domain are equal. Once this has been done, each processor builds a
local tree from the particles within its domain. This entire domain decomposi-
tion and tree building process are fully parallelizable and incur negligible cost
to the overall gravity calculation.

A small library of high level functions called MDL (Machine Dependent
Layer) handles all parallel aspects of the code. This keeps the main grav-
ity code architecture-independent and simplifies porting. For example, MDL
provides a memory swapping primitive to move particles between processors
during domain decomposition. Furthermore, MDL provides memory sharing
primitives allowing local arrays of data to be visible to all processors. These
primitives support access to non-local cells and particles during the Walk phase.
In particular, a procedure called md1Aquire can be used to request and receive
non-local data by providing an index into a non-local array, and an identifier for
the processor that owns that array. On distributed memory systems MDL uses
a software cache of recently accessed data greatly reducing network traffic. All
the message passing complexity to maintain this cache is hidden from the main
code. Some architectures allow highly optimized implementations of this mem-
ory sharing primitive, particularly those supporting one-sided communications
such as the Cray-T3E.

1.3 GRAVITY AND APPLICATIONS

The isotropy of the microwave background radiation tells us that the early uni-
verse was exceptionally smooth, with density fluctuations smaller than 10~2 to
102 times the average density of the universe. However, the density within
galaxies and clusters of galaxies today is on the order of 10° and 102 — 10°
times the average density of the universe respectively. Moreover, the galaxies
have arranged themselves into very large coherent structures, the conspicuous
walls and voids seen in redshift surveys. This raises the question of how the
universe got from its early smooth state, to the present day wealth of struc-
ture we observe. It is now clear that gravitational instability causes the small
“seed” fluctuations in the early universe to collapse, forming ever larger den-
sity contrasts. The statistics of the resulting structures are very sensitive to
the power spectrum of the initial fluctuations, to the average density in the
universe, and to the nature of the, as yet unknown, dark matter which is the
dominant component of matter in the universe. It is because of this that the
study of large scale structure formation is a cornerstone of modern cosmology.

The approach taken is to evolve an initial power spectrum of fluctuations
under the influence of gravitational interactions to a present day distribution
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of matter, and then comparing this to the present day distribution of galaxies
and clusters of galaxies. In this way it is possible to constrain the initial power
spectrum of fluctuations and the cosmological model under which they grow.
However, this comparison is difficult, since observations do not provide com-
plete information on the distribution of galaxies and the fact that galaxies are
not perfect tracers of the underlying mass distribution.

Furthermore, the fluctuations on smaller scales quickly grow to the point
where there is significant nonlinear evolution and nonlinear coupling between
different scales. This limits the usefulness of a purely analytical description of
structure formation and large numerical simulations have become the principle
theoretical tool in this field. These simulations are among the most expensive
in all of science because they must follow the evolution of a fully self gravitating
system which forms density contrasts with a dynamic range of over 6 orders of
magnitude. The use of parallel supercomputers has vastly expanded the scope
of investigations and the level of realism achievable with numerical simulations
in the study of structure formation.

1.4 HYDRODYNAMICS AND APPLICATIONS

1.4.1 Eulerian versus Lagrangian Methods in Cosmology

Current cosmological models favour the existence of a dark collisionless com-
ponent that is most of the mass and thus controls structure formation via its
gravity. Gas is dynamically dominant only in highly dissipative regimes such
as the star forming regions of galaxies.

Basic Eulerian cosmological simulations use a grid with fixed comoving reso-
lution for the gas phase and rely upon particles to efficiently model the complex
phase space of the collisionless dark matter with a particle-mesh scheme for the
gravity. The mesh is essential to include gridded gas self-gravity consistently.
This means that the dark matter spatial resolution is never better than 2 grid
cells (Hockney & Eastwood 88) and thus the gravitational potentials are deter-
mined with constant mass resolution and poor spatial resolution compared to
tree methods. Adaptive refinement for dark matter is not possible because the
smallest scales are most non-linear and thus new small scale waves can only be
correctly introduced in the initial linear regime.

For hydrodynamics leading Eulerian methods require less computation per
resolution element (eg. 2 Cells to resolve a shock with PPM (Woodward
& Collela 84)) than Lagrangian particle methods such as SPH (however see
figl.4.2). Langrangian means following the fluid flow at fixed mass resolution
and thus highly collapsed objects of interest such as galaxies are resolved ex-
plicitly. Adaptive Mesh Refinement (AMR) can overcome this shortcoming of
fixed grid schemes but will be limited by the mass resolution in the dark matter
component. AMR requires padding zones around each refined stage however
the hierachical nature of current cosmological models leads to fractal type so-
lutions and thus the filling factor of dense fine structure plus padding tends
to approach unity making the computation very expensive. In restricted cases
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Figure 1.3 SPH Adiabatically collapsing sphere of gas approaching the self-similar solu-
tion. The diamonds indicate the one dimensional equivalent particle spacing and the solid
lines are a very high resolution PPM solution. The left panel a good standard solution. The
right panel has the SPH artificial velocity suppressed.

such as first stars and turbulence in galaxy cluster gas AMR has impressively
resolved gas features(Bryan & Norman 97).

Thus a simple Lagrangian method such as SPH is still particularly useful in
cosmology being well matched to the high resolution gravity methods and the
nature of the problem.

1.4.2 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is an approach to hydrodynamical
modelling first developed by (Lucy 77; Gingold & Monaghan 77). It is a par-
ticle method that does not refer to grids for the calculation of hydrodynamical
quantities: all forces and fluid properties are found on moving particles elimi-
nating diffusive advective terms. The use of SPH for cosmological simulations
required the development of variable smoothing to handle huge dynamic ranges
(Hernquist & Katz 89; Couchman 91).

The basis of the SPH method is the representation and evolution of smoothly
varying quantities whose value is only known at disordered discrete points in
space. Estimates of density related physical quantities and gradients are gen-
erated using a kernel weighting function W. This characteristic led to SPH
being described as a Monte Carlo type method (with O(1/v/N errors) how-
ever it has been shown(Monaghan 85) that the method is more closely related
to interpolation theory with errors O((InN)¢/N), where d is the number of
dimensions.

We employ a fairly standard implementation of the the hydrodynamic equa-
tions of motion for SPH(Monaghan 92). Density is calculated from a sum over
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particle masses mj,
n
j=1

The momentum equation is expressed,

du; n P, P;
== = _ E m; —; + —; +Hij V,‘Wij, (1.4)
dt j=1 @ Pj

where P; is pressure, ¥; velocity and the artificial viscosity term II;; is given
by,

—ag(cite;)mij+Bu3; 2o

Iy, = oot pd) for v;; - 75 <0, (1.5)
otherwise,
W(Tis - s

where p;; = (U” T”) (1.6)

72+ 0.0025(h; + hy)?’

where 7 = 7 — 7, ¥;; = U; —¥; and c¢; is the sound speed. o =1 and 3 = 2 are
coefficients we use for the terms representing bulk and Von Neumann-Richtmyer
(high Mach number) viscosities respectively. We use a multiplicative switch
(Balsara 95) %
environments.

To integrate the fluid equations we need to perform three smoothing oper-
ations where each subsequent smooth involves previous smoothed estimates.
Firstly we accumulate density p, secondly the divergence | V - ¢ | and curl
| V x ¥ | and finalley the pressure terms. Self-gravitating calculations also
require a gravity calculation. Cpu costs for a typical calculation are spent
mainly (90 %) on gravity however when treating small subsets due to multiple
timesteps tree building and inverse neighbour finding become comparable.

In figure 1.4.2 we show results from a rigorous test of the code, the collapse
under gravity of a spherical gas mass in three dimensions. The initial conditons
for this calculation were a relaxed glass rather than a grid designed to be similar
to a practical simulation. SPH manages to resolved the strong shock very well.
The low level pre-shock entropy generation is a key concern for SPH in the
cosmological context and an area of current work.

to suppress the viscosity in non-shocking, shearing

1.4.3 Galaxy Cluster Application

Cluster of galaxies are enormous systems (~ 10'* solar masses) that appear
to be undergoing gravitational collapse at the present time. They contain
huge masses of gas and their gravitational potential is sufficiently deep that
infalling gas is shock heated to temperatures in excess of 10 million degrees.
At these temperatures copius X-rays are emitted which we can detect with
satellites. The process of gas infall and heating is complicated by the huge
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Figure 1.4 The gas entropy (light colours indicating lower entropy) and the dark matter
density distribution in a inner 26 million light year box centred on a 4 x 10* solar mass
galaxy cluster. Note the turbulent gas structure and low entropy of lumps.

amount of substructure in these systems including 1000’s of galaxies. Clusters
have been the focus of numerical simulations for many years. Being rare objects
their abundance throughout cosmlogical time is a strong function of the overall
cosmology. On a more detailed level we seek to understand and interpret the
X-ray signals and determine whether the temperature, distribution and mass
of gas is consistent with currently favoured models of the universe.

In figure 1.4 we show the interior 26 million light years of 2.3 million particle
cluster simulated to the current epoch. The final state cluster contains 4 x 104
solar masses of gravitating material within the virial (gravitationally relaxed)
radius of 6.5 million light years. The simulation took 2000 major steps with
as many as 256 substeps per major step. An average major step took 2000
seconds on a cluster of 12 450 MHz pentium IIT using LAM MPL A single
substep involving all the particles took 500 seconds. Thus without multiple
timesteps and O(Nyetive) scaling we would have required up to 2 orders of
magnitude more computation.

The cluster is both dynamic and highly turbulent. Gas at the core of the
cluster is densest and dominates the X-ray emission. This gas tends to have a
low entropy value which allows it to remain dense and thus occupy the clus-
ter centre. Increasing gas entropy leads to higher gas temperatures or lower
densities. Entropy is produced in shocks in the late forming cluster and earlier
in collapsing substructure components. We performed our simulations seeking
to track that entropy production. With this resolution it is clear that entropy
is produced early on in filamentary structures and this gas is later loosely dis-
tributed throughout the cluster. Over time the core is disrupted by infalling
lumps which shock the core gas directly however infalling lumps also transport
entropy to the core. The net effect is a gradual rise in the entropy of the core
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which remains at a much lower level than the surrounding cluster gas. Remain-
ing questions include the role of galactic outflows in contributing high entropy
gas to the cluster.

1.5 COLLISIONS AND APPLICATIONS

There are many interesting dynamics problems in which surface contact be-
tween macroscopic particles is of comparable or greater importance than in-
terparticle gravity. Familiar examples range from the formation of planets by
“planetesimal” accretion to the dynamics of sandpiles and other granular media.
Modelling collisions however poses unique challenges because the timescales in-
volved can be tiny compared to the dynamical time of the system.

For many N-body applications (e.g. cosmology, galactic dynamics, etc.) sin-
gle particles represent entire mass systems so their mutual interactions are
“softened” to reduce the unphysical effect of two-body relaxation. But for most
Solar System problems the bodies are fully resolved and therefore scattering
and physical collisions are important. In pkdgrav collisions are predicted by
searching for particle neighbours and extrapolating trajectories to see whether
any two particles come into contact over a given time interval. In the second-
order leapfrog scheme, it is natural to perform the search at the beginning of
the linear “drift” step, when the particle velocities are kept fixed. The time to
collision is then a simple quadratic:

6t:—(2:){1i\/1—[W] v2}, (1.7)

where r and v are the relative position and velocity and R; and R, are the
particle radii (we restrict ourselves to homogenous solid spherical particles).
The sign ambiguity is resolved by choosing the smallest positive value of §t.

The fast neighbour-search scheme outlined above is used to generate the list
of particles to check. In our special case the search boundaries can take into
account the maximum possible drift of the particles to ensure no collisions are
missed.

1.5.1 Planet Formation

The “planetesimal hypothesis” of planet formation (e.g. (Lissauer 93)) states
that planets form via the pairwise accretion of smaller bodies, the planetesimals.
The current thinking is that once km-sized bodies have formed, a runaway
growth stage is entered in which a few protoplanets detach from the mass
distribution. Once the protoplanets deplete material from their immediate
environments they enter the stage of slow long-range mutual perturbations,
eventually colliding with one another until there are only a few planets left.
There are many poorly understood details in this general scheme, and numerical
simulations are increasingly seen as the best way to understand them.

There are many possible outcomes following the collision of two planetes-
imals, e.g. merging, bouncing, cratering, or fragmentation. The outcome de-
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pends primarily on the relative impact energy %mﬂ, where p is the reduced
mass. Often however it is assumed the particles simply merge on contact to
form a new spherical body of the same density if the encounter speed is less
than the mutual escape speed (and the spin of the combined mass is not un-
realistically high owing to a grazing encounter). Otherwise the planetesimals
bounce off with some prescribed dissipation (see (Richardson 94) for the general
collision equations, including spin terms).

This was the procedure adopted for the N = 108 planetesimal run illustrated
in Fig. 1.5. In this model the planetesimals were placed in orbits ranging from
just outside the present-day location of Venus to a point near the middle of the
present-day asteroid belt, with a surface density distribution that decreases
with distance. An already-formed Jupiter was added to perturb the disk and
determine whether growth is suppressed in the asteroid belt (it is too early to
tell yet with this model). The run took approximately 200 wallclock hours to
complete 1000 yr of integration (in fixed 0.01-yr timesteps) using a 300-MHz
Cray T3E with 128 dedicated processors. This calculation represents the largest
direct simulation of planetesimal evolution performed to date ((Richardson et
al. 00)).

The computational challenge of simulating planet formation, at least in the
inner Solar System, is not so much dealing with the collisions themselves (since
most encounters lead to immediate mergers under the present idealized model)
but the fact that it may take millions of dynamical times for a population of
km-sized planetesimals to assemble into a handful of terrestrial planets. To be
assured of adequately sampling all close encounters or collisions the timesteps
need to be fractions of the dynamical time in some cases. This is where a
stable adaptive multistepping method becomes crucial to make such simulations
viable. We are currently experimenting with various algorithms that exploit
the fact that most planetesimals make many orbits on only mildly perturbed
elliptical paths before encountering a neighbour.

1.5.2 Rubble Piles

The simplifying assumptions regarding collision outcome during planet forma-
tion were made because so little is known about what really happens when
two asteroid-sized bodies collide. Moreover, there is increasing evidence that
km- to 100-km-sized bodies in the Solar System today are actually flying piles
of rubble held together only by gravity (the evidence includes the spectacular
breakup of Comet D/Shoemaker-Levy 9 at Jupiter, the remarkably low den-
sity of Asteroid 253 Mathilde, and the presence of doublet craters and crater
chains in the inner Solar System; Cf. (Asphaug & Benz 94; Yeomans et al.
97; Richardson al. 98)). Simulations of colliding rubble piles may give insight
into the formation and evolution of small bodies in the Solar System.

Figure 1.6 shows snapshots of a collision between two km-sized rubble piles
simulated using pkdgrav. This example leads to a spherical remnant that
is larger than either progenitor, yielding net growth. As the impact speed
or impact angle is increased, however, the mass fraction retained is reduced,
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Figure 1.5 Mass density of a 10%-planetesimal simulation after 250 yr. Bright shades
represent regions of high density. The dot near the top is Jupiter. The gaps and spiral
structures in the disk are associated with Jupiter mean-motion resonances.
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Figure 1.6 Snapshots of a low-speed collision between two km-sized rubble piles.

eventually leading to net erosion. In fact, for these simple models we find
that only 35% of the time would two equal-size rubble piles on random impact
trajectories grow in size ((Leinhardt et al. 00)). This apparent fragility may
hamper planet growth in the early stage. We also find a variety of interesting
remnant shapes, including pinwheels and dumbbells, reminiscent of some of the
more exotic asteroids we see today, and some remnants with sizeable orbiting
companions (a few percent of the total mass).

Rubble piles pose a different kind of computational challenge from planet
formation since no mergers are allowed. This means that particles may be in
close contact for a long time, resulting in millions of collision computations in
typical runs of only a few thousand particles. Since the number of collisions
per unit time increases geometrically with the number of particles, it rapidly
becomes infeasible to model large (N > 10°) rubble piles. Hence we gener-
ally restrict ourselves to N < 10%. However, given the large parameter space
of impact speed, impact angle, spin, etc. to explore, this problem is ideally
suited to running on a Beowulf platform using a High-Throughput Computing
environment such as that provided by condor.

1.5.3 Planetary Rings

Dense planetary rings can harbour special kinds of rubble-pile structures whim-
sically termed “dynamic ephemeral bodies,” or DEBs ((Davis et al. 84)). Gen-
erally speaking planetary rings are located inside the Roche zone of the host
planet, that is, the point at which a rubble pile would be torn apart by tidal
forces. But if the density of particles is high enough, as it is in the bright
A and B rings of Saturn, transient aggregates and “gravitational wakes” may
form ((Salo 92; Richardson 94)). These structures can give rise to measurable
brightness asymmetries in the rings, depending on the viewing angle, and may
be directly observable when the Cassini spacecraft encounters Saturn in 2004.
Figure 1.7 shows a patch of Saturn’s A ring modelled using pkdgrav. The
calculation is carried out in a rotating frame using periodic (shearing!) bound-
ary conditions since a direct model of the entire ring is still beyond reach. This
is nevertheless by far the largest direct ring simulation performed to date, with
N ~ 220,000 particles(Porco et al. 99). Large N is necessary in order to ad-
equately sample the steep particle size distribution while including at least 10
instability wavelengths in the azimuthal direction (typical particle sizes are 10
cm—5 m while the instability wavelengths are on the order of 50-100 m).
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Figure 1.7 A patch of Saturn’s A ring (light particles) after 10 orbits. Boundary conditions
are provided by the surrounding replica “ghost patches” (dark particles). Wake formation
on a scale of about 100 m is easily seen in this simulation, which was performed on the

ARSC Cray T3E.
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Figure 1.8 Snapshots of a 2D system of about 2,000 particles falling in a uniform gravity
field onto a platform with a small opening.

Although the individual rubble pile structures that form can slow down the
code considerably for the reasons alluded to earlier, their ephemeral nature
makes this a relatively easier calculation. However, supercomputing resources
are still required due to the large N.

1.5.4 Sandpiles

At the smallest size scales where gravitational and mechanical forces still dom-
inate over electrostatic forces, we have so-called “sandpiles.” The physics of
such granular media are poorly understood, which presents an ideal opportu-
nity for direct simulations. Moreover, the simulations can be compared against
laboratory experiments, unlike the examples discussed earlier. This provides a
means of testing the numerical code to see if, for example, we can reproduce the
typical ~ 25-35° slope angles of granular piles. We can also investigate mass
segregation and packing efficiency (Cf. (Shinbrot & Muzzio 00) for a recent
review of outstanding issues in granular dynamics).

These issues require special considerations, such as implementations of slid-
ing friction, models of walls and other obstacles, and a means of avoiding “in-
elastic collapse.” Inelastic collapse is a mathematical artifact stemming from
the simplistic way dissipation is handled in most granular dynamics simulations
(i-e. using a scalar coefficient of restitution) and that generally resting contact
forces are not modelled. It can be shown that in systems involving a large num-
ber of repetitive collisions it is possible for the collision rate to spike to infinity
(e.g. (McNamara & Young 94)). Under these circumstances the code either
hangs or roundoff error causes particles to interpenetrate. One way of avoiding
collapse is to turn off dissipation once the relative collision speed drops below
a certain threshold set by the user. Hence the pile effectively has a minimum
“temperature.” This technique is used for self-gravitating rubble piles as well.

Figure 1.8 shows snapshots from a 2D simulation of a collection of particles
falling onto a flat surface with a small opening;. Note the propagation of the
granular shock wave following the initial contact. The final slopes are of order
20° for this monodispersive model with surface friction and perfectly round
spheres. We are also experimenting with particle mixing in rotating cylinders
which we plan to compare with laboratory experiments.
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