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RUBBLE-PILE RESHAPING REPRODUCES OVERALL ASTEROID SHAPES
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ABSTRACT

There have been attempts in the past to fit the observed bulk shapes (axial ratios) of asteroids to theoretical equilib-
rium figures for fluids, but these attempts have not been successful in many cases, evidently because asteroids are
not fluid bodies. So far, however, the observed distribution of asteroid macroscopic shapes has never been attributed
to a common cause. Here, we show that a general mechanism exists, capable of producing the observed shape
distribution. We base our approach on the idea that aggregates of coherent blocks held together mostly by gravity
(gravitational aggregates) can change their shape under the action of external factors, such as minor collisions, that
break the interlocking of the constituent blocks, thus allowing them to asymptotically evolve toward fluid equilib-
rium. We show by numerical simulations that this behavior can produce a shape distribution compatible with the
observations. Our results are shown to be consistent with a simple interpretation based on the topology of the poten-
tial energy field for rotating bodies. Also, they suggest that most asteroids have an internal structure that is at least
partially fragmented, consistent with constraints derived from large asteroids (diameters >100 km) with satellites.

Key words: methods: N-body simulations – minor planets, asteroids – planets and satellites: formation –
gravitation

1. INTRODUCTION

The theory of self-gravitating bodies at fluid equilibrium
(Chandrasekhar 1969) predicts the existence of stable and
continuous shape sequences for oblate spheroids (Maclaurin
sequence) and triaxial ellipsoids (Jacobi sequence). Even though
theoretical equilibrium figures remain a useful reference to
approximate the most stable configurations (Farinella et al.
1981), in principle they cannot be applied to non-fluid bodies
such as the asteroids. This is confirmed by an analysis of
the distribution of asteroid shapes (approximated as ellipsoids;
Figure 1) in the publicly available data set derived from
photometric-based determinations of asteroid poles and overall
shapes maintained at the Poznan observatory (Kryszczynska
et al. 2007). It is evident that the distribution of observed
shapes does not follow the theoretical trend corresponding to
the equilibrium sequences for fluids.

However, according to numerical simulations of the overall
process of collisional evolution (Michel et al. 2001; Davis et al.
2002), a significant fraction of the observed asteroids is expected
to consist of fragmented bodies held together by gravity only
(“rubble piles,” or cohesionless gravitational aggregates). The
typical size of the largest fragments may be around a few
hundred meters.

Hard contacts among constituent blocks of different sizes may
prevent the overall shape of a rubble-pile asteroid to come to
fluid equilibrium. Estimates of shape and density have been used
to compare asteroid properties with models that parameterize
the effects of internal friction in terms of a “friction angle” or
“angle of repose,” namely, the maximum slope that a granular

7 Also at: INAF Osservatorio Astronomico di Torino, Pino Torinese, Torino,
Italy.
8 Chercheur invité at IMCCE, Observatoire de Paris, France.

material can sustain, in the frame of the Mohr–Coulomb models
(Holsapple 2001, 2004).

It is unknown whether large bodies (∼100 km or larger in
diameter) are likely to be rubble piles, since this may depend on
increasingly rare shattering/reaccumulating impacts for such
large bodies over the age of the solar system. Nevertheless,
bodies in the 100 km diameter size range could still change
their shape due to heavy cratering, bulk motion of thick debris
covering their cores, or overall material plasticity at these self-
gravitating pressures.

In principle, any object (represented for the sake of simplicity
as a triaxial ellipsoid) can be characterized by four parameters:
the semi-axis ratios b/a and c/a (where a � b � c are the
semi-axis lengths), the normalized spin

〈ω〉 = ω/(πGρ)1/2 (1)

and the normalized angular momentum

〈L〉 = L/(Gm3R)1/2, (2)

where m is the mass of the asteroid, R is its average radius, and
ρ is its bulk density.

Under certain conditions (hydrostatic equilibrium, uniform
rotation, and homogeneity), the above parameters are mutually
dependent, and produce the sequences of equilibrium shapes of
Chandrasekhar.

The comparison of theoretical shapes and observations is
usually conducted in the (c/a, 〈ω〉2) plane. Observed departures
from the theoretical equilibrium sequence can be interpreted
in terms of an estimated friction angle of ∼30◦ for asteroids
(Holsapple 2001; Sharma et al. 2009). This value seems to be
well justified, being close to the one exhibited by rock piles on
the Earth.
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Figure 1. Distribution of known asteroid shapes, approximated by triaxial
ellipsoids (Kryszczynska et al. 2007). Only objects for which both axis ratios
have been determined are plotted. This data set is different from the one used for
comparison to the Mohr–Coulomb theory in Holsapple (2001, 2004), in which
only light-curve amplitude is used to infer b/a. Photometric inversion to obtain
more complex shapes is possible (Kaasalainen et al. 2002, 2004), but the results
can generally be well approximated by ellipsoids (Torppa et al. 2008) and the
distribution remains similar. Objects marked by asterisks in the plot are large
primary bodies (diameters D > 100 km) of high-size-ratio binary systems. Other
symbols are used to distinguish bodies with D < 50 km (diamonds), 50 km <

D < 100 km (thin triangles), and D > 100 km (bold triangles). The curved line
in the plot represents the Jacobi sequence. The Maclaurin sequence coincides
with the b/a = 1 line.

A limit in this kind of studies is due to the fact that, while
the spin period is easily obtained from photometric variations,
the normalization factor in Equation (1) requires estimating the
bulk density of the object. Due to the usually large uncertainties
associated to both size and mass determinations (Hilton 2002)
(or to lack of data), best-guess values for these parameters, based
on plausible mineralogy considerations, have to be assumed.
Also, the polar flattening c/a is not accurately determined for
most objects, introducing further uncertainties (Harris et al.
2009).

In this Letter, we try to explain what we know about asteroid
shapes following an approach based on the assumption that any
fragmented structure could progressively reshape via gradual
rearrangement of the constituent blocks when subject to the
action of gravity tides, non-disruptive impacts, seismic shaking,
etc. Radiative spin-up (the YORP effect) is also capable of
inducing a very efficient reshaping process in small asteroids
(Walsh et al. 2008; Harris et al. 2009) (diameters < 10 km).
We note that, interestingly, YORP should be able to produce
also in several cases a spin-down effect, partly explaining the
existence of slow rotators among small asteroids (Kitazato et al.
2007; Vokrouhlicky et al. 2007). For larger objects, which are
insensitive to YORP, numerical simulations (Korycansky &
Asphaug 2003; Richardson et al. 2005) indicate that asteroids
may move closer to fluid equilibrium while reshaping after a
collisional event.

An analogy can be found with granular piles, even those
with intrinsically high angles of friction, that can be induced to
flatten, by shaking mechanisms (Sánchez & Scheeres 2009). In
other words, granular material, under certain conditions, can be
induced to behave as if it had a low angle of friction, approaching
fluid equilibrium.

Instead of simulating the external factors that induce reshap-
ing, we decided to focus on the behavior of material with a

very low friction angle (5◦–10◦), by simply assuming that those
factors are operating, simulating the evolution of the structures,
and checking afterward if our simulated end states could be
compatible with the observed asteroid properties.

In particular, we create ellipsoidal rubble piles of arbitrary
(b/a, c/a, 〈ω〉 〈L〉) combination, not corresponding to fluid
equilibrium, and we follow their reshaping in isolation as
they attempt to reach a more stable configuration. Details are
provided in Section 2. For measuring the “distance” between an
arbitrary ellipsoidal object and theoretical fluid equilibrium, we
also revisited the classical computations of energy potential for
self-gravitating fluids (Section 3).

We will show that the energy potential for fluid shapes plays
a primary role, strongly influencing the reshaping process.
Our final outcomes are compatible with the observed shape
distribution on asteroids. Implications and result validation
against several numerical issues are discussed in Section 4.

2. NUMERICAL SIMULATIONS

For our simulations, we use the hierarchical N-body code
pkdgrav, which is suitable for this project because of its
capability of managing collisions among hard spherical particles
and to model at the same time the gravitational interactions
between them (Richardson et al. 2005). Our rubble piles are
thus represented by an ensemble of equal-size “smooth” spheres
(no surface friction), held together as a group by mutual gravity
alone and otherwise free to move relative to each other.

We started with a disperse cloud of these particles (with total
L = 0) and allowed it to collapse under its own gravity. Adopting
a restitution coefficient (ratio of rebound to impact speed) for
collisions between spheres of 0.8 (the exact value adopted makes
little difference in the final result, so long as there is some
dissipation), kinetic energy is dissipated and the collapse results
in a compact spherical aggregate, with all particles essentially in
contact. The chaotic nature of this process produces a “natural”
disordered packing (in contrast, ordered packing may introduce
extra artificial resistance to reshaping; see Richardson et al.
2005; Walsh et al. 2008).

By carving out from this collapsed, disordered pile different
ellipsoids composed of ∼1000 particles, we constructed 36
different triaxial rubble piles that sample the axial ratio plane
(b/a, c/a) uniformly (Figure 4). A rigid rotation is then imposed
on each body to obtain a given 〈L〉 value.

The above ellipsoids constitute the initial conditions of our
simulations. Since they are far from fluid equilibrium, they
quickly start to readjust their shape according to their angular
momentum and density. As shown in Figure 4, not unexpectedly
they are found to move toward a more stable (lower potential
energy) state, asymptotically represented by fluid equilibrium.
However, this state is never reached in practice, due to a small—
but not negligible—compression-induced shear strength, and
the evolution stops before the fluid equilibrium is attained. The
global reshaping is rather fast (Figure 2), depending mainly
on asteroid density (a few hours for asteroids of density σ ∼
2000 kg m−3), and the simulations are allowed to continue long
enough to ensure that the evolution is complete.

We analyzed the final states by measuring the shape and
spin properties of the resulting configurations (as detailed
in Richardson et al. 2005). Since we are interested in non-
catastrophic evolutions, we discard cases exhibiting any mass
losses (essentially for 〈L〉 > 0.5). In turn, this choice allows
us to assume that the observed shape changes occur at 〈L〉 ∼
constant, thus simplifying the analysis.
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Figure 2. Time evolution of axis ratios (b/a: solid line; c/a: dashed line) in
one of the simulations with 〈L〉 = 0.3. The pictures of the body (polar views)
correspond (left to right) to the initial conditions (t = 0), t = 1 hr, and t = 2
hr. The timescale of the evolution depends on the bulk density only (around
1250 kg m−3, given the random packing of spheres of 2000 kg m−3). The
simulations are allowed to continue much longer to ensure that no further
changes occur.

The full set of end states from our simulations is shown
in Figure 3. The striking similarity with the observed shape
distribution (Figure 1) is immediately apparent.

Of course, we are aware that some of the real, observed
asteroids might not in fact be rubble piles: it is conceivable that
a fraction of them may be nearly monolithic bodies that never
experienced catastrophic collisions (Bottke et al. 2005). The
fraction of these “survivors” is not yet definitely established,
and tends to be model dependent. Also, we note that a clear
dependency of the distribution of Figure 1 on the object sizes
seems to be absent. Conversely, we can say that our simulations
give a good match to available observational data that, if true,
generally supports the idea that even the largest asteroids could
obey the general shape trend.

3. COMPARISON WITH THEORY AND
INTERPRETATION

In order to understand how global reshaping can produce
our results, we compared the evolution of the shape of each
simulated body to gradients of the theoretical potential energy
field for rotating ellipsoids. We computed several potential
energy maps on the axial ratio plane, each one associated with a
different normalized angular momentum (Figure 4). The result
illustrates the extreme flatness of the potential energy field: the
typical amplitude of variation (in the area populated by observed
objects) is ∼10% at most. The theoretical Maclaurin and Jacobi
minima for ideally fluid bodies are easily recognizable, and
are surrounded by flat areas. A remarkable feature, particularly
relevant for the following, is a valley of relative minimum that
ends at the Maclaurin equilibrium. Originally represented by
the diagonal of the shape plane for 〈L〉 = 0, it bends and
become narrower for larger 〈L〉, in such a way that the Maclaurin
minimum is always at its lowest point (Figure 4). When the
Jacobi solution appears (〈L〉 > 0.3038), it falls at the other end
of the valley.

The evolution of our simulated rubble piles takes place at
constant 〈L〉 (no mass loss) and exhibits the expected tendency
to follow the gradient of the potential field (Figure 4), going
toward lower values.

Figure 3. Set of final, stable points of our simulations, with 〈L〉 = (0.0, 0.1,
0.2, 0.3, 0.4). Each color corresponds to a different value of 〈L〉. Only objects
undergoing uniform principal axis rotation are plotted, i.e., the cases with b < c
(which would lie above the diagonal) have been discarded, since they represent
unstable situations. The solid line represents the Jacobi sequence. Note the
similarity with the populated area shown in Figure 1. Inside this region, some
differences exist that can be due both to the choice of our initial conditions and
to observation bias. For example, slow-rotating bodies exhibiting light curves
of low amplitude (i.e., b/a, c/a > 0.8) are probably underrepresented in the
observed sample. The dashed line is the diagonal defining prolate ellipsoids
with b = c.

A general feature that can be observed (particularly evident
for values of 〈L〉 � 0.2) is the convergence of several evolution
paths toward perfectly prolate shapes (having a > b = c), i.e., on
the diagonal of the axis ratio plane or (for less elongated initial
shapes) toward the valley whose bottom coincides with the
Maclaurin minimum. For values of 〈L〉 immediately below the
appearance of the Jacobi minimum (〈L〉 ∼ 0.3), a corresponding
flat region of the potential (around coordinates [b/a, c/a] =
[0.55, 0.45]) appears and also attracts a subset of the bodies.

As expected, our simulated rubble piles do not behave
like perfect fluids, due to their granular nature and abil-
ity to sustain shear stress, thus determining an end state
that does not coincide, in general, with the fluid equilibrium
points. However, a tendency to populate regions in the vicin-
ity of the equilibrium point and, more generally, the valley, is
evident.

We also estimated the friction angle associated with the
spread of end states in Figure 4. In fact, each ellipsoidal state
corresponds to a different slope of the surface relative to the
local gravity. By assuming internal homogeneity, we computed
the maximum angle, on the ellipsoid surface, between the local
resultant of gravity and centrifugal force, and the normal to
the local tangential plane. We find that the simulated asteroids
that stop farther from the equilibrium points exhibit a typical
maximum slope angle around 10◦ (Figure 4). This property is
essentially due to the nature of our simulated bodies, composed
of an unordered distribution of spheres without surface friction
that are free to move around one another, and that are affected by
only a small degree of interlocking. The situation is thus rather
different from Richardson et al. (2005), in which the optimized
hexagonal packing used to build initial conditions introduces an
anisotropic response to stresses and results in a higher friction
angle.
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<L> = 0.1
<L> = 0.2

<L> = 0.4<L> = 0.3 

Figure 4. Evolution of asteroid shapes following the energy gradient on the (b/a, c/a) plane, for four different values of the normalized angular momentum of a
body 〈L〉. The color levels and the black isolines indicate the value of the total potential energy of a rotating ellipsoid (normalized to the absolute value of energy of
a non-rotating sphere of the same density), computed as the sum of rotational energy and gravity potential. With the exception of extreme elongations (b/a or c/a <

0.2), the potential is very flat. The green diamonds represent the location of the fluid equilibrium points at the minima of the potential. For the two top panels and the
bottom left panel, only the Maclaurin sequence exists, on the b/a = 1 axis. In the bottom right panel, the Jacobi minimum is also visible. The white lines represent
the evolution paths of different ellipsoids in our simulations, approximately following the energy gradient. Their ending points are marked by a red square. The red
isolines represent the maximum slope found on the surface of an ellipsoid having the corresponding axis ratios (for a given 〈L〉). Only the isolines for 2◦, 5◦, 10◦,
and 15◦, numerically computed, are plotted. The maximum slope angle for our simulated bodies can be estimated by comparing the distribution of red dots to these
isolines.

We checked this interpretation by means of two very differ-
ent approaches. First, we computed particle–particle distance
distributions during the evolution, looking for distance peaks
corresponding to a crystalline structure. Then, we ran several
simulations using some final states illustrated above as initial
conditions, after having changed their spin rate. This forced,
extended evolution could have shown a different behavior if

internal crystallization had occurred. In both cases, no hints of
crystallization were found.9

9 We cannot exclude that in other conditions this could happen, such as, for
example, after repeating the procedure several times. In a different context, this
is the case of the simulations in Walsh et al. (2008), in which a forced spin
change is continuously induced and a slow crystallization takes place on much
longer timescales.
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We stress here a fundamental result: when reaching the po-
tential “valley,” the objects are very close in potential energy to
both the Maclaurin and the Jacobi sequence (<5% relative dif-
ference). They can thus be stable and close to fluid equilibrium,
despite being fairly different in shape. As an example, a rather
elongated prolate ellipsoid at 〈L〉 = 0.3, having b/a = 0.6 and
c/a = 0.45, is very close, in terms of energy, to the spheroid
(c/a = 0.58 and b = a) at the same 〈L〉, but at fluid equilibrium
on the Maclaurin sequence.

Nevertheless, the variety of final shapes obtained in our
simulations appears to be strictly correlated with the location
and extension of the potential valley, which changes depending
on the total angular momentum of the system (Figure 3).

4. DISCUSSION

We have shown by numerical simulations and theoretical
arguments that a reshaping process governed by the topology of
the energy potential of rotating ellipsoids is compatible with the
observed distribution of real asteroid shapes. We stress, however,
that the low friction angle observed in our simulations is not
necessarily characteristic of the asteroid constituent material. In
fact, mechanisms capable of temporarily “fluidizing” granular
aggregates exist, as discussed above. Incidentally, this also
occurs during shear reversal observed in laboratory experiments
(Utter & Behringer 2004). Our results suggest that, on asteroids,
the action of random impacts, seismic shaking, or tides could
produce similar effects, at least on the largest scales of an
object. Our simulations, while not directly including these
reshaping mechanisms, are in fact mimicking their fluidizing
effect by using a low friction angle. This suggests that external
mechanisms could enhance the mobility of the constituent
blocks in a random way, without introducing systematic effects
in the trend of shape change.

We can also try and relate our results to previous studies
using the rotational properties. In fact, our plots show that
a dependency between flattening and 〈L〉 (c/a decreasing for
increasing 〈L〉, as in Chandrasekhar 1969) is preserved even
for bodies that do not lie on the fluid equilibrium sequences.
This provides us an opportunity to verify our results, by using
the observed physical properties of large asteroids (diameters
>100 km) that possess one or more small satellites (diameter
ratio satellite/primary < 0.2). For these, the density uncertainty
is lower than usual since the mass can be derived from applying
Kepler’s third law to the satellite orbits. They thus provide
much better constraints than other objects (Hestroffer & Tanga
2005). These Main Belt binaries still have an uncertain origin,
since they are generally too large for formation by YORP spin-
up (Walsh et al. 2008). Most may have formed during post-
catastrophic-disruption reaccumulation (Durda et al. 2004), so
they should naturally be rubble piles.

Therefore we selected the seven best-characterized high-
size-ratio binaries (Descamps & Marchis 2008), for which an
ellipsoidal fit to the shape of the primary is available. We
find (Figure 1) that they actually fall either not far from the
diagonal of perfect prolate bodies (b = c), or on the Jacobi
sequence.

It is very interesting to see that the relation between angu-
lar momentum 〈L〉 and flattening c/a is respected for bina-
ries (Figure 5), supporting the idea that these asteroids under-
went a reshaping process—each at its own, constant angular
momentum—until they reached the stability valley, whose posi-
tion in terms of flattening value is a function of 〈L〉 itself. If our
model is correct, future observations of binaries should confirm

Figure 5. Normalized angular momentum 〈L〉 and flattening (c/a) of asteroids
with one or more satellites. The region between the two lines represents the
approximate range of stable end states in our simulations. For this plot, only
high-size-ratio binaries with a small satellite (<20% of the primary size) whose
ellipsoidal shape is known (from Kryszczynska et al. 2007) have been included
(from left to right: 107 Camilla, 130 Elektra, 243 Ida, 45 Eugenia, 22 Kalliope,
87 Sylvia). The values refer to the primaries only, which dominate these systems
in terms of angular momentum content. The general decreasing trend of 〈L〉 is
consistent with our evolution scenario. The values of mass and size needed for
this plot are taken from Descamps & Marchis (2008).

this trend, provided that accurate mass and size determinations
are obtained.

The results presented here are compatible with previous
numerical studies simulating rubble piles by random packing
(Tanga et al. 2009), and can be improved in several ways in
future.

For example, polydisperse sphere sizes could be used to test
the absence of any crystallization tendency (preliminary tests
seem to indicate that the behavior is similar to the one illustrated
here). Also, the energy potential analysis could be completed
by a study of the force network among particles.

Eventually, the arbitrary distribution of our initial conditions
could be substituted by the more realistic outcome of simulations
of gravitational reaccumulation processes.

Despite these limitations, we believe that we have captured
the fundamental properties of a general shape evolution process,
in qualitative agreement with analytical models of granular
materials in the continuum limit (although uncertainty remains
on how to reconcile N-body macroscopic phenomena with the
zero-grain-size limit; Holsapple 2009).

Future analysis of the physical properties of a larger number
of asteroids, such as those to be obtained, for example, by the
next generation of sky surveys like Gaia and Pan-STARRS,
will help to better define the mechanisms that have sculpted
the present shape distribution of the asteroids, and establish its
consistency with an internal rubble-pile structure.

We thank P. Michel for the stimulating discussions. P.T.
and C.C. acknowledge the support of the French Programme
National de Planétologie (PNP). D.C.R. had support by the
National Aeronautics and Space Administration under grant
no. NNX08AM39G issued through the Office of Space Sci-
ence and by the National Science Foundation under grant no.
AST0708110. P.P. and A.C. have been supported by Italian
Space Agency (ASI) funds. We thank the anonymous referee
for help in improving this Letter.

Facilities: Mésocentre de Calcul-SIGAMM hosted at the
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