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Abstract

We present simulations of the gravitational collapse of a mono-disperse set of spherical particles for studying shape and spin properties

of re-accumulated members of asteroid families. Previous numerical studies have shown that these ‘‘gravitational aggregates’’ exhibit

properties similar to granular continuum models described by Mohr–Coulomb theory. A large variety of shapes is thus possible,

in principle consistent with the observed population of asteroid shapes.

However, it remains to be verified that the re-accumulation following a catastrophic disruption is capable of naturally producing

those shapes. Conversely, we find that fluid equilibrium shapes (flattened two-axis spheroids, in particular) are preferentially created

by re-accumulation. This is rather unexpected, since the dynamical system used could allow for other stable configurations. Jacobi

three-axial ellipsoids can also be created, but this seems to be a less common outcome.

The results obtained so far seem to underline the importance of other non-disruptive shaping factors during the lifetime of rubble-pile

asteroids.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The currently observable asteroids have been shaped and
redistributed by complex dynamical and collisional pro-
cesses. In particular, ‘‘dynamical families’’ have been
identified as groupings in orbital element space, corre-
sponding to ancient destructions of larger parent bodies
(Davis et al., 1979; Farinella et al., 1982). This fact is
corroborated by the taxonomy of families, whose members
also share similar spectroscopic properties.

Over the past several years growing evidence suggests
that an important fraction of large family members
could be the result of a gravitational re-accumulation of
e front matter r 2008 Elsevier Ltd. All rights reserved.
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fragments produced after the parent body disruption
(i.e. Michel et al., 2002). As a consequence, these
‘‘gravitational aggregates’’ (also nicknamed ‘‘rubble-piles’’)
would lack any internal cohesion and would have a very
low tensile strength.
Gravitational re-accumulation has been modelled

recently by numerical simulations employing Smooth
Particle Hydrodynamics codes (for the disruption phase)
coupled with gravitational N-body codes capable of
treating collisions (for the re-accumulation phase). The
simulations have also shown that during the gravitational
re-accumulation multiple mutually orbiting systems can be
created (Michel et al., 2001; Durda et al., 2004).
The low bulk density found for some asteroids, hinting

to internal ‘‘empty’’ spaces (high porosity) and the
structure of some objects visited by space probes, seem to
provide the observational evidence of the existence of
gravitational aggregates. We recall here, for example, the
low density ð1:3 g cm�3Þ of (253) Mathilde, about 3 times
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smaller than the density of meteorites of supposedly similar
composition (Yeomans et al., 1997). Also, Britt et al. (2002)
identifies two categories of shattered rubble-piles corre-
sponding to different porosity levels.

However, the search for hints about the rubble-pile nature
of asteroids is just starting. Several measurable characte-
ristics are usually tested against the expected properties of
such bodies, namely spin rates and shapes. We use these
characteristics in our numerical investigations of the origin
of these bodies. The conclusion we reach can be considered
much more advanced than the very preliminary reports in
Consigli et al. (2007) and Tanga et al. (2006).

On the theoretical side, shapes and spins of asteroids are
assessed based on the concept of equilibrium shapes of
rotating, self-gravitating bodies with low internal cohesion.
Hereinafter we will mainly consider the two main
paradigms that have been tentatively applied to asteroids,
treating them either as perfect fluids (Farinella et al., 1981),
or as obeying to the Mohr–Coulomb theory (Holsapple,
2001), appropriate for describing an elastic–plastic beha-
vior for stresses below the yield point. Such material can be
considered to be cohesionless, but exhibiting a certain shear
strength that prevents it from behaving like a perfect fluid.
The typical example on Earth is granular material, such as
sand or gravel, that can form conic piles with a well defined
maximum slope.

In numerical simulations, the simplest approximation for
describing cohesionless rubble-piles is the ‘‘perfect rubble
pile’’ (Richardson et al., 2005), represented by self-gravitat-
ing, hard spherical particles of equal radii, with no cohesion.
Richardson et al. (2005) studied the stability of such bodies
starting from a variety of ellipsoidal, rotating aggregates,
formed by filling the corresponding hull with closely packed
spherical particles. These systems were allowed to evolve
under the effect of gravity (using N-body simulations), in
order to check their stability or their tendency to readjust to
a shape different from the original one.

The results obtained by Richardson et al. (2005) show
that a large variety of stable shapes exists in this model,
consistent with a Mohr–Coulomb behavior. This good
mach is due to the macroscopic granular structure of the
bodies, which introduces a shear strength. The stable set
includes a variety of shapes that could in fact correspond to
the observed diversity.

In this work we investigate another part of the story.
Namely, we want to check the role of the re-accumulation
process, dominated by gravity only, in the generation of
shapes. We would like to answer to the following
questions: Can all the stable shapes found in Richardson
et al. (2005) be generated by re-accumulation? Is gravity
alone capable of producing that variety? Which parameters
control the final result?

As we will see, a definitive answer cannot yet be given,
but we think that some strong hints can already emerged.
In the future, we could possibly try to explain some
puzzling characteristics of the observed shapes, such as the
tendency of the primaries of asteroids with satellites to
cluster close to the fluid equilibrium sequences (Hestroffer,
2004; Hestroffer and Tanga, 2005). Of course, for many
re-accumulated asteroids the primitive shapes and spins
have been altered by subsequent minor collisions or by
other mechanisms. For example, we know that thermal
emission can produce a torque capable of changing spin
direction and rate (YORP effect). Also, spin around a non-
principal axis of a non-rigid body can cause the shape to
readjust due to strains during the time of relaxation. We
are aware that these processes, which we do not take into
account, can be relevant if a comparison to the observed
objects is attempted, and their poorly understood nature
constitutes a real limitation that should be surmounted in
forthcoming explorations.
The paper is organized as follows. In Section 2 we

provide an overview concerning observation and theore-
tical modelling of asteroid shapes, by recalling the theories
of fluid equilibrium figures and the Mohr–Coulomb
description. In Section 3 we present the numerical method
adopted to simulate re-accumulation. The results are
presented and discussed in Section 4.

2. Asteroid shapes

2.1. Equilibrium shapes

Large celestial bodies (with diameters of several thou-
sands of kilometers) should all have their internal strength
dominated by gravity on the largest scales. As a
consequence, they relax to some equilibrium shape. This
is obviously the case for gaseous planets and stars (though
inhomogeneity and compressibility are also an issue). The
situation is different for asteroids with sizes from kilo-
meters to several hundreds of kilometers. While the
original idea of Farinella et al. (1981) was that rubble-
pile asteroids could follow figures of equilibrium for fluids,
it has been shown that such asteroids could still sustain
strains and shapes differing from the hydrostatic equili-
brium (Holsapple, 2001). Starting with Newton, figures of
equilibrium for incompressible fluids have been studied by
numerous mathematicians and astronomers, including
Maclaurin, Clairaut, Jacobi, Darwin, Poincaré, Liapunov,
Jeans, Chandrashekar, Kopal, Tassoul, etc.
The theory of equilibrium shapes has been thoroughly

described in several papers, from the classic work
Chandrasekhar (1969) to extensions relevant for asteroids
such as Lai et al. (1993); Hachisu and Eriguchi (1984),
therefore we will not address the whole issue here again.
For sake of clarity and interpretation of results, however,
it is worth recalling some basic concepts.
The approach is to consider self-gravitating fluid bodies,

whose equilibrium figures are described—in a cartesian
system aligned with the body axes and centered on the
body—in terms of ellipsoids defined as

x
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pile, usually in the 20�–40� range. This can depend upon the chosen

particle shape and the related packing properties.
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where a, b and c represent the ellipsoid semi-axes, and R

the radius of a mass-equivalent sphere. The use of
adimensional quantities greatly facilitates the task of shape
parametrization, since the dependence on particular
choices such as the values of R or the density is eliminated.
Hereinafter, we thus make use of the axis ratios ðb=a; c=aÞ,
and we normalize the spin O and angular momentum L,
respectively, as Ō ¼ O=ðpGrÞ1=2 and L̄ ¼ L=ðGm3RÞ.

The stability solutions for incompressible fluids are the
classical results (Chandrasekhar, 1969) and show that for
low rotation rates a ‘‘sequence’’ of flattened spheroids with
a ¼ b (Maclaurin sequence) exists. Along this sequence,

the flattening e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc=aÞ2

q
is related to the normalized

spin by

Ō ¼ 2ð3� 2e2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

e3
arcsinðeÞ �

6ð1� e2Þ

e2
. (2)

Also, the following relation holds:

L̄ ¼

ffiffiffi
3
p

5

a

R

� �2
Ō. (3)

It has been demonstrated that bodies belonging to this
sequence are secularly stable for increasing L̄ values up to
L̄c1 ¼ 0:304. Higher angular momentum bodies tend to
accommodate along another set of solutions, correspond-
ing to a sequence of three-axial ellipsoids (the Jacobi
sequence) characterized by a smaller spin rate. For the
Jacobi sequence similar relations are found:

Ō ¼ 2abc

Z þ1
0

udu

ða2 þ uÞðb2
þ uÞD

, (4)

D2 ¼ ða2 þ uÞðb2
þ uÞðc2 þ uÞ (5)

and

L̄ ¼

ffiffiffi
3
p

10

a2 þ b2

R2
Ō. (6)

As in the Maclaurin case, the Jacobi sequence also reaches
a secular instability, occurring at L̄c2 ¼ 0:395.

One should also note that an upper limit is imposed on
the spin rate to avoid mass shedding, i.e. the ejection of
particles situated on the equator of the body due to the
centrifugal force locally overcoming gravity. For a sphere

Omaxffiffiffiffiffiffiffiffiffiffiffiffi
2pGr
p ¼

ffiffiffi
2

3

r
. (7)

In the case of an ellipsoids and considering a particle on the
tip of an elongated three-axial body, this limit is lower. The
corresponding formula have been derived, for example, by
Richardson et al. (2005) and Harris (2002).

The systems of equations (2)–(6) show that the
equilibrium solutions are defined in a four-dimensional
parameter space. In the following we choose a description
based on the two axis ratios ðb=a; c=aÞ, Ō and L̄. These four
parameters will be used for analysis of the results, and they
can be considered as independent since a generic shape, not
corresponding to a fluid equilibrium, will not satisfy the
above mentioned relations. This four-variable set, anyway,
is a first, practical approximation providing a description
simple enough for a straightforward comparison to theory
and observations.
Concerning the applicability of the equilibrium

theory for fluids to bodies composed of solid fragments,
Holsapple (2001) has shown that a more appropriate
description is available in the frame of the Mohr–Coulomb
theory,which can be applied to granular media. The most
relevant parameter of this model is the critical angle
(or angle of repose) f. For a pile of fragments of equal
properties in a uniform gravity field (for example, a sand
pile on the ground), f corresponds to the maximum
sustainable slope of the pile. Richardson et al. (2005) have
shown that the family of aggregates composed by spheres
that are stable in the numerical model that we adopt
satisfies the Mohr–Coulomb equilibrium for f�40�.2 As a
consequence, a large fraction of the parameter volume is
populated with possible stable solutions (Section 4). In the
following, we will check if those solutions are reachable by
gravitational re-accumulation.
2.2. Observed shapes

In general, spin periods are derived from lightcurve data.
Spin statistics seem to show that an upper barrier exists for
the rotation rate of bodies above �0:15 km of diameter.
Below �10 km this probably corresponds to the critical
rotation above which the effect of centrifugal force would
overcome a rubble-pile self-gravity (Pravec and Harris,
2000). For bodies larger than �10 km, the same effect is
present, with the important difference that self-gravity
alone could determine the critical threshold, being much
stronger than the cohesion forces even in a compact,
monolithic rocky structure (Holsapple, 2007). Rubble-pile
structure for large bodies is thus possible, but cannot be
inferred by the rotation barrier alone. Other data exist,
however, supporting this hypothesis, such as the low bulk
density measured for several asteroids, certainly related to
a high porosity (Britt et al., 2002).
The richest existing collections of rotational pole

coordinates and asteroid shapes are compiled using
techniques of photometric inversion. Historically, shapes
have been represented using ellipsoids or combinations of
them (Magnusson, 1989; Farinella et al., 1981; Cellino
et al., 1989), and only later more parameters were
introduced in the inversion, in order to fit more features
in the lightcurves. With modern inversion techniques, the
asteroid convex hull has been described by a triangular
mesh (Kaasalainen and Torppa, 2001; Kaasalainen et al.,
2001). Incidentally, one should note that the inversion
solution is not unique if concavities are taken into account.
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Fig. 1. Observed axis ratio from the Magnusson and Neese (1996)

database. Only the objects having a value determined for both axes are

shown. All of them are larger than �10 km in diameter. The vertical line

on the right, corresponding to flattened spheroids ða ¼ bÞ, represents the

Maclaurin equilibrium solution, bifurcating into the Jacobi sequence

(curved line) at the secular stability limit.
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Another source of difficulty concerns the accuracy of the
details of the mesh, which are hard to assess; however, the
convex hull obtained by these techniques can be taken as
representative of the overall shape.

In Fig. 1 we plot the axis ratios available from the
asteroid spin vectors database (Magnusson and Neese,
1996). Only objects having both ratios determined are
shown. A source of interpretation difficulty comes from the
observational biases that can flaw the distribution. For
example, the lack of asteroids close to the Maclaurin
sequence ðb=a�1Þ is due the difficulty of interpreting small
amplitudes. In these cases the measurement of b=a is
difficult, and that of c=a alone, requiring multi-opposition
photometry, is rarely attempted.

The values are scattered considerably all over a large
area of the axis ratio plane, without any appreciable
clustering around the fluid stability curves. This fact does
not allow us to draw any particular conclusion, since we do
not know how many of the objects considered are rubble
piles. Conversely, we know that even if they were, in
general they would not behave as fluids (notably because of
being able of sustaining shear strains).

2.3. Equilibrium shapes and satellites

The data above are presented as one planar projection
of the four-dimensional parameter space introduced in
Section 2.1. The construction of the other projections
requires to know spin rate, mass and bulk density. This last
parameter has only been determined with a good accuracy
for an extremely reduced number of asteroids, due to
uncertainties both in the mass (usually measured by mutual
asteroid deflection) and in the absolute size (most often
deduced from thermal infrared data).

However, in some cases, the determination of masses can
be improved by the presence of a satellite, and sizes can be
measured by other methods, as it is being done by HST
interferometry (Hestroffer et al., 2006). Asteroids visited by
space probes constitute a limited but precious minority. If
we use the available asteroid densities to study their
distribution on the L̄; Ō2 plane, it appears that a small
group of asteroids seems to follow the Jacobi sequence.
Surprisingly, they also posses a satellite (Hestroffer, 2004;
Hestroffer and Tanga, 2005). For the ones whose
secondary object is close in size to the primary, they
accommodate along the Darwin sequence, describing
shapes of binary objects (Descamps and Marchis, 2008).
It can be stressed that this particularity is not a result of

a selection bias since the proportion of asteroids lying far
from the fluid sequences—whatever their mass and angular
momentum—is large, their shape not corresponding to
fluid equilibrium states (as noted by Holsapple, 2001). As a
consequence, it seems that the presence of a satellite plays a
role in favoring fluid equilibrium shapes for the primary,
and that a high angular momentum determines the
preference for the Jacobi branch (Hestroffer and Tanga,
2005).
The origin of this fact could be related to: (i) seismic

shaking or other tidally-induced flexures capable of bring-
ing a cohesionless body to the fluid relaxed state; (ii) the
re-accumulation process itself, after catastrophic collision
of the parent asteroid. This second scenario further
motivates a study of shape origin and evolution.

3. Numerical simulations: the approach

In this paper, we use pkdgrav, a parallel N-body code
that uses a hierarchical tree structure to reduce the
computational cost of force calculations. This is the same
adopted in the shape stability study by Richardson et al.
(2005). We recall here that the code is capable of solving
collisions among hard spheres, and is thus suited for
simulations in Solar System science.
Due to the organization of particles in a hierarchical

tree, the computation speed is higher when particles
have some clustering hierarchy in space. Of course,
this is not the case of gravitational aggregates, for
which most particles fill rather homogeneously the
volume of the rubble pile. Also, their proximity results
in a huge number of collisions to be detected and proce-
ssed each time step. Simulations are thus extremely
demanding in CPU and a wide exploration of the
parameter space cannot be fruitfully done with more than
�1000–2000 particles, since several tens of simulations
are needed.
For this study, we ran most of the simulations on a

powerful cluster at the Observatoire de la Côte d’Azur
(Nice, France). As in Richardson et al. (2005) we consider
spheres of equal radius, with restitution coefficients 0.8 and
1.0 in the radial and tangential directions, respectively.
We will present the results obtained in 50 runs, 30 with
a number of particles N ¼ 500 and 20 with N ¼ 1500,
to check for a resolution dependency.
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3.1. Initial conditions

Initially, particles are randomly dispersed in a cloud of
ellipsoidal shape. The initial velocities are composed from
two contributions. The first one is a component completely
random and isotropic, whose modulus is uniformly
extracted in an interval ½0; vmax�. A second component,
providing a given amount of total angular momentum L, is
then added. The numerical procedure ensures that the final
velocities will stay below vmax, i.e. that L is not due to very
few particles each one carrying a lot of momentum but is
indeed distributed in the whole particle set. Also, vmax and
L are chosen in such a way that the overall instability
conditions for the cloud are met (self-gravitation potential
energy wins over rotation and kinetic energy).

Due to the dissipation induced by the inelastic collisions the
collapsing cloud will lose kinetic energy. The high collisional
rate thus grants a rapid relaxation toward a dense body.

Of course, these initial conditions may sound simplistic.
In the real world, gravitational collapse may be a highly
chaotic process, conversely a uniformly populated ellipsoi-
dal cloud of fragments can appear as a peculiar, highly
ordered initial condition. Nevertheless this simplification is
not far from the procedure introduced by D’Abramo et al.
(1999) for establishing re-accumulation criteria based on
kinetic energy and position of fragments when ejected from
the parent body. In some conditions, this procedure
identifies a domain of the parent body that remains
gravitationally bounded without expanding during the
disruption process. In the context of some simulations of
family formation, this behavior is observed for the largest
fragments (for example, the Eunomia parent body in
Michel et al., 2002) that can form very rapidly from
particles initially enclosed in a limited, fairly spherical
volume. For these reasons, we assume that our initial
conditions are not too unrealistic and—in any case—
constitute a first reasonable approximation. Further
studies will take advantage of having clarified the proper-
ties of this simple scenario for approaching more complex
situations.

Again, we want to stress the main difference relative to
Richardson et al. (2005): the fragments are initially dispersed
in a cloud �10 times the size of the expected rubble pile,
instead of being closely packed in pre-formed aggregates.

With the typical scaling for the simulated system (a cloud
of fragments containing the mass of a 1 km asteroid, with
particle density 2 g cm�3) the run duration corresponds to
40 h of evolution (physical time), implying 4000 steps of
�0:7min. This is longer than the typical duration for the
accretion of the available mass (usually complete in �10 h)
and ensures the stabilization of the accreted body.

3.2. Outcome analysis

The analysis of the re-accumulation outcome involves
extracting the relevant parameters describing the body
shape and spin properties.
The simulation records several outputs (position and
velocity) at intermediate steps; an analysis program is run
over all of them to verify that the relevant quantities have
converged during the simulation.
The analysis program first isolates the re-accumulated

body from possible fragments that have not fallen onto it.
The resulting set of particles is then used to compute the
body properties. The principal inertia axis are computed as
the eigenvectors of the inertia matrix. The maximum
distances of the particles from the aggregate center,
projected onto the principal axis, provide the semi-axis
lengths.
Once these elements are known, the derivations of spin

axis direction, spin rate and angular momentum are
straightforward. The final shape and rotation can then be
represented by the adimensional parameters discussed in
Section 2.1, independent from specific choices on particle
mass and size.
Even if the analysis program offers an automated, fast

procedure for extracting the physical parameters of
interest, some possible hidden traps can sometime alter
the meaning of the results.
First of all, the final aggregate is not always isolated

from a dynamical point of view. In general, in fact, some
non-reaccumulated fragments remain around it as single-
particle satellites. Also, the collapse is not granted to
produce a single object, but could well end up in two
(or more?) re-accumulated masses, eventually orbiting
around a common center. This fact has been observed
and is of the greatest interest for studying satellite
formation. Conversely, if the analysis code is run without
ensuring that the nearby mass is not significantly perturb-
ing the largest aggregate, the interpretation of the obtained
parameters can be biased. The simulations have thus been
carefully checked to rule-out such situations.
A second problem concerns the chosen scheme for shape

representation. In fact, even a qualitative look to some
gravitational aggregates we obtained shows a departure
from ellipsoids, such as egg-like shapes. Since these
anomalies appear to be small (i.e. of the same order of
one particle diameter) we are confident that the results
presented further on remain meaningful.

4. Results and discussion

The results obtained so far are summarized in the
two plots of Fig. 2, each symbol representing the
final outcome of a single run. For all the simulations
presented here, the re-accumulated mass is more than
70% of the total, to grant an appropriate estimate of the
shape and to avoid possible perturbations by satellized
particles, inducing tides and variable torques on the main
aggregate.
The first interesting result is the tendency of the

re-accumulated bodies to cluster around the fluid equili-
brium curves. The simulations with N ¼ 1500 seem to
come even closer to the curves, probably due to a better
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Fig. 2. Results of the simulation of the re-accumulation. Each symbol corresponds to the gravitational aggregate outcome of a single run. Values

represented by þ are for simulations with N ¼ 500 particles, while � is for N ¼ 1000. The right panel is similar to Fig. 1. The left panel is the L̄; Ō2

projection. Here the Maclaurin sequence starts from the origin. After the bifurcation with the Jacobi branch (decreasing curve with positive concavity) the

Maclaurin curve no longer corresponds to stable solutions.
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approximation of the ellipsoidal shape. Despite several
tests at high spin rates of the initial cloud, it appears very
difficult to form aggregates with Ō240:4 since they are
close to the mass-shedding limit for elongated ellipsoids.
Also, if only the aggregates formed in an initially spherical
cloud were considered, all the symbols close to the Jacobi
branch (L̄4L̄c1) would disappear from the plot.

The only way to create Jacobi-like ellipsoids is to begin
with very elongated three-axial clouds, for example, having
a=c�b=c�0:3 or less. This ‘‘memory of the initial condi-
tions’’ cannot probably be avoided with our approach.
This can be heuristically understood by noting that, at a
given value of Ō2, moving to the Jacobi branch implies
favoring a prolate ellipsoid relatively to the flattened
spheroid, thus jumping to a higher L̄. The main point here
is that L is conserved all along the process: the final
aggregate, containing almost all the mass, will also have
about the same L than the initial cloud. Therefore, the only
possibility to increase L̄ would be to re-accrete less mass
(thus diminishing the normalization factor) but—on
average—that would also lower L, due to the diminished
contribution by the accreted fragments.

In other words, our experiments seem to indicate that a
spherically symmetric collapse is not able to produce
prolate ellipsoids but converge directly to a flattened
spheroid. On the other hand, if an elongation of the
particle cloud (with larger values of L) is introduced in the
initial conditions, it can be found also in the outcome
under the form of aggregates that fall along the Jacobi
branch at the highest L̄ values. We argue that this fact
probably derives from the simple conservation of the
angular momentum L, which is satisfied during the
process due to the nearly complete re-accumulation of all
fragments on the resulting final body.

More generally, the reason that the results fall close to
the fluid equilibrium curves is not obvious.

This can be better understood by plotting the final, stable
aggregates found by Richardson et al. (2005) with the same
parametrization presented in this paper (Fig. 3). In the
upper two panels, it is clear that a wide range of parameters
is acceptable for the system, but this requires that the
aggregates are pre-assembled. The theoretical limits that
hold are those deduced from the Mohr–Coulomb law and
from the spin limit (see Richardson et al., 2005, for the full
discussion).
The obtained distribution is very different from the one

found as a result of our simulations (Fig. 2) although it
could be compatible with the observed data (Fig. 1).
A selected fraction of the outcomes in Fig. 3 (upper

panels) is plotted in the lower panels. These represent
bodies undergoing a more or less dramatic restructuring
with some mass loss. The original aggregates that
generated them—initial conditions for the Richardson
et al. (2005) simulations—were characterized, in general,
by high values of Ō (above the Maclaurin–Jacobi bifurca-
tion point). The mass loss and the relaxation to a new
shape have brought the majority of them close to the fluid
equilibrium curves.
The fact that the restructured bodies populate well the

Jacobi branch on the left panel seems to confirm the
arguments expressed above, since the simulations by
Richardson et al. (2005) start always with b=a ¼ c=a, thus
not at spherical symmetry in the initial conditions. Also,
the bodies falling on the Jacobi sequence loose in general a
moderate amount of mass (they are identified with ‘‘�’’ on
the plot). Bodies losing more mass (represented by ‘‘þ’’)
are more scattered and the measurement of their final
shapes is probably affected by the low number of
remaining particles.
However, the convergence to the Jacobi sequence is only

apparent on the left panel. The right panel shows that, in
reality, the ‘‘�’’ aggregates remains fairly close to the
b=a ¼ c=a line where they were created. In fact, mass
ejection essentially lowered Ō, but the shape was not
allowed to change enough to reach the Jacobi sequence.

5. Conclusions and perspectives

We have shown here that aggregates composed by
spheres can stably hold a large variety of shapes, but not all
of them are reached with equal probability by a simple
gravitational re-accumulation process. In other words,
although the model admits several equilibrium solutions
(Richardson et al., 2005), when there is a lot of energy to be
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Fig. 3. Final, stable shape/spin states for the results obtained in Richardson et al. (2005), here re-plotted as a function of the same parameters as in Fig. 2.

The top panels gather all the outcomes, while in the bottom panels only bodies that have been reshaped radically with non-negligible mass loss are plotted.

Different symbols discriminate between different amounts of mass loss: 1–10% for �; and 10–50% for þ.
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dissipated, the resulting final shapes lie preferentially close
to the equilibrium sequences for fluids.

The collapse process has also the tendency to preserve a
memory of the initial conditions, i.e. of the shape of the
initial cloud. The outcome of the inelastic collapse of
dispersed fragments cannot thus be controlled simply by
changing its spin. In particular, due to angular momentum
conservation, an approximately spherical cloud of particles
will preferentially generate axially symmetric spheroids on
the Maclaurin sequence, while Jacobi ellipsoids will appear
only for elongated clouds.

In all the simulations presented here, the whole process is
very fast and most of the particles fall on the forming
aggregate on a timescale shorter than the relaxation time of
the aggregate itself. Although this behavior corresponds to
what is observed in the fast formation of the largest
remnants in the large re-accumulation simulations
(Michel et al., 2001) other situations—such a slow, gradual
buildup of particles—should be analyzed.

In any case, with a variety of initial conditions we are
capable of producing ellipsoids lying anywhere on the
Maclaurin stability line (and to some extent also on the
Jacobi branch) but other stable solutions are never reached
(for example, at intermediate values of Ō and L̄).

We thus cannot state here in a general way that the
re-accumulation process is not capable of generating all the
shapes that are allowed by the Mohr–Coulomb law, but the
strong tendency of aggregates to move toward the fluid
equilibrium shapes seem to confirm that this last solution,
representing a deeper energy minimum for these dynamical
systems, is more probable. The most attractive region of
the parameter space is certainly that of flattened spheroids
on the Maclaurin sequence.
Concerning satellite formation, the only simulations

efficiently producing secondary aggregates are those
starting with very elongated, cigar-like clouds
ðc=a�b=a�0:2Þ. In this situation, the cloud major axis is
longer than the most unstable wavelength and the cloud
separates into different portions before the re-accumula-
tion phase, thus making the formation of multiple rubble
piles easier. We will devote a future paper to satellite
formation. Also, we plan to adopt a more general initial
condition generator, since this is probably the key for
obtaining an unbiased statistics.
Concerning the comparison with obsevations

(Section 2.2), all we can say is that the pure
re-accumulation, according to our findings, does not seem
to generate directly the observed variety. Also, we have
shown that the aggregates we generate close to the
Maclaurin sequence can be accompanied by one or more
satellites, consistently with the observations commented
above (Section 2.3). This does not imply that asteroids with
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satellite are unaltered examples of re-accumulated rubble
piles. For example, tidal stresses induced by the satellite
could be responsible for relocating material in the primary,
bringing it closer to the fluid equilibrium sequence.

Another mechanism that could affect the observed
rubble-pile shapes, include processes that change the object
shape during its history, after its initial formation, such as
non-disruptive impacts or YORP-induced spin accelera-
tions. Eventually, further simulations should allow us to
distinguish among the different mechanisms that generate a
variety of rubble-pile shapes.
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