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ABSTRACT

We have developed a semianalytic method of parameterizing N-body simulations of self-gravity wakes in Saturn’s
rings, describing their photometric properties by means of only six numbers: three optical depths and three
weighting factors. These numbers are obtained by fitting a sum of three Gaussians to the results of a density-
estimation procedure that finds the frequencies of various values of local density within a simulated ring patch.
Application of our parameterization to a suite of N-body simulations implies that rings dominated by self-gravity
wakes appear to be mostly empty space, with more than half of their surface area taken up by local optical depths
around 0.01. Such regions will be photometrically inactive for all viewing geometries. While this result might
be affected by our use of identically sized particles, we believe the general result that the distribution of local
optical depths is trimodal, rather than bimodal as previous authors have assumed, is robust. The implications of
this result for the analysis of occultation data are more conceptual than practical, as we find that occultations can
only distinguish between bimodal and trimodal models at very low opening angles. Thus, the only adjustment
needed in existing analyses of occultation data is that the model parameter τgap should be interpreted as representing
the area-weighted average optical depth within the gaps (or inter-wake regions), keeping in mind the possibility
that the optical depth within those inter-wake regions may vary significantly. The most significant consequence
of our results applies to the question of why “propeller” structures observed in the mid-A ring are seen as
relative-bright features, even though the most prominent features of simulated propellers are regions of relatively
low density. Our parameterization of self-gravity wakes lends preliminary quantitative support to the hypothesis
that propellers would be bright if they involve a local and temporary disruption of self-gravity wakes. Even
though the overall local density is lower within the propeller-shaped structure surrounding an embedded central
moonlet, disruption of the wakes would flood these same regions with more “photometrically active” material
(i.e., material that can contribute to the rings’ local optical depth), raising their apparent brightnesses in agreement
with observations. We find for a wide range of input parameters that this mechanism indeed can plausibly make
propellers brighter than the wake-dominated background, though it is also possible for propellers to blend in with the
background or even to remain dark. We suggest that this mechanism be tested by future detailed numerical models.
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1. INTRODUCTION

Saturn’s dense A and B rings are pervaded by a microstruc-
ture, dubbed “self-gravity wakes,” of alternating dense and rar-
ified regions that arise due to a rough balance between the
clumping together of particles under their mutual self-gravity
and their shearing apart again due to tidal forces (Julian &
Toomre 1966; Salo 1992; Richardson 1994). The characteris-
tic alignment of elongated self-gravity wake structures causes
variation with viewing geometry in the brightness of the rings
as seen in Earth-based optical (Camichel 1958; Salo et al. 2004;
French et al. 2007) and microwave observations (Dunn et al.
2002, 2004) as well as spacecraft images (Franklin et al. 1987;
Porco et al. 2008), and in the rings’ opacity as measured by stel-
lar occultations (Colwell et al. 2006, 2007; Hedman et al. 2007),
which in the latter case has led to empirical determination of
some wake properties.

Existing analyses of stellar occultation data from Cassini
UVIS (Colwell et al. 2006, 2007) and Cassini VIMS (Hedman
et al. 2007; Nicholson & Hedman 2009) explain the observations
through the use of simple models that assume an optical-depth

dichotomy, with nearly opaque wakes (with optical depth τwake)
and a low but relatively constant optical depth in the spaces
between the wakes (τgap). However, while some preliminary
work has shown that such a model can produce brightness
profiles that are consistent with data (Hedman et al. 2007;
Salo et al. 2008), it has not been verified that such a bimodal
model describes the actual nature of simulated wakes, not to
mention real ones. And if it does, how do τwake and τgap relate
to environmental parameters such as overall occultation optical
depth and coefficient of restitution? What do the values of τgap
inferred from observations tell us about the conditions under
which wakes occur?

Salo et al. (2004) and Porco et al. (2008), on the other
hand, produce plots of ring brightness at various geometries
for various simulation input parameters, inferring the best input
parameters by finding simulated brightnesses that best compare
to observations. But where is the brightness coming from? For
images in reflected light, is the brightness varied primarily by
changes in the opacity of dense wake structures, or by the
fractional area covered by them? For images in transmitted
light, do more photons get scattered into the camera from the
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rarefied regions between the wakes (the wakes themselves being
largely too opaque to allow much light to pass through them),
or are more photons being scattered by the edges of the wake
structures? Better understanding of these questions would help
to guide future simulations, and might allow one to infer more
from the available observational data.

Yet another current question concerns the nature of
“propeller” structures observed in images of the mid-A ring
(Tiscareno et al. 2006, 2008; Sremčević et al. 2007), each of
which is inferred to be a disturbance surrounding an unseen
moonlet embedded within the ring. Observed propellers gener-
ally show the disturbed region as brighter than the background
ring brightness, though theoretical models (Spahn & Sremčević
2000; Sremčević et al. 2002; Seiß et al. 2005; Lewis & Stewart
2009) indicate that the most prominent feature of the distur-
bance is a decrease in local density. Among other hypotheses
for this curious behavior, Tiscareno et al. (2006, 2008) have
proposed that self-gravity wakes tend to lock up ring material
into a photometrically inactive state, and that propellers can
release this material by locally and temporarily disrupting the
wake structure, thus causing the disturbed area to contain more
photometrically active material even if it contains less material
overall. Our parameterization of self-gravity wakes allows us to
evaluate this hypothesis in a more quantitative fashion than has
previously been possible.

A major reason why these questions remain largely unan-
swered lies in the difficulty of local density estimation, the
quantification of an underlying density function based on the
locations of a finite number of particles, for a strongly hetero-
geneous density distribution. The simplest method of density
estimation is to divide a simulation space into bins of equal
size and to count the number of particles in each bin, but this
fails to give meaningful results for current simulations of self-
gravity wakes. This is because the rarefied regions require large
bins in order to accumulate enough particles in each bin to give
good statistics, but such large bins will badly smear the sharp
boundaries between the dense wakes and the rarefied regions.
Contrariwise, if the bins are small enough to resolve the sharp
boundaries, nearly all bins in the rarefied regions will contain
zero particles (with a few containing one particle), giving no
sense of the average density in the rarefied regions.

We have constructed a density-estimation method, to be
applied to self-gravity wake simulations, based on circular bins
that expand in rarefied regions and contract in dense regions. A
given circular bin is only used if the particles within it satisfy
certain criteria (described in detail below) to ensure that they are
sufficiently evenly distributed; if those criteria are met, then the
bin grows until they are no longer met. The overlapping circular
bins are then projected onto a finely meshed rectangular grid;
nearly all bins in the latter grid contain multiple overlapping
circular bins, and the value of the density at each location is
taken from the average of the overlapping circular bins.

Applying our density-estimation method to a set of numer-
ical simulations of a ring patch characterized by self-gravity
wakes, we parameterize the general properties of each simula-
tion as a weighted combination of three optical-depth values.
This semianalytic treatment allows us to comment on trends
that are applicable to a wide range of input conditions. We
specifically discuss the implications of our results for previous
interpretations of occultation data, as well as for the question of
why “propellers” appear as relative-bright features.

Section 2 describes our suite of numerical simulations, the
results of which constitute the input data for our semianalytic

Table 1
Parameters for Our Simulations of Self-gravity Wakes

τdyn σ N λcr Coefficient-of-restitution Law

0.1 10 g cm−2 7,359 15.3 m Borderies, v∗ = 0.001 cm s−1

0.2 20 g cm−2 14,718 30.5 m Borderies, v∗ = 0.001 cm s−1

0.3 30 g cm−2 22,077 45.8 m Borderies, v∗ = 0.001 cm s−1

0.35 35 g cm−2 25,757 53.4 m Borderies, v∗ = 0.001 cm s−1

0.4 40 g cm−2 29,436 61.0 m Borderies, v∗ = 0.001 cm s−1

0.45 45 g cm−2 33,116 68.6 m Borderies, v∗ = 0.001 cm s−1

0.5 50 g cm−2 36,796 76.3 m Borderies, v∗ = 0.001 cm s−1

0.5 50 g cm−2 36,796 76.3 m Bridges

Notes. τdyn is input mean dynamical optical depth, σ is input mean surface
density, N is total number of particles, and λcr = 4π2Gσ/κ2 is the Toomre
critical wavelength.

method. Section 3 describes our density-estimation method.
Section 4 describes our results, and Section 5 provides further
discussion. Section 6 presents a summary and conclusions.

2. WAKE SIMULATIONS

We carried out a series of numerical simulations of an orbit-
ing patch of ring particles. Details of the numerical technique
are provided in Porco et al. (2008), but are briefly summarized
here for convenience. Particle trajectories are computed in a ro-
tating frame (the patch) using Hill’s equations of motion with
self-gravity. The orientation of the patch is such that the x-
direction points radially away from the planet, the y-direction
is in the direction of the patch center motion, and z is perpen-
dicular to x and y according to the right-hand rule. Boundary
conditions are applied in the x- and y-directions to keep the
particle number constant. Duplicates of the patch surround it
in the orbital plane to provide a smoother gravity potential and
to allow for collisions at the patch boundary. Duplicates in the
±x-directions are offset in ±y to account for differential shear
(Wisdom & Tremaine 1988). A second-order leapfrog integrator
adapted to the rotating frame is used to integrate the equations
of motion. Collisions are predicted during the “drift” update
of each integration step and are carried out using billiard-ball
restitution equations. We ignored surface friction and particle
spin. We chose a time step of 5 s, which is more than 1000
times smaller than either the orbital period or the dynamical
interaction time between two particles,

√
1/Gρ. Initial con-

ditions consist of a uniform distribution of dynamically cold
particles in a thin slab; equilibrium, measured as a flattening of
the components of the velocity dispersion in the patch, is es-
tablished typically within 10 orbits of the central patch around
Saturn.

We used seven values of the input mean dynamical optical
depth τdyn, defined as the total cross section area of particles
divided by the total patch area (Table 1). All simulations used a
Saturn-centered orbital distance of 130,000 km, a monodisperse
particle-size distribution (i.e., identically sized particles) of
radius R = 1.667 m, and internal density equal to the local
Roche critical density 0.45 g cm−3 (Porco et al. 2007, 2008).
For this combination of particle properties, which are typical
values for the mid-A ring, the numerical values for the input
mean surface densities (in units of g cm−2) are simply 100
times the numerical values for τdyn. The patch dimensions of
510×1260 m, with the short axis oriented in the radial direction
and the long axis along the orbital direction, were chosen to be
always greater than 4×10 times the Toomre critical wavelength
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(λcr = 4π2Gσ/κ2, where G is Newton’s constant and κ is
the epicyclic frequency), even for the simulations with the
highest densities, which ensures that no individual particle or
structure can reach across the periodic boundary conditions to
meaningfully interact with itself.

Other investigators have used a parameter rp (Ohtsuki 1993;
Salo 1995) or r∗

h (Daisaka et al. 2001), a modified ratio of
Hill radius and particle radius, to track the susceptibility to
wake formation of a given simulated ring patch. This parameter
depends only on the particle’s internal density and semimajor
axis (Daisaka et al. 2001, Equation (8)). Furthermore, the Roche
critical density, at which a particle fills its own Hill sphere,
depends only on the particle’s semimajor axis (Porco et al. 2007,
Equations (1) and (2)). Combining these two, any particle at the
Roche critical density will have r∗

h ∼ 0.85. One can now locate
our suite of simulations as a vertical line in the two-dimensional
parameter space shown in Figure 2 of Daisaka et al. (2001),
and can calculate from their Equation (13) that the onset of
self-gravity wakes should occur for τ � 0.25.

For the primary batch of simulations, we used the coefficient
of restitution stated by Borderies et al. (1984), building on
the work of Andrews (1930), with v∗ = 0.001 cm s−1. This
relatively dissipative law, which yields lower post-collision
speeds than the more commonly used coefficient-of-restitution
law formulated by Bridges et al. (1984), was identified in the
analysis of Porco et al. (2008) as leading to a better fit to
observations of this particular region of the A ring. Furthermore,
we carried out one additional simulation that was identical to
the one described above with τdyn = 0.5 and σ = 50 g cm−2,
but using the Bridges et al. (1984) law. The latter simulation is
intended to be identical to that used by Salo et al. (2004) for
their photometric analysis. Throughout this paper, comparison
of the results given by the two coefficients of restitution can be
thought of as giving a crude approximation of the variation that
might arise in our models due to uncertainty of various input
parameters.

3. DENSITY-ESTIMATION METHOD

After each simulation ran for a long-enough period to reach
equilibrium (i.e., all components of the velocity dispersion have
settled to roughly constant values), we took seven snapshots
at t = {18, 20, 22, 24, 26, 28, 30} orbits. For each snapshot,
containing the positions of all particles at a given time, we
performed the following algorithm on a central sub-patch6 of
dimensions 300 × 750 m.

We first projected the three-dimensional particle positions
onto a plane. We used the ring plane (z = 0) for this purpose,
though this need not be the case. In order to quantify the
distribution of densities observed at a slant-path through the
ring, any plane perpendicular to a desired line of sight may be
used.

We divided the sub-patch into “micro-bins” of size 0.25 m,
small enough to clearly resolve the boundaries between wake
and inter-wake regions, forming a grid with dimensions 1200 ×
3000 micro-bins. At each micro-bin location [x0, y0], we begin
by drawing a circle around the five particles closest to that
location. The radius of the circle we denote as rC, and each
of the N particles within the circle is assigned a position [r, θ ]
relative to the center of the circle and the x = 0 axis. We then

6 Our reason for focusing on a sub-patch was simply to reduce computation
time.

Figure 1. Illustration of our density-estimation method using a sample snapshot
from the simulation with σ = 50 g cm−2 at t = 30 orbits (top left), at a
location centered at x0 = 84 m and y0 = 47 m from the frame center (inset
at top right). The first circle (green circle, including particles shown in green)
was validated by a “center of mass” less than 0.5 m from the micro-bin center
(i.e., the green cross is inside the blue circle) and also by (lower left-hand plots)
radial and azimuthal distribution of particles with standard deviations not too far
from uniformity. The attempt to expand the circle (red circle, including particles
shown in red and green) failed due to a “center of mass” too far from the micro-
bin center (i.e., the red cross is outside the blue circle), and also due to (lower
right-hand plots) excessive deviation from uniformity in both the radial and
azimuthal distribution of particles. In the plots, circles indicate the distribution
of r2 values and squares indicate θ values.

perform three tests to determine whether the particles are evenly
distributed (Figure 1):

1. The average position of the particles inside the circle (the
“center of mass”7) must be within 0.5 m of the center of the
micro-bin (the blue circle in Figure 1).

2. The number of particles whose distance from the center
of the circle is less than or equal to r should increase
linearly with r2. That is, for a perfectly even distribution,
the expected value of the radial location of the nth particle
would be r2

n = r2
C(n−1/2)/N , where n ranges from 1 to N.

We compute the standard deviation of the residual between
the actual and ideal values of rn, which must be less than
the total range divided by the number of particles (r2

C/N)
to pass the test.

3. Similarly, for a perfectly even distribution, the angular
separation between adjacent particles would be constant,

7 This is a figure of speech; in the case of a particle-size distribution, when
the average position of particles and the actual center of mass may not be the
same, it is particle locations with which we are concerned.
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which is to say that the expected value of the longitude of
the nth particle would be θn = 2π (n−1/2)/N . We find the
standard deviation of the residual between the actual and
ideal values of θn, which must be less than the total range
divided by the number of particles (2π/N ) to pass the test.

If all three tests are passed, then the micro-bin is validated
and used in the final solution. Furthermore, we try to expand the
circle, increasing rC to take in the next five particles and redoing
the above-mentioned tests on the new distribution. If the tests are
passed again, the iteration continues until the maximum value
of rC = 12.5 m is reached. If the tests are not passed, then we
revert back to the last successful value of rC for that location.

We identify five parameters in our method that require human
input. These include the number of particles added to the circle
in each iteration (we chose five, which is large enough for
each iteration to have reasonable statistics, but small enough
to allow the validation of bins that are close to a wake/inter-
wake boundary), the maximum value of rC (we chose 12.5 m,
which is less than the characteristic spacing between the dense
wake structures), and the threshold criteria for the three tests
enumerated above (the values described could reasonably be
multiplied by a scalar of order unity). Aside from this human
input, our method is fully automated.

This process is illustrated in Figure 1, where the first circle
(green) results in a successful validation, while the attempt to
expand the circle (red) fails. In the top-right panel, Test no. 1
can be seen in that the average position of the first five particles
(the green cross) is inside the blue circle, while the average
position of the first 10 particles (the red cross) is not. Tests
nos. 2 and 3 are illustrated in the plots, where the horizontal
dotted lines indicate the standard deviation criteria. Note that
the plotted residuals for r2 and θ have been normalized by
the threshold criterion values; when the circle is expanded, the
threshold criterion for θ decreases simply because N is twice
as large, while the threshold criterion for r2 slightly increases
because a larger r2

C compensates for the increased N.
In the gaps between the dense wake structures, it commonly

happens that even the maximum-size circle (rC = 12.5 m)
contains fewer than five particles. In this case, we designate the
location as “sparse” and proceed with the particles that do occur
in the maximum-size circle. For “sparse” bins, we waive Test
no. 1 (the “center-of-mass” test), in order to avoid large areas of
the inter-wake gaps having no coverage at all with valid bins.

When the above process is complete, each location on our
1200 × 3000 grid has one of two states: a valid circle of radius
rC with a certain number of particles within it (which can be
resolved into a density of number of particles per unit area),
or no valid result. We then visualize the valid circles and find
that nearly every location within the grid is covered by one or
more overlapping circles. Finally, we calculate the density at
each location on the grid by summing the particles in all circles
overlapping that location and dividing by the sum of the areas
of the same overlapping circles.8

4. RESULTS

A sample result of our density-estimation method is shown
in Figure 2. We find that regions with high calculated density
(bright in the figure) correlate well with regions with tightly
clustered particles, and that regions with low calculated density

8 Rather than simply averaging the densities in the overlapping circles, this
method weights the result somewhat toward those circles that have more
particles, and thus better statistics.

(dark in the figure) correlate well with regions in which particles
are sparse. Although some instances of intermediate calculated
density (gray in the figure) are on the boundaries between dense
and sparse regions, a smearing effect that our method was
designed to avoid, we find that the large majority of regions
with intermediate calculated density genuinely have particles
clustered to an intermediate degree.

Now that we have a grid of local densities within a self-
gravitating ring patch, we can make a histogram showing the
frequency with which each value occurs (Figure 3). For this
purpose, we express the local density in terms of the local
dynamical optical depth, τdyn(x, y) = ρ(x, y)πR2/	2, where
ρ(x, y) is the number density (particles per bin) calculated
by the method described in Section 3, 	 = 0.25 m is the
bin size, and R = 1.667 m is the particle radius. Note that
this is not the same quantity as that measured in optical
observations, the photometric optical depth τphot = − ln T ,
where the transparency T is the fractional area not blocked by
particles. The two are nearly equal at low values, but diverge
at large optical depths when particles come together closely
enough that their inability to occupy the same location in space
becomes important.

Some of the histograms in Figure 3 have an anomalously high
value in the left-most bin, containing the lowest optical depths.
This is due to a small fraction of bins which, in the application
of our density-estimation method, were not overlapped by any
valid circular bins. This generally occurs in small regions of very
low density that are surrounded by regions of higher density;
such regions are visible in Figure 2 as uniformly black. Rather
than further refine the method to better account for these difficult
cases, we simply assigned to these locations a density equal to
the lowest densities obtained. The fact that these left-most spikes
are not very large in any of the histograms justifies our decision
to neglect this effect as a small perturbation.

We obtain quite good results by modeling the histograms in
Figure 3 (using log τdyn as the independent variable) as a sum
of two or three Gaussians. We justify the choice of a Gaussian
fit as follows: the results of our density estimation, though quite
good, do contain some variation within regions that should
have a single density; sometimes the local density is higher
in the immediate vicinity of a single particle, and sometimes
the density decreases smoothly with distance from a group of
particles. If we provisionally assume that the overall density
distribution is characterized by a small number of discrete
values that each represent a certain fraction of the total area,
an assumption that comports with the qualitative sense of many
investigators and that forms the foundation of the bimodal-
distribution assumption of Colwell et al. (2006, 2007) and
Hedman et al. (2007), then it is reasonable for the variation
we just described to transform the density histogram (Figure 3)
from a distribution containing only a small number of nonzero
values to a distribution characterized by a small number of
Gaussians.

Defining a single Gaussian curve as y(x) = a0e
−(x−a1)2/2a2

2 ,
where x here is log τdyn, the parameters of each Gaussian as
stated in Figure 3 are the height of the Gaussian in units of the
histogram (= a0), the location of the center of the Gaussian
in units of τdyn (= 10a1 ), and the full width at half-maximum
of log τdyn (= 2

√
2 ln 2 · a2). The fit parameters are plotted in

Figure 4 as follows: the center location (= 10a1+a2
2/2) is now

the characteristic value of τdyn for a log-normal distribution, the
Gaussian height (= a0) is as in Figure 3, and the integrated area
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Figure 2. Sample result of our density-estimation method, showing a portion of the same snapshot shown in Figure 1. Red dots are particle locations, which constitute
the inputs for density estimation. Calculated densities are shown as a grayscale background ranging from black (low density) to white (high density).

Figure 3. Histograms of local dynamical optical depth, τdyn(x, y), for the eight simulations described in Section 2, calculated using the method described in Section 3.
Least-squares fits are made to a sum of three Gaussians (or, in the top-left case, two Gaussians). Within each plot are listed the fit parameters: the height, center
location, and full width at half-maximum (the latter in units of log τ ) of each Gaussian.
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Figure 4. Parameters of fitted Gaussians from Figure 3. Expressions are given
in the text for (a) the center location, (b) the height, and (c) the integrated area
normalized by the total area under the combined fit curve. The dotted line in
panel (a) shows the input mean dynamical optical depth, calculated by dividing
the sum of the cross section areas of all particles by the total area. The colors of
each curve correspond to the colors of the fitted Gaussians in Figure 3. Circles
signify the simulations using a Borderies et al. (1984) coefficient of restitution
law with v∗ = 0.001 cm s−1, and triangles signify the simulation using a Bridges
et al. (1984) law.

under the Gaussian curve (= √
2π · a0a2) is normalized by the

total area under the combined fitted curve.
The close correspondence between the density histograms

and our sum-of-three-Gaussians models justifies a posteriori
our provisional assumption. Surprisingly, though, the density
distribution is not bimodal but (except for the case with the
lowest surface density) trimodal! Once the wakes are fully
developed (i.e., for surface densities σ � 30 g cm−2 in our
simulations), the peak at high optical depth remains relatively
stationary with a central value τ ∼ 2, and both the central value
and the integrated area of the Gaussian gradually increase with σ
(green in Figure 4). The largest fraction of the area is covered by
very low optical depths, with fitted central values τ ∼ 0.04 that

gradually decrease with increasing σ (dark blue in Figure 4);
these optical depths are so low that such regions are likely to
be photometrically inactive in all cases. Optical depths closer
to the τgap values inferred by previous authors characterize the
middle peak in each histogram, with central values ranging from
τ ∼ 0.1 to τ ∼ 0.25 (cyan in Figure 4).

This result leads us to suggest re-interpreting the results of
previous investigators (Colwell et al. 2006, 2007; Hedman et al.
2007; Nicholson & Hedman 2009), whose models assume that
a photometrically active τgap characterizes the entire area that is
not occupied by the dense wakes. As we will show in Section 5.1,
our results are likely consistent with this picture insofar as τgap
is interpreted simply as the area-weighted average optical depth
over the inter-wake regions; however, our results indicate that
most of that area may be so sparsely populated that it is not
photometrically active at all, while a smaller fraction of the
inter-wake regions contains somewhat higher optical depths that
cause the entire inter-wake region to average out to τgap. When
one looks at movies of our self-gravity wake simulations, these
regions of intermediate τ most commonly arise from formerly
dense wakes that are in the process of being disrupted.

It is possible that the presence in our numerical simulations of
large areas with very low optical depth might be a result of our
use of a monodisperse size distribution (that is, we used a single
particle size, namely R = 1.667 m). Preliminary work by Salo
& Schmidt (2007) indicates that smaller particles may be more
likely to escape the dense wake and spread into the inter-wake
regions. Although we do not in this paper investigate simulations
with a particle-size distribution, this could be done easily enough
by separating simulated particles into logarithmic size bins,
perhaps with widths of a decade or a half-decade, assigning
an average size to the particles within each bin, proceeding
with a separate density estimation for each size bin, and finally
combining the resulting estimated densities. On the other hand,
there is considerable evidence that the clearing of small particles
out of the inter-wake regions is in fact required in order to match
brightnesses derived from N-body wake simulations with the
amplitude of the azimuthal brightness asymmetry observed in
the A ring in both ground-based and spacecraft imaging data, as
first suggested by Porco et al. (2003) and seen in the simulations
of Porco et al. (2008). The clearing out of inter-wake regions
occurs in models using a lossier (“squishier”) coefficient of
restitution, which Porco et al. (2008) argue are more realistic
and provide a better fit to observations. Indeed, in our Figures 3
and 4, it is clear that the simulation using the “bouncier” Bridges
et al. (1984) coefficient-of-restitution law yields a much smaller
peak (i.e., less area covered) at very low optical depths.

As a check on the accuracy of our parameterization methods,
in Figure 5 we compare several methods of calculating the total
optical depth of a simulated ring patch. The dotted line is the
input mean dynamical optical depth, which would be equal
to the actual mean photometric optical depth if particles were
randomly distributed. The open symbols connected by a dashed
line indicate the actual mean photometric optical depth, which
can be easily calculated for the entire patch (though not locally);
the transparency T is simply the fractional area not blocked by
particles, measured by projecting particle positions onto a plane
perpendicular to the line of sight, and τphot = − ln T . We note
in passing that our calculated actual mean optical depth for
the Bridges et al. simulation is 0.34; in Figure 16 of Salo et al.
(2004), whose simulation we intentionally attempted to replicate
for purposes of comparison, those authors found a photometric
optical depth of 0.36 for B = 90◦.
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Figure 5. Solid symbols connected by solid line are parameterized mean optical
depths, calculated by combining the central optical depths of each Gaussian
peak (Figure 4(a)) weighted by their relative integrated areas (Figure 4(c)). Open
symbols connected by dashed line are actual mean photometric optical depth,
calculated by dividing the area blocked by particles by the total area. Dotted
line shows the input mean dynamical optical depth, calculated by dividing the
sum of the cross section areas of all particles by the total area. In all cases,
circles signify the simulations using a Borderies et al. (1984) coefficient-of-
restitution law with v∗ = 0.001 cm s−1, and triangles signify the simulation
using a Bridges et al. (1984) law.

Ideally, the calculated total optical depths using our density
estimation would be equal to the actual mean photometric
optical depth. The solid symbols connected by a solid line
indicate the total optical depth obtained by combining9 the
central locations of the Gaussian peaks (Figure 4(a)) weighted
by the integrated area under each Gaussian curve (Figure 4(c)).
If this final method of expressing the optical depth can be
legitimized, then we will have succeeded in truly parameterizing
our simulated self-gravity wakes, expressing their photometric
properties by means of only a few numbers, whose dependence
on surface density and other input factors can then be easily
tracked.

First, we verify that the mean optical depth calculated from
our parameterization is consistent with the mean optical depth
calculated by simply adding together the continuum of density
values weighted by the histograms shown in Figure 3. These
two are consistent within Δτ ∼ 0.003 (except for the first point,
at σ = 10 g cm−2, for which Δτ ∼ 0.01), a small variation
given that the curve covers a range of Δτ ∼ 0.2.

Second, however, we find that the parameterized mean optical
depth (solid symbols) is slightly but uniformly too low compared
to the actual mean optical depth (open symbols). The reason for
this, we believe, is that we have heretofore used the dynamical
optical depth τdyn (which is easily calculated from dynamical
simulations), rather than the photometric optical depth τphot
(which corresponds to observations). As we have mentioned,
these two are roughly equal when particles are randomly
distributed; this is because a Gaussian probability of particle
overlap (as seen when projected onto a plane perpendicular to

9 In general, optical depths are properly combined by converting them to
transparencies (T = e−τ ), finding the mean of the transparencies weighted by
their occurrence frequencies, and then converting the total transparency back
into optical depth, thus:

τcombined = − ln

[
1

N

N∑
i=1

fie
−τi

]
. (1)

any given line of sight) plays the same role in τdyn that the
exponential plays in τphot. However, τphot > τdyn when the
distance between particles is comparable to the particle size
(i.e., at a high volume filling factor) because particles are now
constrained as to the locations in space they can occupy.

Salo & Karjalainen (2003) analyzed the photometric proper-
ties of simulated particle disks, finding that

τphot/τdyn � 1 + kD, (2)

where k is a scalar of order unity and

D = (4R/3H )τdyn (3)

is the volume filling factor for vertical scale-height H and
particle radius R. It is simple to obtain H from the results of
our numerical simulations; it is twice the standard deviation of
the z-coordinates of the particles, and we find it to range from
4 to 8 m. We attempted to calculate separate values of H for
low-density and high-density bins but did not get a result that
was statistically more meaningful than simply using a single
value for each simulation; thus we have done the latter. All of
our simulations used R = 1.667 m.

The filling factors for each of our parameterized peaks are
shown in Figure 6(a). Here, we have used in place of τdyn the
center location in optical depth of each peak (Figure 4(a)). We
then use the filling factor values to correct the peak locations
via Equation (2), as shown in Figure 6(b). We show results
for three values of k, namely, 0, 0.5, and 1. The revised mean
parameterized optical depth is shown in Figure 6(c). Now we
find that the mean optical depth given by our parameterization
corresponds well with that calculated directly, especially for
k = 1, similar to the value of k found to give the best results by
Salo & Karjalainen (2003).

The uncertainties in the parameter fits from which we ob-
tained optical-depth values (Figures 3 and 4) are difficult to
quantify due to the high degree of correlation among the pa-
rameters. To estimate their order of magnitude, we fit two inde-
pendent Gaussians to the two most peak-like regions (namely,
τdyn < 0.07 and τdyn > 1) of a characteristic histogram (namely,
that with σ = 45 g cm−2). We found, under the assumption that
we had chosen the proper fitting function, that the parameters
a0, a1, and a2 were robust within a few percent.

5. DISCUSSION

We have now successfully parameterized our simulated self-
gravity wakes, expressing their properties in terms of three
optical depths that are weighted by the integrated area under
each Gaussian curve. After converting from dynamical to
photometric optical depth by estimating the volume filling factor
and using k = 1 for the scalar in Equation (2), we find that
the mean optical depth calculated through our parameterization
corresponds well to that calculated directly from the simulations.
We now proceed to apply this method to analysis of Cassini data
from occultations and from imaging.

5.1. Occultations

In contrast to the bimodal optical-depth models employed
by previous analysis of occultation data (Colwell et al. 2006,
2007; Hedman et al. 2007; Nicholson & Hedman 2009), we
find for a ring patch in the mid-A ring with well-developed self-
gravity wakes that slightly more than half of the area is taken
up by space that for practical purposes is completely empty
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Figure 6. (a) Volume filling factor, D, calculated from Equation (3) for each
parameterized peak using values of R and H obtained for each simulation as a
whole, and using the peak center location as τdyn. (b) Revised peak locations
(compare Figure 4(a)) after applying Equation (2), using k values of 0, 0.5, and
1. (c) Revised mean parameterized optical depth (cf. Figure 5), calculated by
combining the revised central optical depths of each Gaussian peak (previous
panel) weighted by their relative integrated areas (Figure 4(c)).

and photometrically inactive. The dense wakes themselves take
up slightly less than one-fifth of the area, and the remaining
one-fourth to two-fifths is characterized by the so-called τgap.
Although simulations more detailed and accurate than those we
performed might result in some quantitative changes to these
results, the general idea of a trimodal distribution of optical
depth in the rings deserves consideration. As we will show, it
turns out that the two models perform nearly identically except
at very low values of the ring opening angle B, which ranges
from zero (seeing the rings edge-on) to 90◦ (seeing the rings
face-on).

A trimodal optical-depth distribution should primarily affect
the estimations of the gap optical depth τgap and the gap filling
fractions Fi for the simplified wake models. To explore this issue,

let us consider the transmission through the rings as a function
of ring opening angle B in the case where the projection of the
line of sight to the star onto the ring plane is parallel to the mean
wake orientation, which was the geometry studied by Nicholson
& Hedman (2009). In the formulation used by those authors, the
fraction of the visible area taken up by inter-wake regions F2 is
equal to their parameter G/λ, while F1 = 1 − F2 is ignored
because τwake is taken to be infinite for practical purposes.
Thus, for the simplified model of opaque wakes separated by
gaps of constant optical depth (that is, the bimodal case) the
transmission is given by

T b(B) = F2e
−τgap/ sin B. (4)

Similarly, for a model with a trimodal distribution of optical
depths, the transmission is

T t (B) =
3∑

i=1

Fie
−τi/ sin B. (5)

where Fi and τi are the area fractions and optical depths of
the three components of the ring (e.g., Figures 4(c) and 6(b),
respectively).

As discussed by Nicholson & Hedman (2009), it is useful to
consider the apparent normal optical depth,

τn = −sin B ln T . (6)

For the simplified (bimodal) wake model, this is a linear function
of sin B:

τ b
n = τgap − ln F2 sin B. (7)

By contrast, the more complex trimodal model cannot be
expressed so simply and will therefore yield a τ t

n that is a
nonlinear function of sin B.

Apparent normal optical depths τn for both bimodal and
trimodal models are plotted in Figure 7, for values of the area
fractions and optical depths roughly consistent with those found
in Section 4. The bimodal model uses a gap fraction equal to the
sum of the fractions of the two lower-optical-depth components
in the trimodal model and a gap optical depth equal to the
area-weighted mean optical depth in the two lower-optical-
depth regions. For intermediate to moderately high ring opening
angles, these two curves match reasonably well (up to a slight
offset), which indicates that the optical depth of gaps derived
from the occultation data is the mean optical depth of the regions
outside the optically thick wakes. Some slight deviation from
a straight line can be observed at the largest opening angles
(sin B � 1), as the occultations become marginally sensitive to
the finite optical depth of the wakes. A more dramatic deviation
from the linear trend, however, can also be seen at very low
opening angles (sin B � 0.2, which is to say B � 10◦), where
the moderate-optical-depth regions start to appear opaque, and
thus the occultations begin to become capable of distinguishing
between the very low and moderate-optical-depth components
of the model.

Thus, occultations at very low opening angles may be able
to discern variations in the optical depths within the gaps.
Otherwise, existing analysis of occultation data should simply
be interpreted with τgap representing the area-weighted average
optical depth within the gaps (or inter-wake regions), keeping
in mind the possibility that there may be strong variations in
optical depth within those inter-wake regions.
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Figure 7. Apparent normal optical depth τn as a function of the sine of the
ring opening angle B for a bimodal (dashed) and a trimodal (solid) model.
The bimodal model is calculated from Equation (7) with F2 = 0.8 and
τgap = 0.09, while the trimodal model is calculated from Equations (5) and
(6) with Fi = {0.2, 0.3, 0.5} and τgap = {4.0, 0.2, 0.02}, respectively. Specific
values used for the area fractions Fi and optical depths τi are shown in the plot.

5.2. Imaging

Porco et al. (2008) have already applied detailed direct
photometric modeling, using a deterministic geometric ray-
tracing method to shoot photons at simulated ring patches
characterized by self-gravity wakes, to match the brightness
of the ring as seen in Cassini images. Our semianalytic method
is not able to improve on their analysis in terms of quantitative
properties, but we can speak to some trends that underlie the
rings’ photometric behavior.

For images of the lit face of the rings, the large majority of
the brightness comes from the dense wakes, which reflect more
light than do regions of lesser optical depth. For images of the
unlit face of the rings, on the other hand, most of the brightness
comes from regions of intermediate optical depth, as the dense
wakes are largely opaque and the nearly empty regions do not
scatter much light towards the camera. It would be instructive
for future papers on direct photometric modeling to show at least
a sample image of the brightness resulting from a ring patch;
we predict that the brightness on the unlit side of the rings
will be dominated by a relatively small area of intermediate
optical depth, rather than being broadly spread over the inter-
wake region. Furthermore, the trends discussed in this paper
can help future direct photometric modeling to better tune their
simulation parameters to match measured brightnesses.

A more direct application of our parameterization is useful in
investigating the peculiar photometric properties of the so-called
propellers. These local disturbances in the rings are thought to be
due to the perturbing influence of embedded ∼100 m moonlets.
Observed propellers (Tiscareno et al. 2006, 2008; Sremčević
et al. 2007) generally show the disturbed region as brighter
than the background ring brightness, though theoretical models
(Spahn & Sremčević 2000; Sremčević et al. 2002; Seiß et al.
2005; Lewis & Stewart 2009) indicate that the most prominent
feature of the disturbance is a decrease in local density. For im-
ages of the unlit side of the rings, depending on the background
optical depth, brightness sometimes decreases with increasing
density as the rings become more opaque, but calculations of
the photometric properties based on Chandrasekhar (1960) in-
dicate that this is not the operating regime for the images in
question, given their particular viewing geometry and the mean
surface density as measured from spiral density waves (Tis-
careno et al. 2007). Furthermore, for images of the lit side of
the rings, denser regions are always brighter than less dense
regions.

Figure 8. Relative single-scattering brightness of a homogeneous slab of
particles, calculated from Equations (8) (reflection, here shown as dashed line)
and (9) (transmission, here shown as solid line) using μ = 1 and μ0 = 0.4.

We apply our parameterization of self-gravity wakes to
this problem by converting the three optical-depth values for
each simulation to brightnesses and then performing an area-
weighted average as before. Chandrasekhar (1960) derived for
a homogeneous slab the single-scattering reflection (RSS) and
transmission (TSS):

RSS ∝ 1 − e−τ/μ−τ/μ0 (8)

and
TSS ∝ e−τ/μ − e−τ/μ0 , (9)

where μ and μ0 are the respective cosines of the emission angle
(the angle of the direction toward the camera from the ring-plane
normal, which is the complement of the ring opening angle B)
and the solar incidence angle (the angle of the direction toward
the Sun from the ring-plane normal). We neglect the albedo
and the phase function, which do not vary among the instances
we consider and thus do not contribute to any trends. We will
use μ = 1, corresponding to an image in which the camera is
looking straight down onto the face of the rings (which is to
say B = 90◦), because in carrying out our density-estimation
method we projected ring-particle positions onto the ring plane.
To investigate behavior at other values of μ, one could redo the
density estimation with ring-particle positions projected onto a
plane perpendicular to a different line of sight. Nevertheless,
the general trends illuminated in our analysis here should be
applicable to a broader range of viewing geometries. We use
μ0 ∼ 0.4, appropriate to the Sun’s illumination of Saturn’s rings
in 2004 and 2005, when the first images containing propellers
were taken. The resulting values for RSS and TSS are plotted in
Figure 8.

Our use of the single-scattering approximation is justified for
images in reflected light (Dones et al. 1993) and for self-gravity
wakes with their high filling factor (Salo & Karjalainen 2003).
However, multiple scattering can significantly brighten images
in transmitted light of non-wake regions if the ring reverts to a
many-particle-thick structure (Salo & Karjalainen 2003). Thus,
the dotted line in Figure 9(b) may be even higher than we have
shown, which only serves to strengthen the arguments made in
the next section.

5.3. Why Propellers are Bright

The brightnesses resulting from our parameterized self-
gravity wakes are shown in Figure 9. We find for both reflection
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Figure 9. Calculated relative brightness for images in (a) reflection and
(b) transmission, calculated from the optical depths given in Figure 6(b) for
k = 1 using the single-scattering brightnesses shown in Figure 8 for a viewing
geometry defined by μ = 1 and μ0 = 0.4. Colors are for the three peaks,
as in Figures 3 and 4, while black is the combined brightness calculated by
averaging the values for the three peaks weighted by the integrated areas given
in Figure 4(c). Dotted lines show the brightness associated with the input mean
dynamical optical depth, which corresponds to the brightness a ring patch would
have if self-gravity wakes were not present.

and transmission that the calculated brightnesses are quite low
compared to the brightnesses expected from an unperturbed ring
patch lacking self-gravity wakes. In many cases, this is true even
if the unperturbed patch has a lower input mean optical depth
than the patch with self-gravity wakes.

These results lend preliminary quantitative support to a
mechanism previously proposed by Tiscareno et al. (2008),
developing an idea first briefly suggested by Tiscareno et al.
(2006), for why propellers appear as bright relative to the
background ring. The argument in our previous paper was
that self-gravity wakes tend to lock up ring material into a
photometrically inactive state, and that propellers can release
this material by locally and temporarily disrupting the wake
structure. Thus, even though a propeller structure contains less
material overall (Seiß et al. 2005; Lewis & Stewart 2009), it
may contain more photometrically active material and thus be
relative bright.

It should be noted that this hypothesis cannot be directly
tested at this time by numerical simulations. To our knowl-
edge, the most detailed simulations carried out to date on pro-
pellers are those by Lewis & Stewart (2009), but even their
results do not fully incorporate the activity of self-gravity
wakes, due to the great difficulty in simultaneously account-
ing for phenomena on very different lengthscales (a few meters
for self-gravity wakes, several kilometers for propellers). The

numerical simulations and photometric models in the online
supplement of Sremčević et al. (2007) also are insufficient to
either confirm or reject this hypothesis due to the severely lim-
ited extent of phase space explored. Investigating small-scale
structure requires a large number of particles per unit area,
while the large patch size required to investigate large-scale
structure drives the total number of particles quite high. Our
hope is that the semianalytical treatment presented here will
provide guidance to the highly computationally intensive direct
models that would be required to quantitatively address this
question.

Other possible hypotheses of course exist, such as the sugges-
tion of Sremčević et al. (2007) that densities within a propeller
structure are enhanced by temporarily liberated ring-particle
regolith, but it is not within the scope of this paper to study
them. Our hypothesis was very briefly rebutted10 in the on-
line supplement of Sremčević et al. (2007), who rejected the
idea primarily because of a general sense that it should lead
to “moonlet wakes”11 even brighter than the propeller gaps.
However, many realistic simulations of propeller structures lack
moonlet wakes (Lewis & Stewart 2009), and in any case, it may
well be that both wakes and gaps are seen as bright in observed
propellers.

Our basic suggestion is that the continuum brightness of
the ring is characterized by the solid black lines in Figure 9,
especially in the range of input mean surface densities from 40
to 45 g cm−2 that typify the “propeller belt” region (Tiscareno
et al. 2007), and that the brightness of well-developed propeller-
shaped features is characterized by the dotted line. Although the
dotted lines in Figure 9 are above the solid black lines for any
given surface density, the comparison must be made with the
level of the dotted line at a lower surface density than for the
solid black line, since the relative density inside well-developed
propeller-shaped features is lower than the background—e.g.,
10%–30% in the models of Lewis & Stewart (2009). Propellers
would be relative-bright features if the dotted lines at 10–15 g
cm−2 have higher relative brightness than the solid black lines
at the highest surface densities plotted.

In keeping with the hypothesis of Tiscareno et al. (2006,
2008), Figure 9(b) shows that all three parameterized optical-
depth values (colored solid lines) for images in transmission
correspond to brightnesses lower than those of unperturbed rings
with no wakes (dotted line), even if the latter are considered to
have significantly lower optical depths overall. The low values
of the area-weighted average brightness make it quite likely that
propellers may be seen as relative-bright features in images of
the unlit side of the rings. For images in reflection (Figure 9(a)),
the wakes themselves are quite bright (green symbols), and an
average between only the dense wakes and the intermediate
optical depth (“τgap”) would certainly result in wakes that are
relative-dark features, but in our results the fact that a large
fraction of the area is taken up by effectively empty space pushes
the mean brightness (black solid line) downward to a regime in
which propellers might be neutral or perhaps relative-bright
features, when seen on the lit side of the rings.

To be sure, we have not shown that this mechanism works in
all cases. Factors that make it more likely to work include (1)

10 In response to informal discussion during 2006, as well as the brief mention
by Tiscareno et al. (2006).
11 See Tiscareno et al. (2008) and references therein for more in the context of
propellers on the meaning of the term “moonlet wakes,” originally due to
Showalter et al. (1986), which has nothing to do with the “self-gravity wakes”
discussed elsewhere in this paper, despite an unfortunate similarity in the
names.
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higher densities within the propeller gaps, (2) higher background
surface density σ , and (3) lossier coefficient of restitution.
In some scenarios, the propeller gaps might be brightened by
this mechanism only enough to blend in with the background, or
may remain relative dark. It must also be remembered that our
analysis is based on several approximations; thus, we cannot say
in detail under which conditions this mechanism can or cannot
work. Our purpose is to show that the mechanism is plausible,
and to encourage more detailed work.

These conclusions fit well with the observations. Tiscareno
et al. (2008) found that propellers on both the lit and unlit
faces of the rings were relative-bright features, and in fact
found no relative-dark features in the “propeller belt” of the
mid-A ring. Furthermore, Tiscareno et al. (2008) found no
significant difference in propeller dimensions between lit-side
(reflection) and unlit-side (transmission) images, indicating that
the same basic structures were being seen in both geometries.
Yet in morphology the observed propellers strongly resemble
the regions of relatively low density seen in simulations, not the
relatively dense “moonlet wakes” associated with the central
moonlet.

Preliminary observations of very large propellers by Tis-
careno et al. (2009) do show, for the first time, some relative-
dark regions within propellers. These “giant propellers” occur
between the Encke Gap and the Keeler Gap, farther from the
center of Saturn than the “propeller belt” in the mid-A ring that
contains the smaller propellers observed previously. But even
these observations can be incorporated into the above model
simply as a matter of degrees, in effect becoming the excep-
tion that proves the rule. If relative densities inside the giant
propellers are exceedingly low, then they will indeed be dark
relative to the background in both reflection and transmission
(Figure 9). Similarly, if relative densities inside the “moonlet
wakes” are exceedingly high for the giant propellers, they may
become so opaque that they are indeed relative-dark for im-
ages in transmission. However, neither of those circumstances
affects our conclusion for the smaller propellers in the “pro-
peller belt.”12 For these, we have found that propellers may
very reasonably be found to be relative-bright features, both for
images in reflection and for images in transmission, if they lo-
cally and temporarily disrupt the structure of self-gravity wakes
in addition to decreasing the overall local density within the
propeller-shaped structure.

6. SUMMARY AND CONCLUSIONS

We have developed a semianalytic method of parameterizing
simulations of self-gravity wakes in Saturn’s rings, describing
their photometric properties by means of only six numbers:
three optical depths and three weighting factors. These numbers
are obtained by fitting a sum of three Gaussians to the results
of a density-estimation procedure that finds the frequencies of
various values of local density within a simulated ring patch.
In order to account for the conversion from dynamical optical
depth to photometric optical depth, we use the expression
τphot/τdyn � 1 + kD (Salo & Karjalainen 2003), where D is
the volume filling factor (which we estimate); we find the best
results by setting the scalar k = 1.

Our first surprising result is that rings dominated by self-
gravity wakes appear to be mostly empty space, with more than
half of their area taken up by local optical depths around 0.01.

12 Also, background surface densities are lower beyond the Encke Gap than
they are in the “propeller belt” (Spilker et al. 2004).

Such regions will be photometrically inactive for all viewing
geometries. While this result might be affected by our use of
a monodisperse size distribution, we suggest that it might be
robust due to the lower coefficient of restitution that we used in
our N-body simulations, following Porco et al. (2008).

If our models are in fact robust, then the bimodal density
distribution assumed in the interpretation of occultation data
by previous investigators should be replaced by a trimodal
distribution. The practical results of this turn out to be minimal,
as occultations can only distinguish between bimodal and
trimodal models at very low opening angle. Existing analysis of
occultation data should be interpreted with τgap representing the
area-weighted average optical depth within the gaps (or inter-
wake regions), keeping in mind the possibility that there may
be strong variations in optical depth within those inter-wake
regions.

Applying our parameterization of self-gravity wakes lends
preliminary quantitative support to the hypothesis of Tiscareno
et al. (2008) that “propellers” observed in the mid-A ring are
bright because of a local and temporary disruption of self-
gravity wakes. Even though the overall local density is lower
within the propeller-shaped structure surrounding an embedded
central moonlet, disruption of the wakes would flood these same
regions with more photometrically active material, raising their
apparent brightnesses in agreement with observations. We find
that this mechanism can plausibly work for a wide range of input
parameters.

We hope that this hypothesis will eventually be directly
tested by detailed numerical simulations. However, this is
presently very difficult due to the high expense in terms of
computational resources necessary to account for the small
lengthscales appropriate for self-gravity wakes (a few meters)
while simultaneously accounting for the very large lengthscales
appropriate for propellers (several kilometers). The former
essentially requires a large number of particles per unit area,
while the latter requires a large patch size. As computational
resources increase to the point that such simulations become
feasible, it will become possible to determine whether propellers
really are characterized by a local and temporary disruption of
self-gravity wakes, as well as whether the photometric properties
of propellers can be explained using the hypothesis we have
outlined. In the meantime, the results of our semianalytic method
give us reason to hope that the solution to the problem indeed
lies in this direction.
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Sremčević, M., Spahn, F., & Duschl, W. J. 2002, MNRAS, 337, 1139
Tiscareno, M. S., Burns, J. A., Beurle, K., Cooper, N. J., Spitale, J. N., & Porco,

C. C. 2009, BAAS, 41, 559
Tiscareno, M. S., Burns, J. A., Hedman, M. M., & Porco, C. C. 2008, AJ, 135,

1083
Tiscareno, M. S., Burns, J. A., Hedman, M. M., Porco, C. C., Weiss, J. W.,

Dones, L., Richardson, D. C., & Murray, C. D. 2006, Nature, 440, 648
Tiscareno, M. S., Burns, J. A., Nicholson, P. D., Hedman, M. M., & Porco, C.

C. 2007, Icarus, 189, 14
Wisdom, J., & Tremaine, S. 1988, AJ, 95, 925

http://dx.doi.org/10.1029/2005GL025163
http://dx.doi.org/10.1016/j.icarus.2007.03.018
http://adsabs.harvard.edu/cgi-bin/bib_query?2007Icar..190..127C
http://adsabs.harvard.edu/cgi-bin/bib_query?2007Icar..190..127C
http://dx.doi.org/10.1006/icar.2001.6716
http://adsabs.harvard.edu/cgi-bin/bib_query?2001Icar..154..296D
http://adsabs.harvard.edu/cgi-bin/bib_query?2001Icar..154..296D
http://dx.doi.org/10.1006/icar.1993.1118
http://adsabs.harvard.edu/cgi-bin/bib_query?1993Icar..105..184D
http://adsabs.harvard.edu/cgi-bin/bib_query?1993Icar..105..184D
http://dx.doi.org/10.1006/icar.2002.6956
http://adsabs.harvard.edu/cgi-bin/bib_query?2002Icar..160..132D
http://adsabs.harvard.edu/cgi-bin/bib_query?2002Icar..160..132D
http://dx.doi.org/10.1016/j.icarus.2004.04.008
http://adsabs.harvard.edu/cgi-bin/bib_query?2004Icar..171..183D
http://adsabs.harvard.edu/cgi-bin/bib_query?2004Icar..171..183D
http://dx.doi.org/10.1016/0019-1035(87)90106-0
http://adsabs.harvard.edu/cgi-bin/bib_query?1987Icar...69..280F
http://adsabs.harvard.edu/cgi-bin/bib_query?1987Icar...69..280F
http://dx.doi.org/10.1016/j.icarus.2007.02.019
http://adsabs.harvard.edu/cgi-bin/bib_query?2007Icar..189..493F
http://adsabs.harvard.edu/cgi-bin/bib_query?2007Icar..189..493F
http://dx.doi.org/10.1086/516828
http://adsabs.harvard.edu/cgi-bin/bib_query?2007AJ....133.2624H
http://adsabs.harvard.edu/cgi-bin/bib_query?2007AJ....133.2624H
http://dx.doi.org/10.1086/148957
http://adsabs.harvard.edu/cgi-bin/bib_query?1966ApJ...146..810J
http://adsabs.harvard.edu/cgi-bin/bib_query?1966ApJ...146..810J
http://dx.doi.org/10.1016/j.icarus.2008.09.009
http://adsabs.harvard.edu/cgi-bin/bib_query?2009Icar..199..387L
http://adsabs.harvard.edu/cgi-bin/bib_query?2009Icar..199..387L
http://dx.doi.org/10.1006/icar.1993.1168
http://adsabs.harvard.edu/cgi-bin/bib_query?1993Icar..106..228O
http://adsabs.harvard.edu/cgi-bin/bib_query?1993Icar..106..228O
http://dx.doi.org/10.1126/science.1143977
http://adsabs.harvard.edu/cgi-bin/bib_query?2007Sci...318.1602P
http://adsabs.harvard.edu/cgi-bin/bib_query?2007Sci...318.1602P
http://adsabs.harvard.edu/cgi-bin/bib_query?2003BAAS...35..929P
http://adsabs.harvard.edu/cgi-bin/bib_query?2003BAAS...35..929P
http://dx.doi.org/10.1088/0004-6256/136/5/2172
http://adsabs.harvard.edu/cgi-bin/bib_query?2008AJ....136.2172P
http://adsabs.harvard.edu/cgi-bin/bib_query?2008AJ....136.2172P
http://adsabs.harvard.edu/cgi-bin/bib_query?1994MNRAS.269..493R
http://adsabs.harvard.edu/cgi-bin/bib_query?1994MNRAS.269..493R
http://dx.doi.org/10.1038/359619a0
http://adsabs.harvard.edu/cgi-bin/bib_query?1992Natur.359..619S
http://adsabs.harvard.edu/cgi-bin/bib_query?1992Natur.359..619S
http://dx.doi.org/10.1006/icar.1995.1157
http://adsabs.harvard.edu/cgi-bin/bib_query?1995Icar..117..287S
http://adsabs.harvard.edu/cgi-bin/bib_query?1995Icar..117..287S
http://www.saturnaftercassini.org/files/3_Salo_Heikki_B.pdf
http://www.saturnaftercassini.org/files/3_Salo_Heikki_B.pdf
http://dx.doi.org/10.1016/S0019-1035(03)00132-5
http://adsabs.harvard.edu/cgi-bin/bib_query?2003Icar..164..428S
http://adsabs.harvard.edu/cgi-bin/bib_query?2003Icar..164..428S
http://dx.doi.org/10.1016/j.icarus.2004.03.012
http://adsabs.harvard.edu/cgi-bin/bib_query?2004Icar..170...70S
http://adsabs.harvard.edu/cgi-bin/bib_query?2004Icar..170...70S
http://dx.doi.org/10.1029/2005GL022506
http://adsabs.harvard.edu/cgi-bin/bib_query?2005GeoRL..3211205S
http://adsabs.harvard.edu/cgi-bin/bib_query?2005GeoRL..3211205S
http://dx.doi.org/10.1016/0019-1035(86)90160-0
http://adsabs.harvard.edu/cgi-bin/bib_query?1986Icar...66..297S
http://adsabs.harvard.edu/cgi-bin/bib_query?1986Icar...66..297S
http://adsabs.harvard.edu/cgi-bin/bib_query?2000A&A...358..368S
http://adsabs.harvard.edu/cgi-bin/bib_query?2000A&A...358..368S
http://dx.doi.org/10.1016/j.icarus.2004.05.016
http://adsabs.harvard.edu/cgi-bin/bib_query?2004Icar..171..372S
http://adsabs.harvard.edu/cgi-bin/bib_query?2004Icar..171..372S
http://dx.doi.org/10.1038/nature06224
http://adsabs.harvard.edu/cgi-bin/bib_query?2007Natur.449.1019S
http://adsabs.harvard.edu/cgi-bin/bib_query?2007Natur.449.1019S
http://dx.doi.org/10.1046/j.1365-8711.2002.06011.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2002MNRAS.337.1139S
http://adsabs.harvard.edu/cgi-bin/bib_query?2002MNRAS.337.1139S
http://adsabs.harvard.edu/cgi-bin/bib_query?2009BAAS...41..559B
http://adsabs.harvard.edu/cgi-bin/bib_query?2009BAAS...41..559B
http://dx.doi.org/10.1088/0004-6256/135/3/1083
http://adsabs.harvard.edu/cgi-bin/bib_query?2008AJ....135.1083T
http://adsabs.harvard.edu/cgi-bin/bib_query?2008AJ....135.1083T
http://dx.doi.org/10.1038/nature04581
http://adsabs.harvard.edu/cgi-bin/bib_query?2006Natur.440..648T
http://adsabs.harvard.edu/cgi-bin/bib_query?2006Natur.440..648T
http://dx.doi.org/10.1016/j.icarus.2006.12.025
http://adsabs.harvard.edu/cgi-bin/bib_query?2007Icar..189...14T
http://adsabs.harvard.edu/cgi-bin/bib_query?2007Icar..189...14T
http://dx.doi.org/10.1086/114690
http://adsabs.harvard.edu/cgi-bin/bib_query?1988AJ.....95..925W
http://adsabs.harvard.edu/cgi-bin/bib_query?1988AJ.....95..925W

	1. INTRODUCTION
	2. WAKE SIMULATIONS
	3. DENSITY-ESTIMATION METHOD
	4. RESULTS
	5. DISCUSSION
	5.1. Occultations
	5.2. Imaging
	5.3. Why Propellers are Bright

	6. SUMMARY AND CONCLUSIONS
	REFERENCES

