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Abstract

The shear and cohesive strengths of a rubble-pile asteroid could influence the critical spin at which the body fails
and its subsequent evolution. We present results using a soft-sphere discrete element method to explore the
mechanical properties and dynamical behaviors of self-gravitating rubble piles experiencing increasing rotational
centrifugal forces. A comprehensive contact model incorporating translational and rotational friction and van der
Waals cohesive interactions is developed to simulate rubble-pile asteroids. It is observed that the critical spin
depends strongly on both the frictional and cohesive forces between particles in contact; however, the failure
behaviors only show dependence on the cohesive force. As cohesion increases, the deformation of the simulated
body prior to disruption is diminished, the disruption process is more abrupt, and the component size of
the fissioned material is increased. When the cohesive strength is high enough, the body can disaggregate
into similar-size fragments, which could be a plausible mechanism to form asteroid pairs or active asteroids. The
size distribution and velocity dispersion of the fragments in high-cohesion simulations show similarities to
the disintegrating asteroid P/2013 R3, indicating that this asteroid may possess comparable cohesion in its
structure and experience rotational fission in a similar manner. Additionally, we propose a method for estimating a
rubble pile’s friction angle and bulk cohesion from spin-up numerical experiments, which provides the opportunity
for making quantitative comparisons with continuum theory. The results show that the present technique has great
potential for predicting the behaviors and estimating the material strengths of cohesive rubble-pile asteroids.
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1. Introduction

Growing evidence suggests that asteroids larger than a few
hundred meters in diameter are gravitational aggregates, i.e.,
they are rubble-pile asteroids for which gravity is the principal
force holding the body together (Richardson et al. 2002; Michel
et al. 2015). However, because the gravity is so small on these
minor bodies, the physical interactions arising from other
sources may also play a significant role on their mechanical
behaviors. Scheeres et al. (2010) analyzed a number of physical
effects that may act on particles on asteroid surfaces, among
which the van der Waals cohesive force should be a dominant
force and could be comparable to the gravity. The mechanism
of the interparticle van der Waals cohesive force is associated
with molecular or atomic polarization effects, which become
important for particles with size on the order of several
micrometers (Israclachvili 1985). Given that the regolith
sample of asteroid 25143 Itokawa returned by the Hayabusa
spacecraft has a size distribution of ∼10 to ∼100 μm
(Nakamura et al. 2011), it is appropriate to consider the
existence of the van der Waals cohesive force in asteroid
bodies, and assess whether these forces will be important to
their evolution. In addition, the ultra-high vacuum space
environment that improves the surface cleanliness of individual
particles can enhance the van der Waals interaction, causing it
to be non-negligible even for larger particles (Perko
et al. 2001). Based on the morphology of the asteroid Itokawa,
Sánchez & Scheeres (2014) suggest that rubble-pile asteroids

could be made of meter-sized boulders that are connected
through smaller interstitial grains (i.e., granular bridges) that
are themselves linked by cohesive interactions.
The existence of cohesive forces can increase the tensile

strength of rubble-pile asteroids and prevent their breakup by
rotational centrifugal forces (Holsapple 2007; Sánchez &
Scheeres 2014, 2016). In turn, study of the spin limit of
asteroids can shed light on their internal structure, strengths
(shear and cohesive), and evolution processes (Hirabayashi
2015; Zhang et al. 2017). From the spin rate distribution of 688
asteroids, Harris (1996) noted that no asteroids spin faster than
the spin barrier for a bulk density of ∼2.7 g/cc, above which
equatorial material cannot remain bound against centrifugal
acceleration, suggesting a cohesionless rubble-pile structure for
asteroids larger than ∼300 m in diameter. Subsequent
observations of spin states of thousands of asteroids show
similar results (e.g., Pravec & Harris 2000; Pravec et al. 2002a).
However, based on elastic-plastic continuum theory for solid
materials, Holsapple (2001, 2004) pointed out that the spin
limit is constrained by the material shear strength of asteroids,
with lower strength leading to a narrower region of permissible
equilibrium spin states. If the strength of asteroid materials is
similar to that of terrestrial cohesionless sand, some asteroids
may have already violated their spin limits. Furthermore, recent
observations show that a handful of asteroids can spin
significantly faster than the spin barrier, e.g., asteroid
(455213) 2001 OE84 (Pravec et al. 2002b; Polishook
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et al. 2017), asteroid (335433) 2005 UW163 (Chang et al.
2014), asteroid (60716) 2000 GD65 (Polishook et al. 2016),
and asteroid (144977) 2005 EC127 (Chang et al. 2017). The
dynamical and collisional evolution histories make these
asteroids unlikely to be monolithic structures (e.g., Michel
et al. 2015; Polishook et al. 2016), while a cohesive rubble-pile
structure can well explain these fast rotators. Furthermore, the
disruption events observed for some active asteroids (e.g.,
main-belt asteroid P/2013; Jewitt et al. 2014) also indicate the
existence of cohesion (Hirabayashi et al. 2014; Jewitt
et al. 2017).

The main objective of this paper is to infer the dependence of
the spin limits and failure behaviors of rubble-pile asteroids on
the shear and cohesive strengths. Our effort builds upon a first
investigation that assesses the behaviors of rubble-pile asteroids
without cohesion (Zhang et al. 2017). Theoretical efforts have
been carried out to explore the consequence of cohesion on
spin limits and failure (e.g., Holsapple 2007; Hirabayashi
2015). When the shape, mass bulk density, and spin rate of an
asteroid are known, the level of cohesive strength needed to
keep the body bound together can be estimated from the
closed-form algebraic formulas derived by Holsapple (2007).
This theory has been successfully applied to several real
asteroids. For example, the 2-km-diameter main-belt asteroid
(60716) 2000 GD65 can maintain global stability at a spin
period of 1.9529 hr with cohesion of 150–450Pa (Polishook
et al. 2016), and the 1-km-diameter near-Earth asteroid (29075)
1950 DA only needs a cohesive strength of ∼64 Pa to be stable
at its current observed spin period of 2.1216 hr (Rozitis
et al. 2014). Both values are within the range of the cohesive
strength measured for weak lunar regolith (Mitchell
et al. 1972). By analyzing the elastic stress distribution in a
spherical body, Hirabayashi (2015) found that the failed
regions in such a body move from the equatorial surface to
the center as the spin rate increases, implying transition of the
failure mode from surface failure to interior failure. However,
our previous study shows that the microscopic heterogeneity
generated by arranging discrete particles within a rubble pile
can significantly influence the shear strength and failure
behaviors of spinning rubble piles (Zhang et al. 2017). Given
the discrete nature of the rubble-pile structure, continuum
models may not be well adapted to fully characterize the
mechanical behavior of rubble-pile asteroids.

As an important numerical technique in granular material
research, the Soft-Sphere Discrete Element Method (SSDEM)
complements continuum modeling efforts. SSDEM numerical
investigations on behaviors of rubble-pile bodies during spin-
up processes have given intriguing insights into the effect of
interactions between particles. Sánchez & Scheeres (2012)
explored the effect of interparticle sliding friction on the failure
modes of cohesionless ellipsoids, and confirmed the consis-
tency of the reshaping process in simulation with the
continuum theory (i.e., Holsapple 2010). With the implementa-
tion of a physically based contact model incorporating
rotational resistances, Zhang et al. (2017) found that the failure
mode of a cohesionless rubble pile depends mainly on the
arrangement and size distribution of its constituent particles.
For cohesive bodies, Sánchez & Scheeres (2016) observed that
large components can be rapidly detached from the simulated
rubble pile when the cohesive strength is high enough.
Hirabayashi et al. (2015) found that the heterogeneous
distribution of cohesion can change the failure mode of a

rubble pile. All of these studies indicate the positive roles of
interparticle friction and cohesion in changing the failure spin
rate of rubble-pile bodies. Despite these efforts, the contribu-
tions to the material strengths of a rubble pile of the sliding and
rotational friction as well as the cohesion in the SSDEM
contact model is still poorly understood. Furthermore, it is hard
to make comparisons with the continuum theory due to lack of
proper quantitative analyses on the macroscopic strength
parameters (i.e., the friction angle and the cohesive strength
used in the failure criterion for granular materials; see
Section 3.2) in these studies.
In this paper, we use a high-efficiency SSDEM code,

pkdgrav, to investigate the mechanical properties and
dynamical behaviors of cohesive self-gravitating rubble piles
subject to increasing rotational centrifugal forces and explore
their spin limits. Analyses at three different scales, i.e., the
global (full-body) scale, the macroscopic (representative
volume elements) scale, and the microscopic (particle-level)
scale, are carried out to reveal the details of simulated bodies
during spin-up processes. Following the granular bridge idea
proposed by Sánchez & Scheeres (2014, 2016), we develop a
comprehensive contact model incorporating translational and
rotational friction and van der Waals interactions arising from
interstitial fine grains to simulate cohesive granular materials,
and design three SSDEM parameters to control the inter-
particle frictional and cohesive strengths (see Section 2). A
series of numerical triaxial compression tests are carried out
to measure the performance of the contact model and
calibrate the mechanical properties of the simulated granular
specimen with those obtained in laboratory experiments (see
Section 3). Then, we explore the effects of the three SSDEM
parameters on the behaviors of rubble piles during spin-up
processes in Section 4. In Section 5, a method from a
granular mechanics perspective is proposed to estimate the
spin limit and macroscopic material strengths of a simulated
rubble pile. Finally, Section 6 presents comparisons of our
simulation results with the continuum theory and discusses
the implications.

2. SSDEM with Cohesion

2.1. Basic Features of SSDEM Implemented in pkdgrav

In a granular assembly, each particle can interact with its
surroundings through short-range interactions (e.g., mechanical
contact forces, van der Waals forces) and long-range interac-
tions (e.g., gravity, electrostatic forces).7 Within the high-
efficiency parallel tree code framework, pkdgrav (Richardson
et al. 2000; Stadel 2001), a soft-sphere model including four
components in the normal, tangential, rolling, and twisting
directions is used for computing particle contact forces
(Schwartz et al. 2012; Zhang et al. 2017). Figure 1 presents
the directions of the forces and torques acting on particle
i generated by the contact with particle j. The linear spring-
dashpot normal contact force FN and the tangential stick-slip
force FS are given by

d= - +ˆ ( )F n uk C 1aN N N N N

d d dm= +( ∣ ∣ ∣ ∣) ( )F u Fk Cmin , , 1bS S S S S S N S S

7 Since the electrostatic forces are not globally ubiquitous and there is a large
range of uncertainties on the strength of asteroids’ electric fields (Scheeres
et al. 2010), we typically assume that grains of asteroids are uncharged in this
study.
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which depend on the stiffness constants, kN and kS, the viscous
damping coefficients, CN and CS, and the sliding friction
coefficient μS.

8 The variable δN is the mutual compression
between two particles, and dS is the sliding displacement from
the equilibrium contact point. The unit vector n̂ gives the
direction from the center of particle i to that of particle j. The
dashpot force is linearly proportional to the normal and
tangential relative velocities, uN and uS. Recently, in order to
capture behaviors of granular materials under quasi-static
loadings, a spring-dashpot-slider rotational resistance model
was implemented in pkdgrav (Zhang et al. 2017). The
resulting rolling and twisting torques, MR and MT , are given by


d w d

d d d
=

+ <⎧⎨⎩
∣ ∣

∣ ∣ ∣ ∣
( )M

k C k M

M k M

,

,
2aR
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where kR and kT are the material stiffness along rolling and
twisting directions, and CR and CT are the damping coefficients
for rolling and twisting motions. wR and wT describe the
relative rolling and twisting motions between two particles in
contact. Similar to the tangential force model, dR and dT are the
rolling and twisting angular displacements from the equili-
brium contact point, respectively. When the magnitude of the
rolling/twisting torque reaches a critical value, MR,max or
MT,max, the surfaces of the two particles start to slide relative to
each other along the rolling/twisting direction, whereupon the
system enters into a dynamic friction condition. The motion of

a particle can be obtained by integrating the total force and
torque acting on it.
The interactions between particles and wall boundaries with a

wide range of geometries as well as the effect of gravity are also
implemented in pkdgrav, allowing precise reproduction of
laboratory experiments (see Schwartz et al. 2012 for details). The
numerical approach has been validated through comparison with
laboratory experiments, e.g., low-speed impact experiments
(Schwartz et al. 2014), and has been successfully used to study
various behaviors of granular systems, e.g., the Brazil-nut effect
(Matsumura et al. 2014; Perera et al. 2016; Maurel et al. 2017)
and avalanches (Yu et al. 2014). In addition, the parallel
hierarchical tree code in pkdgrav provides a highly efficient
way to carry out long-range interaction calculations for an
N-body system, giving an ( )N Nlog scaling dependence,
where N is the number of particles in a simulation (Richardson
et al. 2000). With the current processing power, pkdgrav has
the ability to simulate the evolution of tens of thousands to
millions of particles; this has been well tested in a wide range of
environments (e.g., Ballouz et al. 2015, 2017; Zhang et al. 2017;
Schwartz et al. 2018).

2.2. Cohesive Normal Force

Several cohesion models have been implemented previously
in pkdgrav, but for a different cohesive mechanism, i.e.,
sintering forces, which can build very strong bonds giving rise
to the formation of particle aggregates (see Richardson et al.
2009; Schwartz et al. 2013). Although the thermal processes on
asteroids may facilitate the formation of sintering bonds
between grains at the asteroids’ surface, the van der Waals
force is a more universal mechanism for bodies in a low-
gravity, ultra-high-vacuum environment (Scheeres et al. 2010),
which has been verified for lunar regolith (Mitchell et al. 1972).
The cohesive force introduced in this study is a combination

of the granular bridge idea proposed by Sánchez & Scheeres
(2014, 2016) and a hypothetical contact area characterized by a
shape parameter, β, first introduced in the contact model of
Jiang et al. (2013, 2015). With the assumption that there exist
substantial micro-sized grains to cover larger boulders, this
model can mimic the cumulative effect of the cohesive regolith
between two large boulders without simulating each individual
fine grain. The rotational resistance arising from the interstitial
regolith is also taken into account via the hypothetical
contact area.
As shown in Figure 1, taking particles i and j as boulder

representatives and assuming that there are many fine particles
distributed around the gaps between these two boulders to form
a granular bridge, we can obtain the cumulative forces and
torques transmitted through the granular bridge by integration
over an effective contact area. The orange polygon shown in
Figure 1 can serve as the effective contact area that contains all
the points that are at the same distance from the two boulders’
surfaces and are closer than these surfaces to any other
boulders’ surfaces. The area of this polygon can be accurately
calculated using the Voronoi tessellation per pair of neighbor-
ing boulders in principle. To avoid this burdensome calcul-
ation, we introduce the shape parameter, β, to represent a
statistical measure of the area where the interstitial grains are
important and approximate this effective contact area using a
rectangle:

b= ( ) ( )A R4 , 3eff
2

Figure 1. Schematic of transmitted forces and torques at a contact in a local
Cartesian coordinate system, where êx and êy are in the contact plane and êz is
in the normal direction according to the right-hand rule. The two irregular
convex polyhedrons represent the Voronoi tessellation (which divides the space
containing all particles into subdomains, one per particle, where each
subdomain consists of all points closer to its particle than any other; the
open-source library Voro++ introduced by Rycroft 2009, can be used to build
the Voronoi tessellation for granular assemblies) for particle i and j in a
granular assembly, where the orange polygon represents the power plane
(every point in this plane has the same distance to the surfaces of particles i and
j, which is closer than the distance to any other particles’ surfaces) of these two
neighboring particles. The dashed yellow circle on the contact plane
(exaggerated for illustration) denotes the actual contact area.

8 The min() function means that the vector quantity of least magnitude is the
one chosen.
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where the effective radius R=rirj/(ri+rj), and ri and rj are
the radii of the corresponding boulders. The resulting cohesive
force between the two boulders can be modeled as

= ˆ ( )F ncA , 4C eff

where the interparticle cohesive tensile strength c reflects the
physical properties of the interstitial regolith, e.g., porosity, size
distribution, surface energy, and Hamaker constants (Seizinger
et al. 2013; Sánchez & Scheeres 2014; Gundlach & Blum 2015).

The interstitial cohesive regolith will also strengthen the
friction between boulders to resist relative rotational motion,
commensurate with the shape effect (Li et al. 2011; Jiang
et al. 2013). With a similar contact area characterized by the
shape parameter β, the rolling/twisting stiffness and damping
coefficients can be expressed as

b b
b b

= =
= =

( ) ( )
( ) ( ) ( )

k k R C C R

k k R C C R

, ,

2 , 2 . 5
R N R N

T S T S

2 2

2 2

When the relative rolling/twisting rotational motion exceeds a
critical threshold, the cohesive contact on the edge of the contact
area begins to break, and the peak rolling/twisting torque is
given as

m b
m b m

=
=

∣ ∣
∣ ∣ ( )

F
F

M R

M R

,

6
R R N

T T S N

,max

,max

where μR and μT represent the static friction coefficients for
rolling and twisting, respectively.9

In our implementation, the cohesive force described in
Equation (4) is added to the calculation of the interaction
between two particles in contact, and is ignored when the two
particles are separated. By these means, the breakage and
recovery of the cohesive effect of interstitial regolith can be
captured. Although the behavior of individual interstitial grains is
not physically simulated, our model can capture the resulting
tensile strength and rotational resistances well, which is sufficient
for our purpose of demonstrating the effect of cohesive strength
on rubble-pile asteroids. In addition, since the effective contact
area Aeff given by Equation (3) could be much larger than the
actual contact area between two spherical particles (i.e., the
dashed yellow circle shown in Figure 1), the resulting rotational
resistance and cohesion can reduce excess particle rotations and
restrict the particles’ freedom to rotate. Therefore, the effects of
surface roughness and the interlocking of non-spherical shapes
found for real-world granular materials can be reflected to some
extent in our model. In Section 3, a series of drained triaxial
compression tests were carried out to validate the ability of our
SSDEM model to simulate cohesive granular materials.

2.3. Parameter Setup of SSDEM

Before proceeding to lay out numerical simulations, it is
necessary to clarify how we set the parameters used in our
SSDEM model, including two stiffness constants, kN and kS, two
damping coefficients, CN and CS, three friction coefficients,
(μS, μR, μT), a shape parameter β, an interparticle cohesive tensile
strength c, and an integration timestepΔt. The normal stiffness kN
and the timestepΔt are set to ensure that particle overlaps for each
entire simulation do not exceed 1% of the minimum particle

radius (in cases where it is important to match the sound speed of
real materials, kN can also be chosen to control the speed of energy
propagation through a medium represented by soft-sphere
particles; see Section 2.1 in Schwartz et al. 2012 for details). To
keep normal and tangential oscillation frequencies equal to each
other, the tangential stiffness kS is often set to (2/7)kN (see Section
2.6 in Schwartz et al. 2012, for details). CN and CS can be derived
from the normal and tangential coefficients of restitution, εN and
εS, which are set to 0.55 so that the granular system is subject to
sufficient damping (these values are also reasonable for terrestrial
rocks; Chau et al. 2002). μR and μT represent the capability of the
interstitial regolith to resist breakage, which are set to 1.3 and 1.05
for a medium level, respectively (the derivation is similar to the
cohesionless case; we refer the reader to Jiang et al. 2015, for
details).
By these means, the dimension of the SSDEM parameter

space is narrowed down to three, i.e., μS, β, and c, which
control the sliding resistance strength, the rotational resistance
strength, and the cohesive strength between particles in contact,
respectively. In SSDEM simulations, these three parameters
can serve as the adjustable material parameters, allowing the
modeling of granular materials with various material properties,
as revealed in the following section.

3. SSDEM Calibration: Triaxial Compression Tests

The drained triaxial compression test is a common method to
measure the mechanical properties of granular materials
(Lade 2016). Here, the same procedure is applied to calibrate
the properties of the simulated specimen using our SSDEM
model against that of real sand.

3.1. Simulation Setup

Figure 2 illustrates the simulation setup. The triaxial
compression procedure is automatically performed using
pkdgrav. In the beginning, a uniform confining pressure is
applied to the specimen and then the vertical axial strain ε1 is
increased linearly in compression while the motions of the
lateral walls are controlled by a servo mechanism that can
maintain a constant confining pressure continuously acting on
the specimen, i.e., σ2=σ3=constant.10 To meet quasi-static
loading conditions, the top and bottom walls are moved toward
each other at a constant strain rate of 3% per minute.
The granular specimen used in our triaxial tests consists of

∼14,000 particles, with a −3-index power-law distribution in
radius ranging from 6mm to 18mm and a material density of
3.0 g/cc. A two-stage procedure is used to prepare the specimen
for representing the macroscopic homogeneity of a real sand
sample (the same procedure is also applied to generate rubble-pile
asteroid representatives in Section 4).11 First, a granular assembly

9 The mathematical model for rolling and twisting torques is the same as the
one used for the cohesionless case in Zhang et al. (2017), but with different
physical meanings when cohesion is included.

10 In rock and soil mechanics, the compressive stress is expressed as a positive
value, and the tensile stress is expressed as a negative value, and so is the
strain. We follow this convention in the expression of stress and strain
variables.
11 A granular specimen is considered macroscopically homogeneous if the
distribution of particle sizes and their contact orientations is uniform (see
Figure 3 for an example). Generally, in laboratory experiments, a real sand
sample consists of millions of particles, while simulations of comparable
particle numbers require very time-consuming computation. The studies of
Jiang et al. (2003, 2013, 2015) show that the main behaviors of granular
materials can be captured when the macroscopic homogeneity of SSDEM
specimens is guaranteed. By these means, a macroscopically homogeneous
specimen containing thousands of particles should be sufficient for the purpose
of this study.

4

The Astrophysical Journal, 857:15 (20pp), 2018 April 10 Zhang et al.



is created by placing particles with a predefined size distribution
randomly in a spherical cloud and allowing the cloud to
gravitationally collapse with highly inelastic collisions. Friction-
less and cohesionless SSDEM parameters are used to minimize
the void space between particles. Second, a portion with a
predefined shape is extracted from the interior of the granular
assembly produced in the first step.

The prepared specimen is isotropically compressed to a
uniform confining pressure condition in a 340 mm×340 mm×
720mm box with six frictionless boundary walls (see Figure 2).
Given that the particle arrangement is sensitive to the external
gravity field, leading to a biased direction of the contact forces,
compression processes (including the isotropic and triaxial) are
conducted in a gravity-free condition. Figure 3 presents the
distribution of contact orientations prior to vertical loading,
showing that this specimen is virtually homogeneous in all
directions. The packing efficiency of our tested sample is ∼0.62,
which is within the typical range of terrestrial sands observed in
laboratory tests (Cabalar et al. 2013).

To reproduce the desired elastic mechanical property and
match the sound speed of real sand, a normal stiffness constant
kN of 5.1×106 kg s−2 is chosen (a stiffer kN normally leads to
a higher Young’s modulus), and the integration timestep Δt is
set to 3.6×10−6 s so that particle overlaps for each entire
simulation do not exceed 1% of the minimum particle radius.
The effect of μS, β, and c is explored in Section 3.3.

3.2. Material Strength Determination: Drucker–Prager Failure
Criterion

The material strengths of a granular material can be derived
from its failure stress state. As one of the most common yield
criteria for geophysical granular materials, the Drucker–Prager
failure criterion has been successfully applied to analyzing
the failure of rubble-pile structures (e.g., Holsapple 2007;

Sharma et al. 2009; Hirabayashi 2015), which is given as
(Jaeger et al. 2009)

 + ( )J C sI , 72 1

where I1 is the first invariant of the Cauchy stress tensor, and J2
is the second invariant of the deviatoric stress tensor, which
can be written in terms of the principal stresses, σ1, σ2, and
σ3 (from largest to smallest), as I1=σ1+σ2+σ3, =J2

s s s s s s- + - + -[( ) ( ) ( ) ] 61 2
2

2 3
2

3 1
2 .

The failure envelope (Equation (7) with the equality) plotted
in the I1– J2 plane is a straight line with a slope of s and an
intercept of C, in which s and C represent the shear and
cohesive strengths of the granular material, respectively, as
shown in Figure 4. Note that this cohesive strength C represents
the bulk property of the granular material, which is different
from the interparticle cohesive tensile strength c used in the
cohesive force model (Equation (4)). We distinguish this
large C as the macroscopic cohesive strength. Since the
Drucker–Prager failure envelope is a smooth version of the
Mohr-Coulomb failure envelope, the slope s can be expressed
as a function of the commonly used friction angle f,
i.e., f f= -[ ( )]s 2 sin 3 3 sin .
The constants f and C can be determined from results of

triaxial compression tests. Generally, three or more tests should
be performed to make an appropriate estimation. As shown in
Figure 4, the stress states at failure (i.e., the state at which the
deviator stress achieves its peak in triaxial compression tests)
under different confining pressure are plotted in the I1– J2
plane, and a best-fit straight line (i.e., the failure envelope) can
be derived from these data points. Then the values of f and C
can be extracted from the failure envelope.

3.3. Triaxial Simulation Results

The macroscopic mechanical properties of a specimen are
characterized by four parameters, i.e., the friction angle f, the
macroscopic cohesive strength C, the Young’s modulus E, and
the Poisson’s ratio ν. f and C can be estimated using the
method introduced in Section 3.2, and E and ν can be obtained
from the initial slopes in the linear-elastic regime of the stress-
strain curve and the volumetric strain curve, respectively
(Belheine et al. 2009),

s
e

n
e
e

=
D
D

= -
D
D

⎛
⎝⎜

⎞
⎠⎟ ( )E ,

1

2
1 . 8v1

1 1

We investigated the effects of the SSDEM parameters, μS, β,
and c, on these macroscopic properties. To draw the failure
envelope, triaxial tests for each parameter set were conducted
under three confining pressures, i.e., σ2=σ3=50 kPa,
100 kPa, and 200 kPa, respectively. As shown in Table 1,
the value ranges of the Young’s modulus E and the Poisson’s
ratio ν and their dependences on the confining pressure are
consistent with laboratory experiments on real sands (e.g., for
the Labenne medium sand, E∼100 MPa, ν∼0.27, and
f∼36°; see Kolymbas & Wu 1990; Mestat & Berthelon
2001), indicating the validity of our SSDEM model.

3.3.1. Effect of Interparticle Friction Parameters: μS and β

Figure 5 shows the evolution of the deviator stress, σ1–σ3,
the volumetric strain, εv, and the mechanical coordination
number (CN, i.e., the mean number of contacts for particles

Figure 2. Schematic of a triaxial test simulated using SSDEM. During loading,
the pressures acting on the lateral walls remain constant (σ2=σ3), and the
vertical strain ε1 is linearly increased in compression (the layers are colored for
illustration only).
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with two or more contacts; particles with one or zero contact
cannot transmit forces) of tested specimens during triaxial
compression processes for different sets of parameters, μS and
β, corresponding to simulations1 to8 in Table 1. At the
beginning, the vertical axial loading compresses the specimen,
leading to slight increases in the volumetric strain εv. Mean-
while, a biased orientation of the force chains along the vertical
direction is formed to resist the axial loading, causing breakage
in the contacts along other directions. As a result, the CN then
decreases rapidly. As the vertical compression continues, the
lateral walls move outward to maintain their equilibrium.
Therefore, the initial volumetric contraction is followed by
dilation. Particles also move outward to fill the space,
weakening the force networks along the vertical direction and
the ability to resist the axial loading. So, the growth rate of the
deviator stress slows down and exhibits strain-softening
behavior after the peak state is achieved, and a constant CN
is maintained. The results show that the typical mechanical
response of dense sands, e.g., the nonlinear stress-strain
behavior and volumetric dilation behavior, can be well
reproduced using our SSDEM model.

In addition, some conspicuous features of the effect of μS
and β can be observed under each confining pressure:

1. The deviator stress as well as its peak value and the
corresponding axial strain at the peak state all increase
with μS and β.

2. The maximum compaction in the volumetric strain and
the corresponding axial strain increase with μS and β.

3. The value of CN at the dilation stage decreases as μS or β
increases.

The above findings indicate that higher friction resistance can
improve the robustness of the contact force network and require
more effort to disrupt its structure.

The shape parameter β seems to play a smaller role than the
sliding friction coefficient μS does, especially for the cases of
μS=0.3. Figure 6(a) compares the peak stress variables and
the corresponding failure envelopes in the I1– J2 plane for
different μS with various β. Generally, a higher friction angle f
can be achieved with a larger μS or β, which is physically
expected. However, as shown in Figure 6(a) and Table 1, the
effect of β on the friction angle f declines when β becomes
larger, and the maximum achievable friction angle is limited by
the value of μS, e.g., ∼32° for μS=0.3. This implies that the
shear strength of a granular assembly is strongly controlled by
the sliding frictional resistance between components. Once
particles start sliding relative to each other, the rotational

resistance, regardless of how large it is, cannot stop this
process, and the shear strength will be weakened, resulting in
the strain-softening behavior. As shown in Figure 5, this strain-
softening behavior is more pronounced with larger μS, in
agreement with previous simulations (e.g., Göncü &
Luding 2013).

3.3.2. Effect of the Interparticle Cohesive Tensile Strength c

A series of triaxial compression tests were performed with
μS=0.5, β=0.5, and the interparticle cohesive tensile
strength c varying from 0 to 313.8 kPa, corresponding to
simulations 6 and 13 to 17 in Table 1. Figure 6(b) presents
the failure envelopes at the peak state in the I1– J2 plane of
these tests. An apparent macroscopic cohesive strength C
(i.e., the intercept) is observed for nonzero c, and grows with c.
The friction angle f (i.e., the slope) is essentially independent
of c, which is consistent with the findings in previous
simulations (e.g., Modenese et al. 2012; Jiang et al. 2013).
Combined with Figure 6(a), the results indicate that the shear
strength mainly depends on the sliding friction coefficient, μS,
and the interparticle contact area, β, while the cohesive strength
primarily depends on the interparticle cohesive tensile strength
c (and on β, since it controls the contact area).
The consistency of results from our triaxial compression

tests with those from laboratory experiments allows us to
extend our SSDEM model to simulate granular materials in
other scenarios with confidence. In the following section, this
model is applied to study spinning rubble-pile bodies in space.
A similar failure analysis procedure is carried out to investigate
the material strengths of these bodies (see Section 5).

Figure 3. Distribution of the contact orientations of a specimen under a uniform confining pressure. The contact normal vectors are projected on x–y, y–z, and z–x
planes. The length of each sector is the number of contacts in each directional interval (7.5°), and the sum of the sector lengths is the total contact number of this
specimen.

Figure 4. Determination of f and C from triaxial compression tests. The
crosses represent the results of triaxial compression tests under different
confining pressures.
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Table 1
Summary of Simulation Parameters (Second Column to Fifth Column) and Material Properties (Last Four Columns) That Were Estimated from Triaxial Compression

Testsa

Sim. No. μS β c (kPa) σ3 (kPa) E (MPa) ν f (°) C (kPa)b

50 76.8 0.303
1 0.3 0.3 0 100 100.5 0.277 30.3±0.2 −0.4±1.1

200 124.6 0.232

50 84.3 0.283
2 0.3 0.5 0 100 109.2 0.257 32.0±0.5 −0.6±2.9

200 131.6 0.221

50 88.8 0.273
3 0.3 0.7 0 100 113.9 0.246 32.4±0.8 0.4±4.3

200 135.9 0.213

50 92.2 0.265
4 0.3 1.0 0 100 117.7 0.238 32.3±0.5 1.2±3.1

200 139.6 0.206

50 92.9 0.275
5 0.5 0.3 0 100 111.6 0.258 37.1±1.1 −3.3±7.2

200 130.0 0.229

50 105.2 0.249
6 0.5 0.5 0 100 121.9 0.237 40.6±0.5 −2.9±3.6

200 137.1 0.216

50 107.9 0.244
7 0.5 0.7 0 100 125.2 0.231 42.4±0.2 −2.3±1.9

200 141.2 0.208

50 112.5 0.234
8 0.5 1.0 0 100 129.9 0.222 43.9±0.5 −2.2±4.2

200 145.4 0.201

50 105.1 0.262
9 1.0 0.3 0 100 119.2 0.251 44.2±0.3 −1.0±2.9

200 132.1 0.227

50 114.0 0.243
10 1.0 0.5 0 100 127.1 0.235 49.3±0.8 −0.9±5.8

200 138.9 0.215

50 119.7 0.231
11 1.0 0.7 0 100 131.9 0.225 52.7±0.1 −1.0±1.5

200 142.9 0.207

50 124.8 0.220
12 1.0 1.0 0 100 136.1 0.215 56.3±0.0 0.4±0.2

200 146.9 0.200

50 106.3 0.251
13 0.5 0.5 31.4 100 122.4 0.239 41.5±0.1 0.4±0.6

200 137.2 0.216

50 111.7 0.243
14 0.5 0.5 94.2 100 125.4 0.234 41.7±0.4 3.4±3.0

200 138.3 0.216

50 116.3 0.233
15 0.5 0.5 156.8 100 128.2 0.229 41.9±1.4 5.8±9.1

200 138.3 0.214

50 120.1 0.226
16 0.5 0.5 219.5 100 130.3 0.225 42.0±0.5 7.8±4.1

200 138.3 0.214

50 123.9 0.219
17 0.5 0.5 313.8 100 132.4 0.219 41.8±1.3 12.2±8.6

200 139.4 0.213

Notes.
a The values of f and C are reported within their 90% confidence intervals.
b Given that the stress variables at the peak state range from hundreds of kPa to thousands of kPa (see Figure 6 for examples), the value of the bulk cohesion C (which measures the shear
stress strength at zero pressure) derived by fitting the three peak stress variables is subject to a relatively large error. For this reason, the estimated value of the bulk cohesion C could slightly
depart from zero when c=0Pa (but still remain small relative to the range of c explored, and also small in relation to the measurement variation).
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4. Application: Numerical Modeling of Spinning Rubble
Piles

As indicated by previous SSDEM studies on spinning self-
gravitating aggregates (e.g., Sánchez & Scheeres 2012, 2016;
Zhang et al. 2017), the spin limit of a rubble pile strongly

depends on the friction and cohesion parameters of the contact
model. However, these studies did not distinguish the
contribution of the sliding friction and rotational friction to
the material strength, and the action of these parameters has not
been fully understood. In this study, we attempt to reveal the

Figure 5. Evolution of the deviator stress, the volumetric strain, and the mechanical coordination number of granular specimens as functions of the axial strain in
triaxial compression tests for (a) μS=0.3, and (b) μS=0.5, where the solid, dashed, and dotted lines correspond to a confining pressure of 50 kPa, 100 kPa, and
200 kPa, respectively. The results for different β are presented in different colors as indicated in the legend.

Figure 6. Peak stress variables of triaxial compression tests and corresponding failure envelopes plotted in I1– J2 plane for (a) c=0Pa (simulations 1 to 12), where
the dotted, dash–dotted, and dashed lines correspond to μS of 0.3, 0.5, and 1.0, and the results for different β are presented in different colors as indicated in the legend;
and (b) c�0 Pa (simulations 6 and 13 to 17), in which the inset gives a closer view of the origin, showing the changes in the intercept for each curve. Linear least-
squares fitting is applied to draw the failure envelopes.
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mechanisms of these parameters through analyzing rubble-pile
structures during spin-up processes from multiple scales.

4.1. Simulation Setup

The granular representations of rubble-pile asteroids with a
given shape are constructed using the same procedure as
described in Section 3.1. An oblate model with axis ratios α1 of
∼0.9, α2 of ∼1.0, a maximum diameter of ∼1 km, and a bulk
density ρB of ∼2.4 g/cc is taken as the rubble-pile sample in
this analysis, where α1=a3/a1, α2=a2/a1. The axis lengths
a1, a2, and a3 are given as the maximum extensions along the
principal axes of inertia (from largest to smallest) of the rubble
pile. The bulk density of a rubble pile is calculated as
ρB=ηBρp, where ηB is the internal packing efficiency (defined
in Equation (9)) and ρp is the particle material density.
This rubble-pile model consists of ∼18,000 particles, with a
−3-index power-law distribution in particle radius ranging
from 10 m to 30 m, and ρp of ∼3.3 g/cc.12 The normal stiffness
kN and the timestep Δt are set to meet the maximum particle
overlap requirement.

During a spin-up simulation, with given SSDEM parameters,
the simulated rubble pile evolves under its self-gravity,
following a spin-up path, which sets its spin period T to a
prescribed value as a function of time t (see the top frame in
Figure 7 for an example; only maximum principal-axis rotation
is considered in this study, where z is the spin axis). The spin-
up procedure is similar to our previous study (see Section 2.3.4
in Zhang et al. 2017, for details). In brief, in the beginning of a
simulation, the rubble-pile body is allowed to settle down at a
slow spin state Tstart (Tstart=4 hr is used in this study), and

then, the body is linearly spun up from Tstart until global
disruption occurs, after which we stop maintaining the spin
period of the simulated body and let the body evolve freely
under its own gravity.13

4.2. Definitions of Multiscale Variables

Considering that the mechanical behaviors of granular
materials have different interpretations when analyses are
carried out at different scales (Andrade & Tu 2009), variables
defined at three different scales are monitored throughout the
spin-up process. At the global scale, the shape, characterized by
α1 and α2, the internal packing efficiency, ηB, and the
mechanical coordination number, CN, are used to capture the
global properties of the simulated body. The internal packing
efficiency ηB is the fraction of the volume in the internal
structure of a rubble pile that is occupied by the constituent
particles, which can be measured based on the Voronoi
tessellation of this rubble pile (see Section 3.2 in Zhang
et al. 2017, for details),
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where ri is the radius and Vi is the volume of the Voronoi cell
for the ith particle, and Ninternal is the number of particles in the
interior of the rubble pile.
The global dynamical behaviors of a granular material

depend on the interaction of individual particles at the
microscopic scale, which can be captured by the force chain
distribution. The contact networks in the simulated rubble pile
can be visualized by tracing the normal contact strength, SN,
i.e., the total normal contact force divided by the effective
contact area, so that the contacts that reach the cohesion limit
(i.e., the given value of the interparticle cohesive tensile
strength c used in the simulation) are revealed.
Furthermore, to link the properties of the simulated rubble

pile with the conventional continuum medium and present the
local characteristics at the macroscopic scale, it is also useful to
analyze the stress distribution in the rubble pile. The stress
analyses are carried out on the scale of representative volume
elements (RVEs; see Section 3.3.1 in Zhang et al. 2017, and
references therein for details). The size of an RVE is often
taken to be about 12 times the radius of the typical particle for
stress analyses (Masson & Martinez 2000). We use a tree code
to divide the rubble-pile body into several similar-sized sub-
assemblies, i.e., RVEs. Each RVE contains 200 to 300
particles. The average stress tensor of a local region, e.g., the
jth RVE, in a rubble pile can be assessed by homogenization
and averaging methods,
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where NRVE is the number of particles in this RVE and VRVE is
the total volume of this RVE. The Cauchy stress tensor si for a

Figure 7. Evolution of spin period (T, top frame), axis ratio (α1, upper middle
frame), internal packing efficiency (ηB, lower middle frame), and mechanical
coordination number (CN, bottom frame) during spin-up processes. The results
for different μS and β are denoted in different colors as indicated in the legend.
c=0 Pa for all the cases shown here.

12 We also tested two other cases with a lower resolution (∼5,400 particles)
and a higher resolution (∼60,700 particles) and found no qualitative
differences in results.

13 A global disruption behavior of a simulated rubble pile is diagnosed when
α1 is reduced to half of its initial value. In general, since the structure is
globally disrupted, the spin period of the body will abruptly increase after we
set it free. For example, as shown in Figure 7, the spin period T keeps
decreasing (the top frame) until the axis ratio and the packing efficiency drop
abruptly (the upper middle and the lower middle frames).
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single particle i is given as the summation of the dyadic product
of the branch vector xi k, that connects the particle center with
the contact point and the corresponding contact force f i k, for
the kth contact. Ni,C is the number of contacts for the ith
particle. The first invariant of the average stress tensor Ij,1

RVE and

the second invariant of the deviatoric stress tensor Jj,2
RVE for the

jth RVE can be determined from the averaged stress tensor
s̄j

RVE. Analyzing the distribution of these stress-state variables
can help us interpret how the simulated rubble pile responds to
the spin-up loads.

4.3. Spin-up Simulation Results

To understand the effect of the SSDEM parameters on the
dynamical behaviors and material strengths of rotating rubble
piles, multiple spin-up simulations were carried out in this
study, as summarized in Table 2.

4.3.1. Effect of Interparticle Friction Parameters: μS and β

Figure 7 shows the evolution of the state variables of the
simulated body during the spin-up process for different sets of
parameters, μS and β, with c=0 Pa. The top left panel of the
Figure 12 animation presents the spin-up and disruption
process in the case of μS=0.5, β=0.5, and c=0 Pa. As
expected, an increase in the sliding friction or rotational friction
can postpone the initiation of failure. When the body has been
spun up past its failure limit, its shape becomes more oblate,
and the packing efficiency and coordination number gradually
decrease. The evolution of these state variables exhibits similar
failure behaviors, regardless of the value of μS or β. The
finding that the failure mode does not show strong dependen-
cies on the friction parameters is in agreement with the
analytical theory by Hirabayashi (2015). The simulations of
Sánchez & Scheeres (2016), using a different SSDEM code,
show a contrary result, namely that different friction angles

Table 2
Summary of Simulation Parameters (Second Column to Fifth Column) and the Critical Spin Period (Sixth Column) and Material Strengths (Last Two Columns) of

Simulated Rubble Piles in the Spin-up Testsa

Sim. No. μS β c (Pa) ρB (g/cc) Tc (hr) f (°) C (Pa)

1.8 3.00
1 0.5 0.3 0 2.4 2.60 31.7±0.6 −0.1±0.2

3.0 2.32

1.8 2.96
2 0.5 0.5 0 2.4 2.56 32.9±0.5 0.0±0.2

3.0 2.28

1.8 2.93
3 0.5 0.7 0 2.4 2.54 33.7±0.4 0.1±0.2

3.0 2.27

1.8 2.92
4 1.0 0.3 0 2.4 2.53 34.2±0.8 0.1±0.3

3.0 2.27

1.8 2.90
5 1.0 0.5 0 2.4 2.51 35.2±0.7 0.0±0.3

3.0 2.24

1.8 2.87
6 1.0 0.7 0 2.4 2.49 36.1±0.5 0.1±0.2

3.0 2.22

1.8 2.94
7 0.5 0.5 100 2.4 2.49 33.3±0.6 0.8±0.2

3.0 2.23

1.8 2.71
8 0.5 0.5 200 2.4 2.42 33.1±0.2 2.1±0.1

3.0 2.20

1.8 2.59
9 0.5 0.5 400 2.4 2.34 33.1±0.9 5.2±0.3

3.0 2.13

1.8 2.38
10 0.5 0.5 800 2.4 2.20 32.7±0.4 12.7±0.1

3.0 2.04

1.8 1.95
11 0.5 0.5 1600 2.4 1.97 32.0±1.3 28.7±0.5

3.0 1.88

Note.
a The values of f and C are reported within their 90% confidence intervals.
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lead to different disruption patterns. A plausible explanation for
this is that they achieved different friction angles by turning off
the rolling friction and the sliding friction separately, which
changes the intrinsic properties of the contact network, and so
the dynamical characteristics are different. In reality, neither the
rolling friction nor the sliding friction is negligible for natural
granular materials. Therefore, the failure mode should not be
strongly affected by the frictional strength if both kinds of
friction are turned on.

We take the case of μS=0.5 and β=0.5 as a representa-
tion to detail the characteristics of a cohesionless rubble pile
during the spin-up process. Figure 8 illustrates the distribution
of the stress-state variables and the contact strength networks
over a cross-section of the simulated rubble pile at the slow
spin state (T=4.00 hr), the moderate spin state (T=2.90 hr),
and the critical spin state (T=2.56 hr, which is the critical spin
period for this model; see Section 5 for details about how to
determine the critical spin limit of a rubble-pile body using
SSDEM). Figure 9 compares the distributions of contact
orientations in the rubble pile at different spin states. As would
be expected for this random configuration, the distributions of

contact force orientations are uniform at slow spin (see the
areas encompassed by the blue curves in Figure 9). Since
the centrifugal forces become larger as the spin rate increases,
the force chains parallel to the x–y plane gradually break
or rearrange themselves in other directions, leading to an
asymmetric distribution of contact orientations (Figures 8(g)–(i);
also see the areas encompassed by the red and orange curves in
Figure 9). As shown in the first row of Figure 8, increasing the
centrifugal forces also diminishes the central pressure for this
body. Meanwhile, given that the forces along the vertical direction
caused by gravity remain constant, the body experiences larger
shear stresses as the spin rate increases (second row of Figure 8),
and the strong force chains gradually align parallel to the rotation
axis (bottom row of Figure 8).
Although the evolution of the state variables follows the

same trend and the failure mode is independent of μS or β, the
failure spin of the rubble pile shows clear dependencies on
the interparticle friction parameters. That is, the rubble pile can
be stable at a higher spin rate as μS or β increase (see Table 2
for a summary of the critical spin periods). However, the effect
of β is less significant than that of μS. When cohesion is not

Figure 8. Simulation case of μS=0.5, β=0.5, and c=0 Pa: distributions of stress-state variables, IRVE1 (first row), J2
RVE (second row), and the contact strength

networks (bottom row), over a cross-section parallel to the maximum moment of inertia axis at different spin periods for the simulated rubble pile. The patches shown
represent the RVEs in these cross-sections. Due to the heterogeneity arising from the particle arrangement and the RVE division, the distribution of the stress-state
variables cannot be perfectly symmetrical.
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included, the shear failure of a rubble-pile structure is caused
by microscale sliding, rolling, and twisting between particles in
contact. The friction coefficient μS dominates the sliding
resistance, while the shape parameter β dominates the rolling
and twisting resistance in SSDEM simulations. Figure 10
shows the distributions of the orientations for the sliding/
rolling/twisting contacts at the critical spin state for the case of
μS=0.5 and β=0.5 (other cases show similar results). The
sliding/rolling/twisting contact is defined as the contact mode
for which the tangential force/rolling torque/twisting torque
exceeds the critical value, μSFN/MR,max/MT,max. As seen in
Figure 10, the number of sliding contacts is much larger than
that of the rolling or twisting contacts at the critical spin state.
This implies that at the microscale of a spinning rubble pile,
particle rearrangements are mainly caused by sliding move-
ments between particles in contact, i.e., sliding rearrangement
is the preferred mode of particle-level deformation. Therefore,
the friction coefficient μS has a much greater impact on the
structural stability of rubble piles. Our study reveals the
complexity and importance of the interparticle contact mode
and friction parameters in controlling the strength and
deformation mode of a granular assembly. Furthermore, it is
interesting to note that the distributions of the three contact
modes have different preferred directions in the y–z and z–x
plane. For example, since the mid-latitude regions are subject
to the highest slope for such a shape, as revealed by Harris et al.
(2009), sliding failure is most likely to develop in these regions
(see the areas compassed by the blue curves in Figure 10).

4.3.2. Effect of Interparticle Cohesive Tensile Strength c

Since the cohesive strength of the interstitial regolith arising
from van der Waals forces could range from hundreds of
pascals to thousands of pascals in asteroids (Sánchez &

Scheeres 2014; Gundlach & Blum 2015), the interparticle
cohesive tensile strength c was selected to be 100 to 1600 Pa
for the cohesive SSDEM simulations presented in this section,
in which μS and β were both set to 0.5. As shown in Figure 11,
the evolution of the rubble pile progresses in different manners
with changes in c. The existence of cohesion can improve the

Figure 9. Simulation case of μS=0.5, β=0.5, and c=0 Pa: distributions of contact orientations for different spin periods (denoted by different colors), where z is
the spin axis and the x–y plane is parallel to the equatorial plane.

Figure 10. Simulation case of μS=0.5, β=0.5, and c=0 Pa: distributions of orientations for sliding/rolling/twisting contacts (denoted by different colors) at the
critical spin period of 2.56 hr.

Figure 11. Same as Figure 7, but for different interparticle cohesive tensile
strength c, as indicated in the legend. μS=0.5 and β=0.5 for all the cases
shown here.
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strength of the contact force network by increasing the
coordination number and the packing efficiency. As c
increases, the rubble-pile structure can maintain its shape and
internal packing efficiency at a higher spin rate, and the amount
of deformation that appears before disruption decreases,
followed by a more abrupt disruption process.

In addition, the style of fragmentation during the disruption
process also shows a strong dependence on c, as shown in
Figure 12 (also see the animation of Figure 12 for the spin-up
and disruption processes with different c). Recall that the spin
period of the simulated body is strictly constrained to the

spin-up path until α1 is reduced to half of its initial value, so
the body is continuously subject to the spin-up loading even
after its structure fails. Normally, for kilometer-size asteroids,
the timescale of the YORP loading process exceeds 104 years
(Rubincam 2000), which is much longer than the dynamical
time needed for a rubble pile to settle down in the absence of
external forces. Therefore, in reality, the low-cohesion rubble
pile is more likely to shed some surface materials or slightly
deform to offset the extra spin, rather than completely break up.
However, for the high-cohesion cases, since the deformation of
the rubble pile before disruption is inhibited, the disaggregation

Figure 12. Images after the simulated bodies fail for different c. The spin period T of each body at the shown moment is given in the top right corner of each image,
and all particles are colored by their translational speed as indicated in the color bars (note that the objects started as oblate shapes in all cases; the corresponding
animation shows the full evolution for all six panels. The spin periods of the six simulated bodies start at T=2.60 hr and end at 2.42 hr, 2.38 hr, 2.34 hr, 2.26 hr,
2.14 hr, and 1.90 hr).

(An animation of this figure is available.)
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behaviors of the high-cohesion rubble piles observed in the
spin-up tests could represent the failure behaviors of real
cohesive rubble-pile asteroids. Taking the cases of c=0 Pa
and c=800 Pa as examples, we carried out two other runs
without continuous rotational acceleration. In both cases, the
body is spun up to a spin period below its critical value and is
forced to stay at this spin period until α1 is reduced by 0.1, after
which the body is set to be free of external forcing. Figure 13
presents the outcomes of these two simulations, and the
animation of Figure 13 records the evolution processes. As can
be seen in the animation of Figure 13, instead of continuous
deformation as observed previously (see the top left panel in
the animation of Figure 12), landslides and mass shedding are
the main failure features for the cohesionless body, while the
failure behavior for the cohesive case is almost the same as that
shown in the continuous spin-up test (see the bottom left panel

in the animation of Figure 12). The distinguishing failure
behaviors of the cohesive body could be used to reveal the level
of cohesion in a disintegrating asteroid from observations.
As shown in Figure 12 (also see the bottom panels in the

animation of Figure 12), when the cohesion is high enough,
i.e., the cases of c=800 and c=1600 Pa, the rubble pile can
directly split into multiple distinct fragments consisting of
many particles. For this reason, the value of CN after global
disruption in the high-cohesion cases can stay at a moderate
constant value (see the bottom frame in Figure 11). Figure 14
shows the cumulative mass distributions of the fragments
produced in the rotational fission events for different c.
The size distribution of the resulting fragments depends on
the cohesive forces that bond particles together. When cohesion
is low, the rubble pile will disrupt into individual particles;
however, when cohesion is high enough, the rubble pile will
disaggregate into similar-size fragments. The disaggregating
behaviors of cohesive rubble piles could be a plausible
mechanism to form asteroid pairs (Pravec et al. 2010). The
resulting fragments escape from each other at speeds on the
order of ∼0.5 m s−1, close to the mean pair-wise sky-plane
velocity dispersion between fragments of the disintegrating
asteroid P/2013 R3 (i.e., 0.33± 0.03 m s−1; Jewitt et al. 2017).
The properties of the fragments (e.g., size distribution, velocity
dispersion) in the high-cohesion cases show many similarities
to the observations of P/2013 R3, indicating that this asteroid
may possess relatively high cohesion in its structure and
experience rotational fission in a manner similar to the high-
cohesion cases.
The effect of cohesion, whereby deformation is diminished

prior to disruption and the component size of the fissioned
material is increased, was also observed in the numerical study
of Sánchez & Scheeres (2016) using a different SSDEM code.
However, unlike our high-cohesion cases, where the body is
observed to axisymmetrically disaggregate into similar-size
fragments, their simulations generally show that the rubble pile
is disrupted by non-axisymmetric deformation and partial
fission, even in the spherical case (see Table B.3 in Sánchez &
Scheeres 2016). This behavior is expected when the simulated
rubble pile possesses a non-uniform particle arrangement in
the rotation axis direction, which leads to a non-uniform
distribution of structural strength, but not when the body is

Figure 13. Same as Figure 12, but for the scenarios without continuous rotational acceleration (the corresponding animation shows the full evolution for both panels.
The spin periods of the two simulated bodies start at T=2.52 hr and 2.19 hr). Since the body is set to be free of external forcing after disruption occurs, its spin period
can adjust rapidly to maintain conservation of total angular momentum, as shown in the case of c=800Pa.

(An animation of this figure is available.)

Figure 14. Cumulative fragment mass distributions after global disruption
for different c in the continuous spin-up scenarios. The crimson curve
(named “Particles”) and the black curve reflect the cumulative mass
distribution of constituent particles in the rubble-pile model and the major
components of asteroid P/2013 R3 (i.e., A1, A2, B1, B2, C1, and C2;
for which the estimated mass me=4/3ρBπre

3, where ρB=1.0 g/cc and re
is the minimum radius of the equal-area circle listed in Table 4 of Jewitt
et al. 2017).
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axisymmetric (Holsapple 2008). The observed difference,
therefore, may be due to the axial non-uniformity of the
particle arrangement in the rubble-pile models used by Sánchez
& Scheeres (2016). In addition, the discrepancy in the spin-up
path and the numerical model between our study and theirs
may also account for this difference.

Figure 15 shows the distributions of the stress-state variables
and the contact strength networks over a cross-section of the
simulated body with c=800 Pa, at the slow spin state
(T=4.00 hr), the critical spin state for the cohesionless case
(T=2.56 hr), and the critical spin state for itself (T=2.20 hr).
The contact force networks consist of a significant number of
cohesive force chains (i.e., the chains with SN<0), even in the
slow spin state, which can slow down the breakage of force
chains. As the spin rate is increased, some of the force chains,
especially those parallel to the equatorial plane, reach the
cohesion extremum, i.e., 800 Pa in magnitude for this case,
implying that the corresponding particles are barely in contact
with each other, and the connection could break as the spin-up
process continues. As shown in the bottom frame of Figure 11,
the amount of contacts that are lost before disruption
dramatically decreases as c increases. Thus, failure in this
high-cohesion body is likely to be stimulated when a sufficient

number of cohesive force chains reach the cohesion extremum
and break all together within a short time span.
Comparing the case for T=2.56 hr in Figure 15 with that in

Figure 8, it is evident that higher cohesive strength can impose
higher pressure and ease the shear stresses in the interior.
Remarkably, the stress states of some surface regions transform
from a compressive mode into a tensile mode as the spin rate
increases (Figure 15(c)). The failure envelope analyses in
Section 5.2 indicate that the failure point for this body occurs in
the second quadrant in the -I J1 2 plane (see Figure 16).
Therefore, the damage of the surface structure is mainly caused
by tensile failure rather than shear failure in the high-cohesion
case. As observed in the bottom panels in the animation of
Figure 12, the fracture of the surface region can propagate into
the interior region and stimulate the disaggregation of the
whole body.

5. Critical Spin Limits and Material Strengths of Rubble
Piles

The study of Zhang et al. (2017) showed that the failure
condition of a cohesionless rubble pile subject to rotational
acceleration in SSDEM simulations can give information about
the shear strength of the body. By testing the creep stability of

Figure 15. Same as Figure 8, but for the case of μS=0.5, β=0.5, and c=800 Pa.
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the simulated rubble pile at different spin periods, they
obtained the critical spin state at which the rubble pile can be
just geostatically stable with its original shape without further
creep deformation. The corresponding spin rate is the critical
spin rate for the tested body, and the friction angle can be
derived by substituting the stress state of the tested body at this
critical spin state into the failure criterion.

In this study, we use the same procedure to determine the
critical spin state and the critical spin period Tc for simulated
rubble piles. Note that as there are two unknown material
strength parameters, f and C, for a cohesive rubble pile, the
original method in Zhang et al. (2017) designed for the
cohesionless case cannot be directly employed. Here, based on
the mechanical characteristics of granular materials, we
propose an improved method to derive the macroscopic friction
and cohesion properties of the simulated rubble piles.

5.1. Determination of the Friction Angle f

According to the Drucker–Prager failure criterion, the failure
condition of a granular assembly depends on both the shear
stress and the pressures that act on it, so that the failure
envelope can be drawn at several failure points under different
confining pressures, as shown in the triaxial compression tests
(e.g., see Figure 6). Normally, when compared to the material
strength of a rubble-pile asteroid, the surface pressure, e.g.,
caused by the solar radiation pressure, is negligible, and the
boundary of this body can be treated to be stress-free, which
means the confining pressures are all zero. Therefore, instead of
varying the surface pressure as done in the triaxial compression
tests, we achieve various pressure conditions by changing the
bulk density of the simulated rubble pile. For each SSDEM
parameter set, (μS, β, and c), in addition to the nominal runs
with the bulk density of 2.4 g/cc as used in Section 4, two
other simulations with bulk densities of 1.8 g/cc and 3.0 g/cc
were carried out to support the failure envelope analyses.

Since the stress state will vary throughout a rubble-pile
structure (see Figure 8 for examples), the next step is to
determine the failure stress state for each bulk density case.
Previous studies show that the starting point of failure in a
rubble pile always occurs locally in a region that is subject to
the highest shear-pressure ratio (e.g., Hirabayashi 2015; Zhang

et al. 2017). The RVEs can serve as the smallest element for the
stress analyses. To measure how close an RVE is to its
structural failure point, we introduce a new variable, the stress
ratio λ, which for the jth RVE is given by

l = +( ) ( )J C sI , 11j j j
RVE

,2
RVE

,1
RVE

where C and s are the strength parameters used in the Drucker–
Prager failure criterion (see Section 3.2). If this stress ratio
exceeds 1, the jth RVE should experience plastic deformation.
When the material is cohesionless, λRVEj is proportional to the

ratio of Jj,2
RVE to Ij,1

RVE. This implies that the part in a
cohesionless rubble pile most sensitive to failure should

possess the highest J Ij j,2
RVE

,1
RVE.

Figure 16(a) shows the stress-state variable distribution of
a rubble pile’s RVEs at the critical spin state in the I1– J2
plane for the case of μS=0.5, β=0.5, and c=0 Pa. It is
evident that the shear stress and the pressure at the failure
state of this rubble pile increase in proportion to the bulk
density. The failure point is identified as the one that has the
highest J Ij j,2

RVE
,1
RVE for each bulk density case, i.e., the red

symbols in Figure 16(a). Then, the values of f and C can be
determined from the best-fit failure envelope, i.e., the dashed
line in Figure 16(a). We use this method to derive the
strength parameters for all cohesionless cases. As shown in
Table 2 (simulations 1 to 6), a higher friction angle f can be
achieved with a larger μS or β. Since there is no apparent
cohesion in the material, the values of C are very close to
zero. Furthermore, it is interesting to note that there are
significant differences between the friction angle obtained
from the spin-up tests (see Table 2) and that in the triaxial
tests (see Table 1), indicating the high sensitivity of the
properties of a granular material to the loading scenario and
the particle arrangement.

5.2. Determination of the Macroscopic Cohesive Strength C

When cohesion is present, the search for the failure point
becomes complex due to the uncertainties of both C and s in
Equation (11). Our triaxial simulation results showed that the
friction angle is essentially independent of the interparticle

Figure 16. Ij,1
RVE vs. Jj,2

RVE for each RVE at the critical spin state for (a) c=0Pa and (b) c=800Pa, where μS=0.5 and β=0.5 in both cases. The results of
different densities are shown in different colors as indicated in the legend. The failure point for each density is highlighted by a red symbol. Linear least-squares fitting
is applied to draw the failure envelopes (i.e., the dashed lines).
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cohesive tensile strength c. For simulations with the same μS
and β, it is therefore proper to assume that their failure
envelopes have the same slope. By translating the failure
envelope obtained from the corresponding cohesionless case
up and down, the failure point for each simulation can
be identified as the one that has the largest intercept in the
I1– J2 plane.

Figure 16(b) shows the stress-state variable distribution of a
rubble pile at the critical spin state for the simulation case of
μS=0.5, β=0.5, and c=800Pa. The failure points
determined using the approach introduced above for each bulk
density case are highlighted by red symbols. The failure
envelope for this cohesive case is then established through a
linear least-squares procedure, which provides the friction
angle f and the cohesion C. Using this method, the values of f
and C were derived for all cohesive rubble piles in our
simulations, as presented in Table 2. The small differences in
estimates of the friction angle shown in the results once again
confirm the independence between c and f. Thus, as a practical
matter, to save the effort of conducting two more spin-up tests,
the value of C can be directly estimated from one failure point
by assuming the friction angle is the same as the cohesion-
less case.

As shown in Table 2 (simulations 7 to 11), the macroscopic
cohesive strength C is on the order of one percent of the
interparticle cohesive tensile strength c and displays a nonlinear
correlation with c. This is because a higher c can increase the
number of cohesive connections and enhance the efficiency of
cohesion, as discussed in Section 4.3.2. Our high-cohesion
cases show that C of ∼30Pa is enough to stimulate the
disaggregating behavior of rubble-pile asteroids. Therefore, the
observed active asteroid P/2013 P3 may possess cohesion
close to or higher than this value. This argument is consistent
with the velocity dispersion between fragments from

observations, which indicates an effective cohesive strength
∼50–100 Pa (Jewitt et al. 2017).

5.3. Stress Ratio Distribution and Failure Mode

Figure 17 plots the distributions of the stress ratios over the
internal structure for the cases of c=0 Pa and c=800 Pa,
with μS=0.5, β=0.5. The corresponding values of f and C
listed in Table 2 are used to calculate the stress ratios for each
RVE. It is evident that increases in cohesion can postpone
the onset of failure. As shown in Figure 17, the rubble piles are
well below the failure condition at the slow spin state, and
the stress ratios generally grow with the spin rate. The initial
failure occurs at the surface near the equatorial region in both
cases, but different failure behaviors are observed. A surface
shedding-failure mode caused by shear failure of particles
resting on the surface is confirmed for the cohesionless case
(see the left panel in the animation of Figure 13), while a
surface tensile-failure mode is identified for c=800 Pa (see
the right panel in the animation of Figure 13 and the last
paragraph in Section 4.3.2). Our study indicates that in addition
to the distribution of stress ratios, information on pressure
states is also needed to properly predict the failure mode.

6. Comparison between SSDEM Analyses and Continuum
Theory

Several analytical methods based on continuum theory have
been developed to reveal the failure mechanisms of spinning
rubble-pile bodies. According to the choice of stress solutions
to the problem, these methods fall into two categories, i.e., the
volume-averaging method (e.g., Holsapple 2004, 2007;
Sharma 2013), and the method for analyzing the elastic stress
distribution (e.g., Dobrovolskis 1982; Hirabayashi 2015).
Based on the classical upper-bound approach of plastic limit

Figure 17. Distributions of stress ratios, λRVE, over a cross-section parallel to the maximum moment of inertia axis at different spin periods for the simulated rubble
piles with c=0 Pa (first row) and c=800 Pa (second row), where μS=0.5 and β=0.5.
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analysis, Holsapple (2008) showed that the global-volume-
averaging method can give an upper-bound condition on the
critical spin rate where the structure would fail globally.
The second method can determine the distribution of stress-state
variables in a body and characterize the region most sensitive to
failure (Hirabayashi et al. 2015). In this section, we combine these
analytical theories to reveal the implications of our numerical
results. The simulation cases with bulk density 2.4 g/cc are taken
as representative cases for this topic.

6.1. Stress Distribution

The complete elastic solution of a gravitational spinning
ellipsoid in equilibrium can be obtained by solving the elastic
equations (where Hooke’s law is used to describe the
constitutive relation). Dobrovolskis (1982) presented the deriva-
tion in detail. Hirabayashi (2015) substituted the equilibrium
stress solution into the Drucker–Prager failure criterion to
analyze the failure condition and mode of a cohesive spherical
body. Using a similar approach, we carry out stress analyses for
a 1-km-diameter oblate body with an axis ratio α1=0.9 at the
failure spin for the cases with μS=0.5, β=0.5, and c=0 Pa
and μS=0.5, β=0.5, and c=800 Pa (corresponding to
C=12.7 Pa), as shown in Figure 18. The quantity Ŵ is the
spin rate normalized by pr G4 3B , where G is the gravitational
constant. In both cases, the central region is subject to the highest
pressure and the largest shear stress, and as the spin rate
increases, the pressure decreases while the shear stress increases.
The distribution characteristics of the stress field and the
response to rotational acceleration of our simulation results are
all consistent with the analytical solutions (e.g., see Figures 8
and 15). The magnitude of the pressure and shear stress field in
the cohesionless case even shows quantitative consistency. For
example, as shown in Figures 8(c) and (f), the maximum values
of I1

RVE and J2
RVE appear near the center, which are larger than

200Pa and 40Pa at the failure state for the simulated body,
respectively. Similar phenomena are also shown in the results of
the elastic theory (i.e., Figure 18).

As characterized by the stress ratio λ (bottom row in
Figure 18), the equatorial surface is the most sensitive part
when the rubble-pile structure yields for C=0 Pa, in
agreement with our numerical results for c=0 Pa (see
Figure 17), while the central region is subject to the highest
stress ratio in the high-cohesion case. This phenomenon was
discussed in the analytical study of Hirabayashi (2015), where
he found that for a homogeneous, cohesive body, the region
subject to the highest relative shear stress migrates from the
equatorial surface to the central region as the dimensionless
spin rate increases to near 1. The inconsistency between our
numerical results and Hirabayashi’s theory in the high-
cohesion case may come from the differences between the
cohesion mechanism in the discrete element modeling and that
in the continuum method. The cohesive strength can be
completely controlled by a specific variable in continuum
analyses (e.g., C in the Drucker–Prager failure criterion), while
the distribution of the macroscopic cohesive strength cannot be
perfectly uniform in a discrete element model even for a
constant c due to heterogeneity of radial particle arrangements.
As revealed by Zhang et al. (2017), the local packing efficiency
and coordination number for the surface particles is much
lower than that for the interior particles. Therefore, the local
macroscopic cohesive strength is lower in the surface region for
a rubble-pile model, resulting in a weaker surface shell. As a

result, surface tensile failure is observed for high-cohesion
bodies in the SSDEM simulations.
Overall, our simulation results show good consistency with

the results of elastic theory in the cohesionless case, while the
elastic theory fails to explain our findings for the cohesive
model. In fact, in the course of solving the elastic equations, no
information on the cohesion is taken into account. The value of
C only affects the calculation of the stress ratio, and the
distributions of the pressure and the shear stress are irrelevant
to the cohesive strength. This treatment in the analytical
method is therefore incorrect. As highlighted in our study
(Section 4.3.2; also see Figure 15), the existence of cohesion
changes the topology of the force network, where higher
cohesive strength can impose higher pressure and ease the
shear stress in the interior of a rubble pile. Furthermore, the
usage of elastic theory implicitly requires an initial globally
stress-free state, which is an unrealistic assumption for natural
granular mediums in space (Holsapple & Michel 2006).
Meanwhile, the stress-strain relation for a granular assembly
is nonlinear generally (see Figure 5 for examples). Therefore,
the actual stress distribution in a rubble pile (especially when
cohesion is present) could be quite different from the results of
elastic theory. Special care should be taken when using the
elastic theory to predict the behavior of a cohesive rubble-
pile body.

Figure 18. Distributions of I1 (first row), J2 (second row), and the stress
ratio λ (bottom row) over the cross-section along the x and z axes for an
oblate body with α1=0.9. The left-hand and right-hand columns describe
the stress state for C=0 Pa, W =ˆ 0.833 (i.e., T=2.56 hr), and C=
12.7 Pa, W =ˆ 0.969 (i.e., T=2.20 hr), respectively. The elastic analyses are
used to draw this distribution. A friction angle of 33.0° and Poisson’s ratio of
0.25 are used for both cases.
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6.2. Spin Limits

Since the state of a body when global failure will occur is
independent of the loading history, the global-volume-aver-
aging method can give an upper-bound condition on the critical
spin rate (Holsapple 2008). Figure 19 shows the scaled critical
spin rate for our 11 simulation cases with μS=0.5 and
β=0.5 listed in Table 2 compared to the theoretical upper spin
limits for various C derived by Holsapple (2007). The spin
limits of the cohesionless cases are well described by the
continuum theory, while the cases with nonzero c plot above
the theoretical upper spin limit. For example, the model with
c=200 Pa, whose macroscopic cohesive strength C is
determined to be 2.1±0.1 Pa, can maintain its original shape
at a spin rate higher than the theoretical spin limit derived for
C=5 Pa. This implies that our method for determining the
material strengths of simulated rubble piles may underestimate
the macroscopic cohesion. In fact, as discussed in Section 6.1,
the surface region in a simulated rubble pile is naturally weaker
than its interior. Given that the surface of the cohesive body
fails first and the macroscopic cohesion is estimated according
to the stress in this region, the obtained value of C is expected
to be lower than the averaged cohesive strength of the whole
body as used in the continuum theory.

7. Conclusions and Perspectives

This paper explored the effect of shear and cohesive
strengths on the mechanical behaviors of self-gravitating
rubble piles subject to rotational acceleration, based on
SSDEM simulations. A comprehensive contact model incor-
porating the translational and rotational friction and cohesive
interactions was developed for this purpose, whose perfor-
mance was validated by a series of numerical triaxial
compression tests. In this model, the interparticle frictional
strength imposed by sliding resistance and rotational resistance
and the interparticle cohesive strength are controlled by three
independent parameters, μS, β, and c, respectively. We can

therefore test the effect of different strengths separately. Spin-
up tests on an oblate rubble-pile model show that

1. an increase in the sliding friction or rotational friction or
cohesion can keep the rubble pile stable at a higher
spin rate;

2. when cohesion is not included, the shear failure of the
rubble pile is dominated by microscale sliding between
particles in contact, and the failure behaviors are
independent of the friction parameters, μS and β, where
landslides and mass shedding are the main failure
features;

3. the failure behaviors show a strong dependence on the
value of the cohesion parameter c, e.g., as c increases, the
amount of deformation that appears before disruption
decreases, the disruption process becomes more abrupt,
and the component sizes of the fragments resulting from
the disruption event increase; and

4. when c is high enough, the rubble pile can disaggregate
into similar-size fragments, which could be a plausible
mechanism to form asteroid pairs and disintegrating
asteroids.

The similarities between our high-cohesion result and the
observation of active asteroids (e.g., asteroid P/2013 R3)
implies that our SSDEM method has great potential in
predicting the behaviors of cohesive rubble-pile asteroids.
Given that the outcomes should depend on the initial conditions
(e.g., the original body size, shape, bulk density, and
macroscopic heterogeneity), which we did not explore
specifically in this study, it is expected that by conducting
spin-up simulations with various conditions, our model could
give reasonably accurate constraints on the physical properties
of the precursor body for this type of object.
By analyzing the stress state of a simulated rubble pile at

failure and fitting the Drucker–Prager failure envelop, we
proposed a new method for assessing the macroscopic material
strengths (i.e., the friction angle f and the macroscopic
cohesion C) of the body. The results show that

1. increases in μS or β lead to a larger friction angle;
2. the friction angle is essentially independent of c; and
3. apparent macroscopic cohesion can be detected when c is

nonzero, and the interactive cohesive strength between
boulders in contact on an asteroid could be about 100 times
the macroscopic material cohesive strength of this asteroid.

The relation between the microscopic interparticle interactions
and the macroscopic material properties found in this study
could be useful in interpreting the regolith grains and boulders
distribution data returned by ongoing or future space missions
and linking this information with the body’s material strength
parameters.
Furthermore, the quantitative analyses on the macroscopic

strength parameters offer us the opportunity to make
comparisons with continuum theory. We found that the failure
region and stress distribution predicted by the elastic theory and
the spin limit calculated by the global-volume-averaging
method show good consistency with our simulation results in
the cohesionless case, while the continuum theory fails to
explain our findings for the cohesive model. The differences
partly come from the heterogeneous distribution of cohesion in
our rubble-pile models and are partly due to an inappropriate
assumption in the analytical method, namely leaving the

Figure 19. Critical spin rates of self-gravitating bodies. The solid curves denote
the theoretical upper spin limits derived for an oblate body (α1=0.9,
a=1 km, ρB=2.4 g/cc) with different C as indicated in the legend, and the
symbols represent the results of our simulations for bulk density 2.4 g/cc,
which are labeled with the simulation number; the error bars indicate the 90%
confidence intervals in the measurement of friction angles (see Table 2). For the
results of simulations with c>0 Pa, the corresponding measured C value for
each is shown next to the simulation numbers.
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cohesion out of the stress calculation. We conclude that special
care should be taken when using the continuum theory to
predict the behaviors of a cohesive rubble-pile body.
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