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Class survey results: Lectures

How do you find the pace of the lectures?

Way too slow for me 0%
A bit too slow for me 0%
About right for me 38 respondents 69 %
A bit too fast for me 16 respondents 29 %

Way too fast for me 1 respondent 2 %




Class survey results: Group discussions

How productive for your learning do you find the (group) discussions and
in-class writing exercises?

Not productive at all 8 respondents 154

-
Somewhat productive 36 respondents 65 % _

Quite productive 10 respondents 18 %

o,

Most productive element of the course 1 respondent 7




Class survey results: Turning Point

How productive for your learning do you find the TurningPoint polls?

Not productive at all 1 respondent 7 4

Somewhat productive 7 respondents 13 %

-
Quite productive 42 respondents 76 % _

0,

Most productive element of the course 5 respondents 9 %




Class survey results: Quizzes

How productive for your leaning do you find the post-lecture quizzes?
Not productive at all 0%
Somewhat productive 13 respondents 24 %
Quite productive 26 respondents 4] %

Most productive element of the course 16 respondents 29 %




Class survey results: Homework

How productive for your learning do you find the homework exercises?

0,

Not productive at all 1 respondent 7)
Somewhat productive 13 respondents 24 %
Quite productive 27 respondents 49 %

0,

Most productive element of the course 14 respondents 25 %




Class survey results: Textbook

Are you using the textbook? If so, how productive for your learning do you

find the textbook chapters that accompany the lectures?

Not productive at all

Somewhat productive

Quite productive

Most productive element of the course

| don't use the text book

2 respondents
2 respondents
1 respondent
1 respondent

49 respondents

4%
4%

2%
2%

89 %

— —
I 3




Other feedback / questions

e Lecture recordings?

e Formula sheet?
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Part O: Recap




Participation: Recap #1

TurningPoint:

What is the strong equivalence principle?

Session ID: diemer

30 seconds




Participation: Recap #2

TurningPoint:

How do free-falling objects move?

Session ID: diemer

30 seconds




Recap: General relativity

e Within free-falling frames of reference, Special Relativity
applies

* Free-falling particles or observers move on geodesics
(shortest paths) through curved space-time

 The distribution of matter and energy determines how
space-time is curved

Space-time curvature tells matter/energy how to move,

matter/energy tells space-time how to curve




Recap: General relativity vs. Newton

Newton

Mass tells gravity how to exert a force (F = GMm/r2),

force tells mass how to accelerate (a = F/m)

Einstein

Space-time curvature tells matter/energy how to move,

matter/energy tells space-time how to curve




Warped spacetime

e Two-dimensional space as an analogy:
rubber sheet with weights

* Amount that sheet sags depends on how
heavy weight is

e Lines that would be straight become curved
(to external observer)




Today

e Curved spacetime
e Light, gravity & lensing

e QGravitational time dilation



Part 1: Curved spacetime




Invariant spacetime interval

* Recall spacetime interval in flat space:
e Invariant interval is equivalent to c times proper time interval

e Shorter when traveling faster!

e Space-time interval is zero for any two points on light world line

Asgy = 4/ (cAD? — Ax? = cAt,

 Generalize to curved spacetime
o Free-falling observers are like inertial obs. in SR, they have maximal As
e Light still moves on “null” geodesics with As =0

e Spacetime distance is more complicated and described by metric

e E.g., for a particular class of geometries (Riemann):

ac’At? — fcAtAx — yAx?




Geodesics on Earth

e Coordinate system: two angles

(30° N. Latitude,
90° W. Longitude)
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Participation: Geodesics #1

TurningPoint:

Are meridians on a sphere geodesics?
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Geodesics on Earth

e Coordinate system: two angles

e Constant-longitude lines (meridians) are geodesics
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Participation: Geodesics #2

TurningPoint:

Are parallels on a sphere geodesics?
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Geodesics on Earth

e Coordinate system: two angles

* Meridians (north-south lines) are geodesics

e Parallels (east-west lines) are not geodesics

(30° N. Latitude,
90° W. Longitude)
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Shortest flight paths
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On a sphere, geodesics are Great Circles, the
shortest distance between two points on the surface.
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More complicated geodesics




Riemann spacetimes

e Spacetime must be locally flat for strong equivalence principle

» This is true for Riemannian spacetimes (no powers greater than 2 in metric)

o Basically “smooth” surfaces

e For the Universe as a whole, must be homogeneous & isotropic
» Flat (Euclidean space, Minkowski spacetime)
* Positively curved (like a sphere)

* Negatively curved or hyperbolic (like a saddle point everywhere;
but no equivalent in 2D/3D)

P

Positive Curvature Negative Curvature Flat Curvature



Wormholes

Particular metric that allows travel between disparate points in spacetime
Often relies on symmetric solution for a black hole known as a white hole
Rosen & Einstein (1935) developed a metric for a standard BH, but not stable

Other solutions exist, e.g. Ellis wormhole:

ds® = —c* dt* + dt* + (k* + £%)(d#* + sin? 0 dp?)




Alcubierre Drives

e Contracts space in front of spaceship, expands it behind it
 Needs exotic matter (or negative mass/energy)

e Metric mathematically developed by Miguel Alcubierre:

ds* = — (a® — BiB") dt* + 2B; dz* dt + v, dz’ d=’




Part 2: Light, gravity & lensing




Light in gravitational fields

as seen from outside
of elevator

inertial frame free-falling frame

* Inertial and free-falling frames are equivalent: light goes in straight beam

* Thus, light bends as seen from another frame



Light in gravitational fields

* Weak equivalence principle: frame with
gravity is the same as accelerated

e Thus, light must bend there too as seen from outside

 Light falls due to gravity! of elevator

accelerated frame

gravity g




Participation: Light bending in Newtonian picture

TurningPoint:

Would light bend in gravity in Newtonian physics?
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Light bending in Newtonian physics

Do not Bodies act upon Light at a distance, and by
their action bend its Rays; and is not this action
(caeteris paribus) strongest at the least distance?

Newton, 1704

e Could argue that gravitation should only work on massive
particles, but photons have no mass

e On the other hand, the mass does not matter for the acceleration
(weak equivalence principle). So is light accelerated?



Light in the Sun’s warped spacetime

III

) geodesics
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Gravitational bending of light
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Eddington experiment

1919: first “accessible” total Solar eclipse since
Einstein proposed GR

British astronomer Arthur Eddington organized
expeditions to Principe (West Africa) and Sobral
(Brazil) to observe the eclipse

_ooking for effects of gravitational light bending in
positions of stars just next to the Sun

He found them, exactly as predicted!



Measured stars

1919 Sobral plate from 1920 article by Dyson, Eddington & Davidson



Smithsonian Castle

Emilio Falco



Galaxy lensing

Lensing Galaxy




Lensing from galaxy clusters

e Light rays from distant quasar or galaxy provide background source
 Massive galaxy or cluster is foreground lens

* [wo or more images can appear

to Earth

Images: NASA / University of Georgia



Lensing from galaxy clusters

Images: NASA
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Part 3: Gravitational time dilation




Gravitational time dilation




Participation: Recap

TurningPoint:

What happens to the beam sent upwards as seen

by an observer far away?
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30 seconds




Gravitational time dilation

Light beam loses energy as it climbs up
(gravitational redshifting)

Frequency decreases

Imagine a clock based on frequency of laser
light: 1 tick = time taken for fixed number of
crests to pass

Gravitational redshifting slows down the clock

Clocks in gravitational fields run slower




Gravitational time dilation
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 Wanna live longer? Go where gravity is very strong!

* Observer on Earth would see astronaut’s clock running very slowly
when close to black hole; astronaut would age very slowly

* No reciprocity!



ravitational time dilation
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Interstellar



GR & SR time dilation

higher orbit
—> slower speed

lower orbit As seen from Earth:
—> faster speed

S R: At earth }/At

2GM

c2r

GR: =4/1-

Atfree—space

We're seeing satellite time go by
slower, or our time faster, due to SR.
But our time passes more slowly
due to gravity (GR)!
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Hafele-Keating experiment (1971)

Fly atomic clocks around the world
Compare to stationary clock

Get both special and general
relativistic effects

Found -59 / +273 nanoseconds
difference to ground

Compatible with theory

rotation of
) Earthr\
‘Y =
Vv

clock3 clock 2 clock1
(speed of plane - speed of Earth) (speed of plane +speed of Earth)
smallest v largest Vv
>
largest t  E<TP smallestt  (E>1P




Take-aways

e Free-falling observers and light move on geodesics, which
are determined by the metric (geometry) of a spacetime

e Light also feels gravity, leading to gravitational lensing

e Clocks in gravitational fields run slower than clocks in free
space, leading to gravitational time dilation




Next time...

We'll talk about:
e Modern Cosmology, finally!

Assignments

e Post-lecture quiz (by tomorrow night)
e Homework #2 (by 10/07)

Reading:
e H&H Chapter 10




