A Catalogue of Two-Dimensional Photometric Decompositions in the SDSS-DR7 Spectroscopic Main Galaxy Sample: Preferred Models and Systematics

The Electronic Tables

Alan Meert,¹*Vinu Vikram,¹†and Mariangela Bernardi¹‡ ¹Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

31 October 2014

Abstract

We present a description of the electronic tables for the catalogue of two-dimensional, PSF-corrected de-Vacouleur's, Sèrsic, deVacouleur's+Exponential, and Sèrsic+Exponential fits of $\sim 7 \times 10^5$ spectroscopically selected galaxies drawn from the SDSS DR7. Fits are performed for the SDSS r band utilizing the fitting routine Galfit and analysis pipeline PyMorph. Tables are distributed in FITS format.

1 Introduction

This is the supplement to Meert, Vikram & Bernardi (2015) (hereafter M14) and describes the electronic data supplements of the M14 catalogue. The terms of use for this catalogue are 1) cite M14 in any work using this catalogue and 2) contact the authors via email and inform us of your use of the catalogue. The primary data is presented in Section 2, which describes the UPenn_PhotDec_nonParam_rband table and the UPenn_PhotDec_Models_rband table. We currently release the r-band fits to the Dev, Ser, DevExp, and SerExp models. An additional "best fit" catalogue containing a mixture of Ser (for pure bulges and disks) and SerExp (for all other galaxies) is included. The type of galaxy is determined by the SerExp flagging.

Section 3 describes ancillary data from SDSS and Galaxy Zoo. Ancillary data selected from several valueadded SDSS catalogues and external data sources are available from the authors.

The published data includes these files:

- 1. "UPenn_PhotDec_nonParam_rband.fits" (~ 49MB) for non-parametric measurements
- 2. "UPenn_PhotDec_Models_rband.fits" (~ 474MB) for the PyMorph fits

 "UPenn_PhotDec_CAST.fits" (~ 79MB) for redshift, spectroscopic information, and the minimum necessary identifiers needed for cross-matching to SDSS and other catalogues

The total download footprint is ~ 600MB. For convenience, we package these tables, as well as the current document into the ~ 360MB "Meert2014_v1.tgz" gzipped tarball. Additional catalogues can be individually downloaded.

2 Model Tables

The UPenn_PhotDec_nonParam_rband table contains the model-independent data from our PyMorph fits. The model-dependent fitting parameters are stored in the UPenn_PhotDec_Models_rband table which contains tables for each model ("best fit", Dev, Ser, DevExp, and SerExp, in that order) for our catalogue. The tables are available in FITS format. Any data that was not present is represented by value -999, with the exception of magnitudes, which are replaced by large positive values (999 or greater).

Table 1 provides the non-parametric measurements of galaxies in our catalogue. These data are available in the 'UPenn_PhotDec_nonParam_rband.fits' table and include the CASGM measurements (Conselice, 2003; Lotz, Primack & Madau, 2004). We also include SExtractor magnitude, halflight radius, and sky brightness estimates. The num_targets column indicates the number of sources found within 3'' of the centre of the image. If this number is larger than 1, then the likelihood of contamination increases substantially. The num_neighborfits column indicates the number of neighbour sources fitted simultaneously to the target galaxy. The selection algorithm for simultaneous neighbour fitting is described in M14. Each neighbour is fit with a Ser profile, which increases the dimensionality of the fit by 7. If the number of neighbours is larger than 0, then the likelihood of contamination increases substantially.

^{*}E-mail:ameert@physics.upenn.edu

[†]E-mail: vvinuv@gmail.com

[‡]E-mail: bernardm@sas.upenn.edu

Column Number	Column Name	Explanation	Data Type
0	SExMag	the SExtractor magnitude (mag)	float
1	SExMagErr	the SExtractor magnitude error (mag)	float
2	SExHrad	the SExtractor half-light radii (arcsec)	float
3	SExSky	the SExtractor sky brightness $(mag/arcsec^2)$	float
4	num_targets	the number of targets	int
5	num_neighborfit	the number neighbour sources fitted with Ser profiles	int
6	С	the Concentration	float
7	C_{err}	the Concentration error	float
8	А	the Asymmetry	float
9	A_err	the Asymmetry error	float
10	S	the Smoothness	float
11	S_err	the Smoothness error	float
12	G	the Gini coefficient	float
13	M20	the M_{20} value	float
14	extinction	The SDSS-provided galactic extinction (magnitude)	float
15	dismod	the calculated distance modulus	float
16	kpc_per_arcsec	the angular scale (kpc/arcsec)	float
17	Vmax	the Volume used for Vmax corrections (Mpc^3)	float
18	SN	the average S/N per pixel inside the half-light radius	float
19	kcorr	k-correction calculated using the SDSS model magnitudes	float

Table 1: Description of columns in the electronic table UPenn_PhotDec_nonParam_rband. The data are modelindependent measurements fitted by PyMorph. Problematic data or parameters are replaced with -999, with the exception of magnitudes, which are replaced by large positive values (999 or greater).

Fitting more than 1 neighbour simultaneously becomes very difficult at our resolution. As such, careful attention should be paid to galaxies with neighbour fits. The flags are designed to catch common problems caused by neighbour fits. The most common problem is contamination of the dimmer component of the two-component fits (either the DevExp or SerExp fits). While we show that a large number of these problem cases are captured in the catalogue, it is likely that a higher rate of contamination is found in these fits with neighbours.

Table 2 provides the parametric measurements of galaxies in out catalogue. These data are available in the 'UPenn_PhotDec_Models_rband.fits' table. The extensions 1, 2, 3, and 4 contain the Dev, Ser, DevExp, and SerExp fit parameters, respectively. When a fit failed, the values are replaced with -999. Likewise, for single component models, the disk parameters are set to -999. The exception to this is the magnitude, which is set to positive 999 to prevent any problems when adding magnitudes together. We provide the value and error terms for each model parameter. Most terms are self-explanatory. The x and y centres may not be very useful in their current form, and should probably be converted to rowc and colc terms.

The tables contain the χ^2_{ν} for each fit as well as the flag assigned in M14 (the 'finalflag' column). We additionally include the intermediate automated flag (the 'autoflag' column) and the two flags output by PyMorph ('pyflag' and 'pyfitflag'). The user will likely not find these additional flags useful as most of the relevant information is contained in the 'finalflag' flag discussed in the main text. Nevertheless, we describe each flag in Section 2.1. We also summarize the recommendations for using the 'finalflag' to select samples in Section 2.2.

2.1 The Quality Flags

There are four quality flags supplied as part of the M14 catalogue. The most important of these is the "finalflag". The "finalflag" is used in the main paper and described in Table 3. Since we use this flag throughout the paper, we also provide a breakdown of the percentage of galaxies occupying each category in Table 4.

The "autoflag" contains flags that identify simple problems in the fitting, which we expect to be indicative of unphysical fits. We derive the "autoflag" flags from visual examination and training on a sample of manually classified galaxies. The "autoflags" are described in Table 5. We do not discuss these flags further, as they are incorporated into the "finalflags." However, they are available for use.

Finally, there are two PyMorph flags included. The "pyflag" is described in Table 6 and contains diagnostic information regarding the fitting process. The most relevant flag is bit 8 (the NEIGHBOR_FIT) in the "pyflag" which indicates that a neighbour is simultaneously fit and the resulting fit may be biased or unstable because of this neighbour. This flag is effectively available in the num_neighborfit value in the UPenn_PhotDec_nonParam_rband table along with the additional information of exactly how many neighbours are actually fit. The "pyfitflag" flags can be useful in finding suspect fits, but we do not discuss them here because our finalflag flags supersede these flags. However,

Column Number	Column Name	Explanation	Data Type
0	m_tot	total fitted apparent magnitude	float
1	BT	the B/T (bulge-to-total light ratio) of the fit	float
2	r_tot	the half-light radius (arcsec) of the total fit	float
3	ba_tot	the axis ratio (semi-minor/semi-major of the total fit	float
4	xctr_bulge	the bulge x centre (pixels)	float
5	$xctr_bulge_err$	the bulge x centre error (pixels)	float
6	yctr_bulge	the bulge y centre (pixels)	float
7	yctr_bulge_err	the bulge y centre error (pixels)	float
8	m_bulge	the bulge magnitude	float
9	m_bulge_err	the bulge magnitude error	float
10	r_bulge	the bulge halflight radius (arcsec)	float
11	r_bulge_err	the bulge radius error (arcsec)	float
12	n_bulge	the bulge Sérsic index	float
13	n_bulge_err	the bulge Sérsic index error	float
14	ba_bulge	the bulge b/a	float
15	ba_bulge_err	the bulge b/a error	float
16	pa_bulge	the bulge position angle (degrees)	float
17	pa_bulge_err	the bulge position angle error (degrees)	float
18	xctr_disk	the disk x centre (pixels)	float
19	$xctr_disk_err$	the disk x centre error (pixels)	float
20	$yctr_disk$	the disk y centre (pixels)	float
21	yctr_disk_err	the disk y centre error (pixels)	float
22	m_disk	the disk magnitude	float
23	$m_{disk_{err}}$	the disk magnitude error	float
24	r_disk	the disk halflight radius (arcsec)	float
25	r_disk_err	the disk radius error (arcsec)	float
26	n_disk	the disk Sérsic index	float
27	$n_{disk_{err}}$	the disk Sérsic index error	float
28	ba_disk	the disk b/a	float
29	ba_disk_err	the disk b/a error	float
30	pa_disk	the disk position angle (degrees)	float
31	pa_disk_err	the disk position angle error (degrees)	float
32	GalSky	the PyMorph sky brightness $(mag/arcsec^2)$	float
33	GalSky_err	the $PyMorph$ sky brightness $(mag/arcsec^2)$	float
34	chi2nu	the χ^2/DOF	float
35	finalflag	the primary quality flag described in this work	float
36	autoflag	the intermediate, visually calibrated, automated flag described	float
		in this work	
37	pyflag	the PyMorph run flag	float
38	pyfitflag	the PyMorph fit flag	float

Table 2: Description of columns in the electronic table UPenn_PhotDec_Models_rband. The data are the "best model", Dev, Ser, DevExp, and SerExp model fit parameters fitted by PyMorph. Unfit parameters or missing data are replaced with values of -999, with the exception of magnitudes, which are replaced by large positive values (999 or greater).

Flag Bit	Analysis Flag	Flag Criteria
	Good Total and Component Magnitudes and Sizes	
10	Two-Component Galaxies	
11	No Flags	No Flags are present
12	Good Ser, Good Exp (Some Flags)	Some minor automated flags
13	Flip Components	Exp component fitting the inner and Ser com-
		ponent fitting the outer part of the profile
_	Good Total Magnitudes and Sizes Only	
1	Bulge Galaxies	
2	No Exp Component, $n_{Ser} > 2$	$1000^{*}(B/T-0.8)^{3} + (m_{disk}-19) > 0.5$ AND
		$n_{\texttt{Ser}} \geq 2$
3	Ser Dominates Always	$B/T(r) \ge 0.5$ for all r AND $n_{Ser} \ge 2$
4	Disk Galaxies	
5	No Ser Component	$1000^{*}(0.2\text{-B/T})^{3} + (m_{bulge} - 19) > 0.5$
6	No Exp , $n_{Ser} < 2$, Flip Components	$1000^{*}(B/T-0.8)^{3} + (m_{disk}-19) > 0.5$ AND
		$n_{\texttt{Ser}} < 2$
7	Ser Dominates Always, $n_{Ser} < 2$	$B/T(r) \ge 0.5$ for all r AND $n_{Ser} < 2$
8	Exp Dominates Always	B/T(r) < 0.5 for all r
9	Parallel Components	$RMS\left[(B/T - \mu(B/T)) : 0 < r < r(0.9L_{tot}] < \right]$
		$0.1 \text{ AND } n_{bulge} < 2.0$
14	Problematic Two-Component Galaxies	
15	Ser Outer Only	$B/T < 0.7$ AND $B/T(r(0.9L_{tot}) > 0.5$ AND
		$n_{bulge} \ge 2.0 \text{ AND B/T}(0) > 0.5$
16	Exp Inner Only	$B/T(0) < 0.5 AND B/T(r: r < 2.7r_{hl}) > 0.5$
		AND $n_{bulge} \ge 2.0$ AND NOT Ser Outer Only
17	Good Ser, Bad Exp, $B/T >= 0.5$	B/T>0.75 AND $\Delta \phi$ > 45 AND b/a_{bulge} <
		$0.75 \text{ AND } b/a_{disk} < 0.4$
18	Bad Ser, Good Exp, $B/T < 0.5$	$B/T < 0.25 AND \Delta \phi > 45 AND b/a_{bulge} < 0.4$
		AND $b/a_{disk} < 0.75$
19	Bulge is point	Circularized bulge radius < 0.188 arcsec
20	Bad Total Magnitudes and Sizes	
21	Centering Problems	(galaxy centroid-SDSS galaxy
		centroid)>0.7* $r_{sextractor}$
22	Ser Component Contamination by Neighbours or Sky	$r_{bulge,cir}/r_{sextractor} > 4.0$
23	Exp Component Contamination by Neighbours or Sky	$r_{bulge,cir}/r_{sextractor} > 4.0$
24	Bad Ser and Bad Exp Components	Failure of measurements
25	Galfit Failure	Galfit fails to converge or other failure of the
		pipeline
26	Polluted or Fractured	CasJobs neighbours not properly
		masked/masked or target is separated
		into 2 or more objects

Table 3: The description of our categories as described in the main text. The major flag bits used to select different catalogues are flag bits 10 (good two-component fits), 1 (good bulge galaxy), 4 (good disk galaxy), 14 (problematic two-component fit), and 20 (bad fit). We describe how to use these flags in the main text.

Flag Bit	Descriptive Category	$\% \mathrm{Dev}$	$\% \mathrm{Ser}$	% DevExp	% SerExp	% Test
_	Trust Total and Component Magnitudes and Sizes	_	_	42.223	39.055	38.333
10	Two-Component Galaxies	_	_	42.223	39.055	38.333
11	No Flags	_	_	30.152	18.095	18.125
12	Good Ser, Good Exp (Some Flags)	_	_	10.701	19.417	19.375
13	Flip Components	_	_	1.369	1.543	2.917
_	Trust Total Magnitudes and Sizes Only	97.653	97.380	52.444	54.945	54.375
1	Bulge Galaxies	97.653	58.378	14.636	18.964	18.958
2	No Exp Component, $n_{Ser} > 2$	97.653	58.378	4.646	7.074	7.917
3	Ser Dominates Always	_	_	9.989	11.889	11.042
4	Disk Galaxies	_	39.001	28.462	25.146	23.958
5	No Ser Component	_	_	25.041	16.876	15.417
6	No Exp, $n_{Ser} < 2$, Flip Components	_	39.001	_	0.551	0.208
7	Ser Dominates Always, $n_{Ser} < 2$	_	_	_	0.103	0.625
8	Exp Dominates Always	_	_	3.421	2.872	3.125
9	Parallel Components	_	_	_	4.745	4.583
14	Problematic Two-Component Galaxies	_	_	9.346	10.835	11.458
15	Ser Outer Only	_	_	5.289	7.504	8.125
16	Exp Inner Only	_	_	0.514	0.425	0.625
17	Good Ser, Bad Exp, $B/T >= 0.5$	_	_	0.011	0.017	0.000
18	Bad Ser, Good Exp, B/T<0.5	_	_	0.884	0.652	0.625
19	Bulge is point	_	_	2.648	2.237	2.083
20	Bad Total Magnitudes and Sizes	2.347	2.620	5.334	6.000	7.292
21	Centering Problems	0.338	0.357	0.599	0.557	1.458
22	Ser Component Contamination by Neighbours or Sky	1.302	1.618	1.251	2.129	3.333
23	Exp Component Contamination by Neighbours or Sky	_	_	2.788	2.392	2.083
24	Bad Ser and Bad Exp Components	_	_	0.177	0.239	0.625
25	Galfit Failure	0.187	0.124	0.249	0.355	0.208
26	Polluted or Fractured	0.679	0.681	0.677	0.676	0.625

Table 4: A breakdown of the descriptive categories useful for analysis. We show percentages of the total catalogue for each of the fitted models and our visually classified test set. The one component models (Ser and Dev) can not be classified as two-component models, by definition. For the Ser and Dev models, many of the categories are empty. The major distinction for the one-component models is whether the fits have major problems (i. e., flag bit 20 is set).

when one of the "limit" flags is set in "pyfitflag" flags, it suggests that the convergence of Galfit to the best fit was prevented by the fitter encountering the edge of the parameter space. While such flags can indicate problems in the fitting, they can also be harmless (e.g. when the bulge radius goes to 0 and the B/T also approaches 0, the "RE_AT_LIMIT" flag will be set, but we do not expect this to be a bad fit as the fit is telling us that there is no bulge component. If there is no bulge, then we do not care that the bulge parameters are not properly determined.)

2.2 Recommended Flag Usage for Sample Selection

When using the catalogue, we recommend removing galaxies flagged as bad (flag 20) as these galaxies have catastrophically bad estimates of total magnitude and radius. Additional galaxies may be removed depending on how conservative the user seeks to be. The problematic two-component fits (flag 14) or the two-component fits with bulge Sérsic index n=8 may be used for total magnitude and radius measurements, but the sub-components are not reliable.

The user should also be aware that we have swapped the bulge and disk components of galaxies with bits 6, 7, or 13 set (which were flagged as inverted profiles in the SerExp fit). These galaxies have B/T inverted and the components reversed relative to the SerExp fit. Therefore, no additional alterations must be made to account for the inverted nature of the profile. However, using the "raw" fit produced prior to flagging requires swapping

Figure 1: The completeness of the the samples described in Section 2.2. All completeness calculations are relative to the original magnitude-limited galaxy sample downloaded from SDSS DR7.

Flag Bit	Flags	Flagging Criteria
0	Centering	(galaxy centroid-sdss galaxy centroid)> 0.7 * r_{sex}
1	Parallel Components	$RMS(B/T - \mu(B/T)) : 0 < r < r(0.9L_{tot}) \& n_{bulge} < 2.0$
2	No Ser Likely	$1000^{*}(0.2\text{-B/T})^{3} + (m_{bulge} - 19) > 0.5$
3	No Exp Likely	$1000^{*}(B/T-0.8)^{3} + (m_{disk}-19) > 0.5$
_	Ser Component Flags	
4	Ser Contaminated	$r_{bulge,cir}/r_{sex} > 4.0 \text{ AND } b/a_{bulge} <= 0.6$
5	Ser is Sky	$r_{bulge,cir}/r_{sex} > 4.0 \text{ AND } b/a_{bulge} > 0.6$
6	$High \ e \ Ser$	$b/a_{bulge} < 0.4$ AND B/T< 0.25
7	Ser PA Problem	$\Delta\phi>45$ AND B/T<0.5 AND $b/a_{bulge}<0.75$ AND $b/a_{disk}<0.75$
8	Ser Fitting Outer	$B/T < 0.7 AND B/T(r(0.9L_{tot}) > 0.5)$
9	Ser is Disk	$r_b/r_d > 1.5 \text{ AND } n_{bulge} < 2$
10	Ser Dominates Always	$B/T(r) > 0.5 : 0 < r < r(0.95L_{tot})$
11	Low Sersic index Ser	$r_b/r_d \le 1.5 \text{ AND } n_{bulge} < 2$
_	Exp Component Flags	
12	Exp Contaminated	$r_{disk,cir}/r_{sex} > 3.0$ AND $b/a_{disk} <= 0.6$
13	Exp is Sky	$r_{disk,cir}/r_{sex} > 3.0 \text{ AND } b/a_{disk} > 0.6$
14	$High \ e \ Exp$	$b/a_{disk} < 0.4$ AND B/T> 0.75
15	Exp PA Problem	$\Delta\phi>45$ AND B/T>0.5 AND $b/a_{bulge}<0.75$ AND $b/a_{disk}<0.75$
16	Exp Fitting Inner	$B/T(0) < 0.5 AND B/T(r: r < 2.7r_{hl}) > 0.5$
17	Exp Dominates Always	$B/T(r) < 0.5 : 0 < r < r(0.95L_{tot})$
18	Galfit Failure	Galfit fails to converge and crashes
19	Bad Total Fit	Any of bits $0, 4, 5, 12, 13, 22, 24$, or 25 set or at least 2 of bits $2, 3, 3$
		10, and 17 set
20	Bad Disk	Bits 12 or 13 set or bit 16 and any of bits 1, 8, 9, or 11 set or bit
		14 and 15 set or bit 1 set
21	Bad Bulge	Bits 4 or 5 set or bit 8 and bits 9 or 16 set or bit 6 and 7 set or bit
	0	1 set
22	High χ^2	$\chi^2 > 20$
23	Flip Components	At least 2 of bits 9, 8, or 16 set or bits 16 and 11 set or bit 9 set or
		bits 3 and 11 set
24	Polluted	Neighbour expected from SDSS not fitted or masked
25	Fractured	Neighbour fitted, but no neighbour exists in SDSS
26	Tiny Bulge	$r_{bulge,cir} < 0.188$ arcsec

Table 5: The selection criteria used to define the automated flags. The first column gives the flag bit. The second column gives the flag name, the third column gives the cuts used on fitted parameters to set the flag.

Flag Bit	Flag	Flag Criteria
0	REPEAT	This is a repeated fit
1	FIT_BULGE_CNTR	Bulge centre was a fitted parameter
2	FIT_DISK_CNTR	Disk centre was a fitted parameter
3	FIT_BULGE	Bulge component was fitted
4	FIT_DISK	Disk component was fitted
5	FIT_SKY	Sky component was fitted
6	FIT_POINT	Point component was fitted
7	FIT_BAR	Bar component was fitted
8	NEIGHBOR_FIT	Neighbour component was fitted
9	EXCEED_SIZE	CASgm module flag for galaxy that extends too far to be measured (i.e.,
		the image is not big enough)
10	NO_TARGET	No target has a SExtractor centroid within $3''$ of the image centre
11	ASYM_NOT_CONV	CASgm module flag for galaxy asymmetry measurement that fails to converge
12	ASYM_OUT_FRAME	CASgm module flag for galaxy asymmetry that extends too far to be measured (i. e., the image is not big enough)
13	ELLIPSE_FAIL	CASgm module flag for failure to generate the mask used by the CASgm module
14	CASGM_FAIL	CASgm module crashes
15	GALFIT_FAIL	Galfit crashed
16	PLOT_FAIL	plotting module crashed
17	ERRORS_FAILED	uncertainty on fit parameters incorrectly calculated
18	AVGIE_FAILED	average surface brightness from SExtractor incorrectly calculated
19	BACK_FAILED	PyMorph fails to measure the background
20	DETAIL_FAILED	detailed fitting procedure failed

Table 6: The selection criteria used to define the PyMorph flags. The first column gives the flag bit. The second column gives the flag name, the third column gives a description of the flag. More detailed descriptions can be found in Vikram et al. (2010).

Flag Bit	Flag	Flag Criteria
0	LARGE_CHISQ	$\chi^2_{ u} > 2.5$
1	SMALL_GOODNESS	Goodness < 0.60
2	FAKE_CNTR	bulge or disk component moves more than 3 pixels during fitting
3	IE_AT_LIMIT	bulge magnitude approaches ± 7 mag from initial value set by SExtractor
4	ID_AT_LIMIT	disk magnitude approaches ± 7 mag from initial value set by SExtractor
5	RERD_AT_LIMIT	Not currently used/ no constraint
6	BT_AT_LIMIT	Not currently used/ no constraint
7	N_AT_LIMIT	Sérsic index approaches 0.1 or 8.0
8	RE_AT_LIMIT	bulge radius approaches 0 or 50 times the SExtractor halflight radius
9	RD_AT_LIMIT	disk radius approaches 0 or 50 times the SExtractor halflight radius
10	EB_AT_LIMIT	bulge b/a approaches 0 or 1.0
11	ED_AT_LIMIT	disk b/a approaches 0 or 1.0

Table 7: The selection criteria used to define the PyMorph fit flags. The first column gives the flag bit. The second column gives the flag name, the third column gives a description of the flag. More detailed descriptions can be found in Vikram et al. (2010).

bulge and disk parameters and inverting the B/T. This alteration has been done in all catalogues.

We suggest one of these composite samples drawn from the preferred fit catalogue described in the previous paragraph:

- The conservative catalogue Select all galaxies with final flag bits 11, 12, or 13 set and bulge Sérsic index <8. In addition, the user should select galaxies with SerExp final flag bits 1 or 4 set. These galaxies will have B/T of 1 (for bulges; final flag bit 1 set) or a B/T of 0 (for disks; final flag bit 4 set) and the relevant Ser parameters are reported in the catalogue.
- The intermediate catalogue Use the catalogue above plus all galaxies with final flag bit 10 set and bulge Sérsic index =8.
- The full catalogue Use the catalogue above plus all galaxies with final flag bit 14 set. This is the least restrictive version of the catalogue but may include galaxies with strange, difficult-to-interpret fit parameters.

Figure 1 shows the completeness of the three samples described above. The "fitted sample" represents our selection after the cuts made in the original text. All completeness calculations are relative to the original magnitude-limited galaxy sample downloaded from SDSS DR7. Not surprisingly, the completeness drops with more conservative catalogue choices. However, the completeness is largely flat across the magnitude range with a slight decrease of order 0.05 at magnitudes brighter than 14.5 extinction-corrected Petrosian r-band magnitude.

The data files for this catalogue are available online at http://www.physics.upenn.edu/~ameert/SDSS_PhotDec/. We also provide an interface for generating panels of postage stamp images of the 2D model and residual as well as the 1D profile. These panels can be generated for a user-uploaded list of galaxies on demand.

3 CAST (SDSS DR7 Spectroscopic Sample CasJobs Data) Table Description

The table "UPenn_PhotDec_CAST.fits" contains bandindependent data used in fitting and analysis. Any data that was not present in the original table is represented by value -999. Table 8 describes the structure of the FITS file containing the CAST data. Most rows are selfexplanatory. The 0th row contains the galnum value, which is the unique identifier used throughout our work to identify galaxies in place of the much longer SDSS objid. The user is advised to refer to the galnum value when using galaxies in this catalogue. Any references made by the authors to specific galaxies is also done by galnum. The badflag value reports some of the most relevant flags used to select this sample from SDSS. There are many more flags that are produced by the SDSS photometric pipeline. Additional flags can be extracted from the SDSS data by the user.

We also provide both the raw (spiral, elliptical, and uncertain) as well as the debiased (p_el_debiased and p_cs_debiased) Galaxy Zoo parameters. These probabilities are selected from the Galaxy Zoo catalogue stored on the SDSS CasJobs server. The Galaxy Zoo project provides visual classifications for many of the galaxies in our catalogue. Classification was done by citizen-scientists and corrected for bias by the Galaxy Zoo science team. The project is described in Lintott et al. (2008) and the data release is described in Lintott et al. (2011).

Additionally, the Galaxy Zoo classification for each galaxy is collected for use in analysis. These probabilities are selected from the Galaxy Zoo catalogue stored on the SDSS CasJobs server. The Galaxy Zoo project provides visual classifications for many of the galaxies in our catalogue. Classification was done by citizen-scientists and corrected for bias by the Galaxy Zoo science team. The project is described in Lintott et al. (2008) and the data release is described in Lintott et al. (2011).

References

- Conselice C. J., 2003, ApJS, 147, 1
- Lintott C. et al., 2011, MNRAS, 410, 166
- Lintott C. J. et al., 2008, MNRAS, 389, 1179
- Lotz J. M., Primack J., Madau P., 2004, AJ, 128, 163
- Meert A., Vikram V., Bernardi M., 2015, MNRAS, 446, 3943
- Vikram V., Wadadekar Y., Kembhavi A. K., Vijayagovindan G. V., 2010, MNRAS, 409, 1379

Column Num	Column Name	Explanation	Data Type
0	galnum	the assigned unique galaxy id number	int
1	objid	the unique SDSS photometric object id	bigint
2	SDSSIAU	the SDSS IAU designation of the source	string
3	badflag	SDSS photometric pipeline flags SATURATED,	bigint
		BRIGHT, EDGE, NODEBLEND, CHILD, and	
		DEBLENDED_AS_PSF	
4	nchild	the number of child sources deblended by the	int
		SDSS	
5	mode	1: primary, 2: secondary, 3: family object, 4:	int
		outside chunk boundary	
6	run	SDSS run number	int
7	rerun	SDSS rerun number	int
8	camCol	SDSS camCol number	int
9	field	SDSS field number	int
10	obj	SDSS object number	int
11	stripe	SDSS stripe number	int
12	startmu	SDSS starting mu for observation of the chunk	int
13	specobjid	the unique SDSS spectroscopic id number	bigint
14	plate	SDSS plate number	int
15	mjd	SDSS mjd of observation	int
16	fiberid	SDSS fiber ID	int
17	ra	right ascension (degrees)	float
18	dec	declination (degrees)	float
19	Z	redshift of the galaxy	float
20	veldisp	SDSS measured velocity dispersion (km/s)	float
21	veldispErr	SDSS velocity dispersion error (km/s)	float
22	eclass	SDSS spectroscopic classification	float
23	p_el_debiased	Galaxy Zoo Debiased Probability of Elliptical	float
		Galaxy	
24	p_cs_debiased	Galaxy Zoo Debiased Probability of Spiral	float
		Galaxy	
25	spiral	The raw Galaxy Zoo votes for spiral type	float
26	elliptical	The raw Galaxy Zoo votes for elliptical type	float
27	uncertain	The raw Galaxy Zoo votes for uncertain type	float

Table 8: The explanation of columns in the "UPenn_PhotDec_CAST.fits" table. These data are the band-independent collected from SDSS. The identifying information is also included to allow matching to external catalogues.