

#### Prof. Benedikt Diemer



**Chapter 3 • Density fluctuations in the early Universe** 

#### §3.1 • Fluctuations from inflation



**Evolution of radiation** 



- Density of matter decreases as  $1/volume = 1/a^3$
- Density of photons decreases the same way, but photons are also redshifted
- Since photon energy is proportional to frequency:

$$E = hf = \frac{hc}{\lambda} \implies E \propto \frac{1}{a}$$

• Thus, energy density of photons compared to today ( $\rho_{\rm r,0}$ ) goes down as  $1/a^3 \times 1/a = 1/a^4$ 



# What dominates the energy density?



#### **Evolution of temperature**



Temperature and energy increase towards the Big Bang as 1/a

# The hot Big Bang

- Lemaitre proposed Big Bang theory in 1927 ("primieval atom")
- A hot early Universe was predicted in 1948 by George Gamow (with Alpher and Herman)
  - The idea: the universe started off very hot and cools as it expands
  - They predicted "relic radiation" with temperature of about 5K (close!)
  - Work not fully recognized until 1960s
- The **evolution of temperature** determines what happens
- In early Universe, temperature/energy was too high for electrons and nuclei to be bound as **atoms**
- In very early Universe, temperature/energy too high for protons and neutrons to remain bound as **nuclei**
- No direct observations to constrain theories



Lemaitre



Gamow

# **History of the Universe**



#### **Curvature and the fate of the Universe**

#### **Case 1: Closed Universe**



#### The flatness problem



e.g., Planck:

 $|\Omega_{k,0}| < 0.01$ 

Question: doesn't it seem random that the Universe is flat, i.e., that  $\Omega_{m,0} + \Omega_{\Lambda,0} \approx 1$  so that  $\Omega_{k,0} \approx 0$ ?

## The flatness problem

- The curvature term evolves as  $\Omega_{\rm k} \propto 1/a(t)^2 H(t)^2$
- This scales with time between  $\Omega_{\rm k} \propto t$  and  $\Omega_{\rm k} \propto t^{2/3}$ 
  - If the Universe is slightly open in the beginning, that accelerates the expansion compared to flat, leading to lower density / even more open-ness
  - If the Universe is slightly closed in the beginning, that slows down the expansion compared to flat, leading to higher density / even more closed-ness
- If the Universe is close to  $\Omega_{\rm k}=0$  today, it must have been even much closer in the early Universe
- At end of the Planck epoch (10<sup>-43</sup> s),  $|\Omega_k| < 10^{-60}$  !
- This is a "fine-tuning" problem: why would  $\Omega_{\rm m}+\Omega_{\Lambda}~{\rm take~on~a~value~so~close~to~one?}$
- Why do we care?
  - If  $\Omega_m + \Omega_\Lambda$  had been much above 1, would have recollapsed very early **before making galaxies**
  - If  $\Omega_m + \Omega_\Lambda$  had been much below 1, would have expanded so rapidly that structures would not have formed

$$\Omega_{\text{tot}} \equiv \Omega_{\text{m}} + \Omega_{\Lambda} + \Omega_{\text{k}} = 1$$
$$\Omega_{\text{k}}(t) = -\frac{Kc^2}{a(t)^2 H(t)^2}$$



# Inflation

- Theory of cosmic inflation was first proposed by Alan Guth in 1982
- Inflation is a **very rapid expansion** of Universe at  $t = 10^{-37}$ -10<sup>-32</sup> s after the Big Bang
- Universe expanded by a **factor of 10**<sup>40</sup> **10**<sup>100</sup> during this time!
- Looks a lot like **exponential expansion** due to dark energy,  $a(t) \propto e^{Ht}$ , just faster
- Super-light-speed expansion does not violate relativity because spacetime itself expands (same argument as for later Hubble expansion)



#### The flatness problem

- Take any reasonably curved surface and expand it by a very large factor: it will look flat
- Inflation naturally predicts a flat Universe...
- ...if the initial value of  $\Omega_k$  was within some relatively generous range





4



Astronomy Magazine



- Horizon is the distance that is causally connected (from which we can have received information)
- In a Universe without inflation,  $R_{\rm h} \approx ct$ (the actual horizon is a little different due to the expansion history)
- At recombination,  $t \approx 10^{13}$  s, the horizon would be

 $R_{\rm h} \approx ct \approx 10^5 \text{ pc} = 100 \text{ kpc}$ 

- How big would this patch be today? It has grown with the scale factor since z = 1100, so 1100 times larger
- But that's only about 100 Mpc! The distance to the CMB surface of last scattering is about 14 Gpc



- How can they be so exactly the same? How can the temperature of the Cosmic Microwave Background be so homogeneous (1 part in 100,000)?
- This is called the horizon problem

 $R_{\rm h}$ 

 $R_{\rm h}$ 

#### Inflation solves the horizon problem

• Before inflation:

 $R_{\rm h} \approx ct = c \times 10^{-37} \text{ s} \approx 10^{-27} \text{ cm}$ 

- Inflation blows up causally connected regions by a huge factor to at least 10<sup>13</sup> cm (but possibly much more)
- Universe expands by  $10^{22}$  by the time of recombination (380,000 years), so causally connected region is then about  $10^{35}$  cm =  $10^7$  Gpc or more
- The causally connected region then keeps growing as light travels, and is much greater than the observable Universe
- Thus, inflation solves the horizon problem



#### Quantum fluctuations

- Nature is fundamentally uncertain, which is called the "Heisenberg uncertainty principle"
- This principle implies that density can never be totally smooth
- The tiny fluctuations get amplified when the Universe rapidly expands during inflation
- The fluctuations are the origin of all structure in the Universe, such as galaxies!





#### **Overdensity field**



§3.2 • Describing fluctuations with power spectra and correlation functions

#### **Correlation function**



$$1 + \xi(r) = \frac{n_{\text{pair}}(r \pm dr)}{n_{\text{random}}(r \pm dr)}$$

Images by Frank van den Bosch

#### **Power spectrum**







Sierpinski Carpet





|                                                         | · · · · <b>· · · · · · · · · · · · · · · </b>                   | · · · · · <b>· · · · · · · · · · · · · · </b>                       |                                                              |                                       |
|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|
| :                                                       |                                                                 |                                                                     | :                                                            |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
| :=::=::=::=::=::=                                       | :: <b>!</b> :: <b>!</b> :: <b>!</b> :: <b>!</b> :: <b>!</b> ::! |                                                                     | :                                                            |                                       |
| · _ · · · _ · · _ ·                                     | · _ · · _ · · _ · · _ · · _ · · _ · · _ · ·                     |                                                                     |                                                              |                                       |
| :=::=:                                                  |                                                                 |                                                                     | : . : . : . :                                                |                                       |
| 141                                                     | 141 141 141 141                                                 |                                                                     |                                                              | : • : • · • · • · • ·                 |
| : - : : - :                                             |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
| . <del></del> . <del></del>                             | <del> </del>                                                    | · · · · · <u>· · · ·</u> · · · · · · · <u>· · · ·</u> · · · ·       | <u></u> <u></u> .                                            | <u></u>                               |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         | •••••••••••••••••••••••••••••••••••••••                         | •••••••••••••••••••••••••••••••••••••••                             |                                                              | ····                                  |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
| :=: :=: :=: :=:                                         | · · · · · · · · · · · · · · · · · · ·                           |                                                                     | :                                                            |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     | • • • • • • • • • • • • • • • • • • • •                      |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
| :                                                       | :                                                               |                                                                     | : . :                                                        |                                       |
| :4: : : : : : : : : : : : : : : : : : :                 | 141 141                                                         |                                                                     | :                                                            | :*: : : : : :                         |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
| · · · · · · · · · · · · · · · · · · ·                   | · · <del>· · · · · · · ·</del> · <del>·</del> ·                 |                                                                     |                                                              | <u> </u>                              |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         | :::: <del></del> :::                                            |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     | • • • • • • • • • • • • • • • • • • • •                      |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
| :=:::::::::::::::::::::::::::::::::::::                 | ::=: :=: :=: :.                                                 |                                                                     | :                                                            |                                       |
| · _ · <del>· _ ·</del> · _ · · _ · <del>· _ ·</del> · _ | ····· <del>···</del> ····· <del>···</del> ··                    | · · · · · <del>· · · ·</del> · · · · · · · <del>· · ·</del> · · · · | · _ · <del>· _ ·</del> · _ · · <u>-</u> · <del>· _ ·</del> · | <u>.</u> . <del></del>                |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
| ····                                                    | · · · <u>· · · ·</u> · · · · · · · · <u>· · · ·</u> · ·         | · · · · · · · · · · · · · · · · · · ·                               | · · · <u>· · · ·</u> · · · ·                                 | · · · <u>· · ·</u> · · ·              |
| :::::::::::::::::::::::::::::::::::::::                 |                                                                 |                                                                     | :*: :*:                                                      | :.::                                  |
|                                                         |                                                                 |                                                                     |                                                              | · · · · · · · · · · · · · · · · · · · |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 | • • • • • • • • • • • • • • • • • • • •                             |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         | · · · · · <b>· · · · · · · · · · · · · · </b>                   | · · · · · · · · · · · · · · · · · · ·                               | · · · <b>· · · · ·</b> · · · · · · · · · · ·                 |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     |                                                              |                                       |
|                                                         |                                                                 |                                                                     | • 🛯 • • 🖉 • • 🖉 • • 🖉 • • 🖉 • •                              |                                       |

|  |  |  | • |                                               |
|--|--|--|---|-----------------------------------------------|
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   |                                               |
|  |  |  |   | : <u>::::</u> ::::::::::::::::::::::::::::::: |
|  |  |  |   |                                               |

#### §3.3 • The linear evolution of fluctuations



Figure by Frank van den Bosch

#### **Evolution of collisionless underdensities**





Figure by Frank van den Bosch

# The Jeans Mass

- Gravity tries to collapse gas
- Pressure resists collapse
- Gravity wins if cloud is larger than Jeans length, or has mass larger than Jeans mass

$$\lambda_{\rm J} = \sqrt{\frac{5\pi}{3} \frac{k_{\rm B}T}{G m_{\rm p} \rho}} = 8.0 \times 10^7 \,\mathrm{cm} \left(\frac{T}{K}\right)^{1/2} \left(\frac{\rho}{\mathrm{g/cm^3}}\right)^{-1/2}$$

$$M_{\rm J} = \frac{4\pi}{3} \left(\frac{\lambda_{\rm J}}{2}\right)^3 \rho \implies$$

$$M_{\rm J} = \frac{\pi^{5/2}}{6} \left(\frac{5k_{\rm B}T}{3Gm_{\rm p}}\right)^{3/2} \rho^{-1/2} = 2.7 \times 10^{23} \text{ g} \left(\frac{T}{K}\right)^{3/2} \left(\frac{\rho}{\text{g/cm}^3}\right)^{-1/2}$$

 $k_{\rm B} = 1.38 \times 10^{-16} \frac{\text{erg}}{K}$  Bo  $m_{\rm p} = 1.67 \times 10^{-24} \text{ g}$  Pr

Boltzmann constant

Proton mass



Sir James Hopwood Jeans





Figure by Frank van den Bosch

#### §3.4 • The power spectrum at recombination

# The peak of the power spectrum



#### First detection of BAO feature



#### **Current observational constraints on P(k)**


### The Cosmic Microwave Background (CMB)

- Discovered in the 1960's
- Present density is 411 photons/cm<sup>3</sup>
- Emitted at  $z \approx 1100$
- Virtually perfect blackbody



### The Cosmic Microwave Background (CMB)

- COBE WMAP Planck
- The differences in temperature are roughly 1/100,000 K
- These fluctuations tell us a lot about the early Universe

### Planck CMB Map



0.3 mK below mean (2.7252 K)

0.3 mK above mean (2.7258 K)

ESA / Planck

### What do we see when we look at the CMB?



Images by Frank van den Bosch

# Multipoles



Image by Ville Heikkilä

### **Power spectrum of fluctuations**



- First peak corresponds to about 1 degree
- LCDM cosmology matches the data extremely well (green line)
- Predictions are computed numerically

### Parameters (flat $\Lambda$ CDM)

| $\Omega_{\mathrm{m,0}}$ | Matter density in units of crit. dens. today              | CMB, rotation curves, Supernovae, lensing          | measured by CMB  |
|-------------------------|-----------------------------------------------------------|----------------------------------------------------|------------------|
| $\Omega_{\mathrm{b},0}$ | Baryon density in units of crit. dens. today              | CMB, Big Bang nucleosynthesis, baryons in clusters | fixed or derived |
| $H_0$                   | Hubble expansion rate today                               | CMB, low-z redshift-distance diagram               |                  |
| τ                       | How many CMB photons are absorbed on the way to us        | CMB                                                |                  |
| $A_{\rm s}$             | Strength of quantum fluctuations                          | CMB                                                |                  |
| n <sub>s</sub>          | Dependence of quantum fluctuations on scale               | CMB                                                |                  |
| $\Omega_{\Lambda,0}$    | Cosmological constant dens. in units of crit. dens. today | $\Omega_{\Lambda,0} = 1 - \Omega_{m,0}$            |                  |
| $\Omega_{\mathrm{k},0}$ | Curvature density in units of crit. dens. today           | Flat $\implies \Omega_k = 0$                       |                  |
| $t_0$                   | Age of Universe                                           | Derived                                            |                  |
| Z <sub>rec</sub>        | Redshift of recombination                                 | Derived                                            |                  |











#### CMB with different amounts of baryons



#### CMB with different amounts of baryons



#### CMB with different amounts of baryons



### **Curvature of the Universe**



- We understand the physics of the CMB patches very well, so we know what size they should be
- If the Universe was strongly curved, the apparent size of the patches would change
  - Larger if positively curved, because lines converge
  - Smaller if negatively curved, because lines diverge
- All CMB measurements are compatible with k = 0 (flat)









#### **CMB with different H0**



#### **CMB with different H0**



#### **CMB with different H0**



#### §3.5 • The initial density field

























#### Reading

- CFN §2.4, §7.1-7.2, §7.3.1, §7.4.1-7.4.2
- MvdBW §4.1-4.1.6, §4.4.2, §4.4.4, §4.5