

Prof. Benedikt Diemer

Chapter 7 • Stars and stellar populations

§7.1 • Star formation

§7.1.1 • The interstellar medium and molecular clouds

21 cm / radio / neutral hydrogen atoms

2.6 mm / microwave / carbon monoxide molecules

Planck satellite

300-1000 nm / optical / stars

Gas phases (in the Milky Way)

Phase		Т (К)	n _H (cm ⁻³)	f∨ -	P/k _B (K/cm³)	Comments
H II 23%	Hot ionized medium (HIM)	10 ^{5.7}	0.004	0.5	4400	Collisionally ionized, shock-heated by supernovae and stellar winds
	H II regions	10000	0.1-104	0.01	varies	Photo-ionized nebulae around stars; density and pressure vary across these bubbles
	Warm ionized medium (WIM)	8000	0.2	0.1	4400	Diffuse photo-ionized gas, large scatter in temperature and density
H I 60%	Warm neutral medium (WNM)	8000	0.5	0.4	4400	About 60% of HI by mass; in pressure equilibrium witn CNM
	Cool neutral medium (CNM)	100	40	0.01	4400	Significant fraction of the mass despite small volume filling fraction
H ₂ 17%	Diffuse molecular gas	50	150	0.001	4400	Self-shielded against dissociation, but not dense enough to form stars
	Molecular clouds	10-50	10 ³ -10 ⁶	0.0001	>10000	The site of star formation; more or less gravitationally bound

§7.1.2 • The (in)efficiency of star formation

Star-forming regions

The Milky Way from our position (gas)

Spitzer Space Telescope

The Milky Way from our position (gas)

Spitzer Space Telescope

Eagle nebula (M16)

Gravity only SFR _{ff} =0.00	$t = 0.0 Myr = 0.00 t_{ff}$	Gravity vs. Turbulence SFR _{ff} =0.00	t=0.0Myr=0.00t _{ff}
N _{sink} =0 Gravity vs. Turbulence + Magnetic fields	SFE=0.0% t =0.0Myr=0.00 $t_{\rm ff}$	N _{sink} =0 Gravity vs. Turbulence + Magnetic fields + Jets	SFE=0.0% t=0.0Myr=0.00t _{ff}
SFR _{ff} =0.00		SFR _{ff} =0.00	
Les and the	2000	ALL STATISTICS	

Gravity + turb. + B + jets

Gravity + turbulence

Federrath et al. 2015 (movie page)

Gravity only

Gravity + turbulence + B

The Kennicutt-Schmidt relation of stars

Bigiel et al. 2008

§7.1.3 • The initial mass function

The abundance of stars

- Big stars are rare for two reasons:
 - The star formation process makes fewer of them
 - They exhaust their fuel and die more quickly

Stellar masses

- The largest stars have about 150 solar masses
- For standard Hydrogen fusion like in the Sun, stars need at least 0.08 solar masses
- The smallest stars ("brown dwarfs") are powered by nuclear fusion (of deuterium), for which they need at least 0.012 solar masses (or 13 Jupiter masses)

-	1

58

	Gliese 229A	Teide 1	Gliese 229B	WISE 1828	Jupiter
00 K	3600 K	2600 K	950 K	300–500 K	125 K
	Те	emperature			

Stellar initial mass function (IMF)

§7.2 • Stellar feedback

§7.2.1 • Supernovae

Summary of stellar evolution

Initial mass (solar masses) PROTOSTAR **BLUE SUPERGIANT** SUPERNOVA STELLAR NURSERY SUPERSHELL **BLACK HOLE** PROTOSTAR **BLUE SUPERGIANT BLUE SUPERGIANT TYPE II SUPERNOVA BLACK HOLE** PROTOSTAR 20-40 NEUTRON STAR **BLUE GIANT BLUE SUPERGIANT** PROTOSTAR TYPE II SUPERNOVA **RED GIANT** 8 TYPE IA SUPERNOVA PROTOSTAR SUN-LIKE STAR WHITE DWARF PLANETARY NEBULA 0.8 **RED GIANT RED DWARF** WHITE DWARF PROTOSTAR **RED DWARF** 0.08 PROTOSTAR **BROWN DWARF BROWN DWARF** 0.012

Time

Stellar lifetimes on the main sequence

- High-mass stars (> 8 M_{\odot}) Lifetime <100 million years
- Intermediate mass stars (2-8 M_{\odot}) Lifetime 100 million to 1 billion yrs
- Low-mass stars (<2 M_{\odot}) Lifetime of 1 to 1000 billion yrs

Post-main sequence life (low-mass stars)

The life of massive stars on the HR diagram

Galactic supernova remnants

Vela SNR (~12000 yr old)

Abell 85 / Cannonball pulsar

SN 1006 (Type Ia)

SN 1054 / Crab nebula

SN 1752 (Tycho's SN, Type Ia)

Cassiopeia A (~1690?)

t = 0.7842 (code units)

FIRE Collaboration (movie page)

Gas temperature

Star light

Illustris simulation: Vogelsberger et al. 2013, 2014ab (<u>movie page</u>)

See also EAGLE (Schaye et al. 2015 • SIMBA (Dave et al. 2019)

§7.2.2 • Stellar winds

Stellar winds

Star formation simulation

STARFORGE Collaboration (movie page)

§7.3 • Galactic spectra from stellar population synthesis

Spectral types

Spectral Type	Example(s)	Temperature Range	Key Absorption Line Features	Brightest Wavelength (Color)		Typical Spectrum
						hydrogen
0	Stars of Orion's Belt	>30,000 K	Lines of ionized helium, weak hydrogen lines	<97 nm (ultraviolet)*	0	
В	Rigel	30,000 K-10,000 K	Lines of neutral helium, moderate hydrogen lines	97–290 nm (ultraviolet)*	в	
A	Sirius	10,000 K–7500 K	Very strong hydrogen lines	290–390 nm (violet)*	A	
F	Polaris	7500 K–6000 K	Moderate hydrogen lines, moderate lines of ionized calcium	390–480 nm (blue)*	F	
G	Sun, Alpha Centauri A	6000 K-5000 K	Weak hydrogen lines, strong lines of ionized calcium	480–580 nm (yellow)	G	
К	Arcturus	5000 K-3500 K	Lines of neutral and singly ionized metals, some molecules	580–830 nm (red)	к	
М	Betelgeuse, Proxima Centauri	<3500 K	Strong molecular lines	>830 nm (infrared)	M II ionized calcium	titanium sodium titanium oxide oxide

- Stellar spectra have absorption lines due to material above the photosphere
- Both the overall color and the spectral lines change with temperature
- Color changes are caused by different blackbody temperature
- Line changes are due to which atoms are ionized, excited, and so on

Spectrum of the Sun

Conroy 2013

§7.4 • Observable indicators of stellar mass and SFR

Galaxies in different wavelengths

SFR indicators

Band	Age range (Myr) ^a	L_x units	$\log C_x^{b}$	<i>М</i> _* / <i>М</i> _* (К98) ^с	Reference(s)
FUV	0-10-100	ergs s ⁻¹ (νL_{ν})	43.35	0.63	Hao et al. (2011),
					Murphy et al. (2011)
NUV	0-10-200	ergs s ⁻¹ (νL_{ν})	43.17	0.64	Hao et al. (2011),
					Murphy et al. (2011)
Ηα	0-3-10	ergs s ⁻¹	41.27	0.68	Hao et al. (2011),
					Murphy et al. (2011)
TIR	0-5-100 ^d	ergs s ⁻¹ (3–1100 μ m)	43.41	0.86	Hao et al. (2011),
					Murphy et al. (2011)
24 µm	0-5-100 ^d	ergs s ⁻¹ (νL_{ν})	42.69		Rieke et al. (2009)
70 µm	0-5-100 ^d	ergs s ⁻¹ (νL_{ν})	43.23		Calzetti et al. (2010b)
1.4 GHz	0-100	ergs s ^{-1} Hz ^{-1}	28.20		Murphy et al. (2011)
2–10 keV	0-100	ergs s ⁻¹	39.77	0.86	Ranalli et al. (2003)

^aSecond number gives mean age of stellar population contributing to emission; third number gives age below which 90% of emission is contributed.

$$\log \dot{M}_*(M_\odot \text{ year}^{-1}) = \log L_x - \log C_x$$

Spectral fitting

Observed galaxy spectra

CFN §3.4.1

§7.5 • Observed correlations

Global star formation rate density (SFRD)

Reading

• CFN

- 7.1: §4.2.9, §8.3
- 7.2: §8.7.1-8.7.2
- 7.3: §8.6
- 7.4: §3.4.0, §11.1.2-11.1.3
- 7.5: §3.4.1, §4.4.4, §11.3.4-11.3.5
- MvdBW
 - 7.1: §9
 - 7.2: §8.6, §10.5
 - 7.3: §10.3