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0 About these notes
These notes are a guide to the interstellar medium (ISM) portion of ASTR 670 at the University
of Maryland. They are less self-contained than the hydrodynamics notes for the first half of the
course (§A.1 gives an ultra-brief introduction to the necessary hydrodynamics). In particular, these
notes frequently refer to textbooks (see below) and they do not reproduce much of the information
conveyed via lecture slides.

0.1 Acknowledgments and commonly used references
This course is based on a previous version taught by my colleague Alberto Bolatto, whose overall
course design and notes I relied on. We will frequently refer to the seminal textbook by Draine (2011,
hereafter Draine), as well as the textbooks of Lequeux (2005, hereafter Lequeux) and Osterbrock
& Ferland (2006, hereafter O&F). I also took inspiration from the excellent ISM slides by Karin
Sandstrom (UCSD).

The image on the title slide is artistically adapted from the Spitzer GLIMPSE survey of the
ISM in the Milky Way.

0.2 Notation
We try to adapt a consistent notation follows the hydrodynamics notes wherever possible, with
some noteworthy exceptions. Tables 1 and 2 list the meaning of all frequently used symbols and
constants.
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Sym. Units Meaning §
A21 s−1 Einstein A coefficient for spontaneous emission 3.4
αAB cm3/s Recombination coefficient (often Case A or B) 5.2
B12 cm3/erg s Einstein B coefficient for absorption 3.4
cs cm/s Sound speed A.1
E erg/cm3 Total energy per unit volume, or other energy A.1
ε erg/g = cm2/s2 Internal energy per unit mass (often thermal, ε = εth) A.1

f(u) s/cm Velocity distribution function, often Maxwell-Boltzmann 3.3
gX — Statistical weight of state X 3.1
Gpi s−1 Ionization rate 5.1
γ — Ideal gas equation of state parameter A.1
Γ erg/cm3/s Heating rate per unit volume A.1
jν erg/cm3/s/Hz Emissivity of radiation 4.2
Jν erg/cm2/s/Hz Mean intensity of radiation 5.1
κν cm−1 Attenuation coefficient 4.2
Lν erg/s/Hz Luminosity at frequency ν 6.1
λ cm Wavelength A.1

λmfp cm Mean free path A.1
Λ erg/cm3/s Cooling rate per unit volume 2.2
m g Mass in a fluid element A.1

mptl g Mass of individual particles A.1
Ṁ M⊙/yr Mass accretion or outflow rate 2.5
µ — Mass of particles in units of proton mass mp A.1
n cm−3 Number density 1.2
ne cm−3 Number density of electrons 1.2
np cm−3 Number density of protons (ionized hydrogen atoms) 1.2
nH cm−3 Number density of hydrogen nuclei or atoms 1.2
n̄γ — Photon occupation number 3.3
NX cm−2 Column density of species X 4.2
ν Hz = s−1 Frequency of EM radiation 5.1
P dyne/cm2 = erg/cm3 Pressure in a fluid element 1.3
q12 cm3/s Collisional excitation/deexcitation rate 3.5
r cm Radial coordinate in Eulerian space —

Re — Reynolds number (relative importance of viscosity) 9.3
ρ g/cm3 Mass density A.1

σ12 cm2 Cross-section for collisional excitation or deexcitation 3.5
σpi cm2 Cross-section to photoionization for frequency ν 5.1
σu cm/s Velocity dispersion 4.2

Table 1: Continued on next page.
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Sym. Units Meaning §
t s Time coordinate —

tX s Lifetime of state X or time for X to happen —
T K Temperature A.1
τ — Optical depth —

Υ12 — Velocity-averaged collision strength 3.5
u cm/s Particle velocity (differs from the hydro notes) 5.2
uuu cm/s Fluid velocity A.1
Uν erg/cm3/Hz Energy density of radiation 3.3
xxx cm Coordinate position vector in Eulerian space —

Table 1: Definition of symbols used throughout the text. The section given in the right column typically
refers to the section where a quantity is first defined. We are using the CGS unit system throughout.

Sym. Value Units Meaning
yr 3.16 × 107 s Year in seconds
eV 1.60 × 10−12 erg Electron volt unit
Å 10−8 cm Angstrom

AU 1.50 × 1013 cm Astronomical unit
pc 3.09 × 1018 cm Parsec
kpc 3.09 × 1021 cm Kiloparsec
Mpc 3.09 × 1024 cm Megaparsec
a0 5.29 × 10−9 cm Bohr radius
α 7.30 × 10−3 — Fine-structure constant (about 1/137)
kB 1.38 × 10−16 erg/K Boltzmann constant
h 6.63 × 10−27 erg s Planck constant; h̄ ≡ h/2π

c 3.00 × 1010 cm/s Speed of light
G 6.67 × 10−8 cm3/g/s2 Gravitational constant
qe 4.80 × 10−10 statC Electron charge
me 9.11 × 10−28 g Electron mass
mp 1.67 × 10−24 g Proton mass
Ryd 2.18 × 10−11 erg Rydberg, hydrogen ionization energy, 13.6 eV
σSB 5.67 × 105 erg/s/cm2/K4 Stefan-Boltzmann constant
M⊙ 1.99 × 1033 g Solar mass
R⊙ 6.96 × 1010 cm Solar radius

Table 2: Physical and astronomical constants and unit conversions in Gaussian CGS units as used through-
out the text.
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1 Introduction: What is the ISM?
The ISM is not one thing: it consists of different gas “phases” that exhibit rather diverse properties.
We begin with an overview of these phases (§1.1 and §1.2). Arguably, their most important
interaction is that they hydrodynamically push against each other to establish an approximate
pressure equilibrium (§1.3). Similarly, different forms of energy in the ISM also store similar
amounts of energy (§1.4). Finally, we consider the electromagnetic (EM) spectrum and the kinds
of observations on which our knowledge of the ISM rests (§1.5).

1.1 Gas phases
Figure 1 shows a list of the main gas phases that constitute the ISM. Their temperatures and
densities should be taken to be rough indications because the phases exhibit a range of properties
(some with larger scatter than others) and because some of the values are poorly constrained.
Since the majority of cosmic gas is made of hydrogen, its state is a key feature of the phases.
We interchangeably use the symbols H ii and H+ to denote ionized hydrogen atoms. Since they
are, simply put, protons, their properties are sometimes abbreviated with the subscript p. Atomic
hydrogen is written as either H i, H0, or simply H, depending on the context. We consider mp to be
the mass of a hydrogen atom regardless of its ionization state (ignoring the negligible contribution
from electrons). Diatomic molecular hydrogen is always denoted as H2.

The ISM is a highly active system, where gas continuously cycles between different phases.
Figure 2 shows an overview of some of the most important conversion processes that we will study
in these notes. When gas first enters the galaxy, it has likely already been shock-heated to hot
temperatures (§2), although it can also directly enter the WNM via “cold streams.” Stars back-
react on the gas via “feedback,” a summary term that includes radiation, stellar winds, planetary
nebulae, and supernovae.

Phase T  
(K)

nH  
(cm-3)

fV 
-

P/kB 
(K/cm3) Comments

H II 
23%

Hot ionized medium (HIM) 105.7 0.004 0.5 4400 Collisionally ionized, shock-heated by 
supernovae and stellar winds

H II regions 10000 0.1-104 0.01 varies Photo-ionized nebulae around stars; density  
and pressure vary across these bubbles

Warm ionized medium (WIM) 8000 0.2 0.1 4400 Diffuse photo-ionized gas, large scatter in 
temperature and density

H I 
60%

Warm neutral medium (WNM) 8000 0.5 0.4 4400 About 60% of HI by mass; in pressure 
equilibrium witn CNM

Cool neutral medium (CNM) 100 40 0.01 4400 Significant fraction of the mass despite small 
volume filling fraction 

H2 

17%

Diffuse molecular gas 50 150 0.001 4400 Self-shielded against dissociation, but not 
dense enough to form stars

Molecular clouds 10-50 103-106 0.0001 >10000 The site of star formation; more or less 
gravitationally bound

Figure 1: Overview of the phases of the ISM. The left column distinguishes the three fundamental states
of hydrogen: ionized (H ii), atomic (H i), and molecular (H2); the percentages indicate their approximate
mass fractions. All densities are given as nH (§1.2), and fV denotes the volume filling fraction. Most of
the numbers are based on Table 1.3 in Draine. Many of them are uncertain, or typical values for quantities
with large scatter, or both. The exact values were picked to highlight the approximate pressure equilibrium
between the HIM, WIM, WNM, and CNM (where P/kB = nT rather than nHT , a conversion that depends
on whether the gas is ionized, atomic, or molecular).
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Hot Ionized Medium

Warm Ionized Medium

Warm Neutral Medium

Diffuse H2

Molecular clouds

Stars

Radiative cooling

Radiative recombination

H2 formation on dust

Collapse, turbulence

Star formation

Supernovae

Photoionization

Photodissociation

Cool winds, 
planetary nebulae

Fast winds,  
SN ejecta

(SNe convert 
WNM to HIM)

Turbulence

Figure 2: The most important processes that convert gas from one phase to another, although more than
one process is responsible in many cases.

1.2 Conversion between densities
We need to be careful with the densities of different states of hydrogen, or when converting density
to number density. The conversion depends on the Helium fraction, metallicity, and ionization
state. After Big Bang nucleosynthesis, the Universe has a hydrogen fraction of fH = 0.76 by mass,
meaning that 24% of the mass is in Helium. Given that Helium nuclei are four times heavier, this
would correspond to a hydrogen fraction by number of

fH,n = 1 − 1 − fH
4 = 0.94 , (1.1)

meaning that 6% of particles are Helium nuclei. Throughout this course, however, we assume the
Solar abundance of 10% Helium by number. This estimate takes into account that ISM gas is
likely enriched above cosmic values, although we ignore heavier metals for simplicity. We then have
fH,n = 0.9 and fH = 0.6, or about 40% of the mass in Helium.

In order to convert between ρ and n, we need the mean particle weight. This number now
depends on whether the gas is ionized, neutral atomic, or molecular because freeing electrons or
forming molecules changes the number of particles without changing their mass. For atomic gas,
we have

µatomic = fH,n × 1 + (1 − fH,n) × 4 = 0.9 + 0.1 × 4 = 1.3 . (1.2)

In molecular gas, we assume that all H atoms are in H2. The Hydrogen fraction by number becomes
fH,n = 1 − 0.1/(0.9/2 + 0.1) ≈ 0.82, which gives a mean particle weight

µmolecular = fH,n × 2 + (1 − fH,n) × 4 = 0.82 × 2 + 0.18 × 4 ≈ 2.36 . (1.3)

For ionized gas, Hydrogen has a mass of half a proton per particle and Helium has mass 4/3 per
particle (since there is one nucleus and two electrons), so we get

µionized = 0.9 × 0.5 + 0.1 × 4/3 = 0.58 . (1.4)
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These changing conversions are annoying, which is why we will generally use the number of protons
in hydrogen independent of its state, nH, rather than n. The approximate conversion is

nH ≡ n(H0) + n(H+) + 2n(H2) = ρ

µ/0.9 × mp
, (1.5)

where the factor of 0.9 again represents fH,n for atomic gas, since nH is define to count Hydrogen
atoms (protons). For atomic gas, we thus have

nH = ρ

µatomic/0.9 × mp
≈ ρ

1.4 mp
. (1.6)

We also need to be careful when converting between nH and n. We get

natomic = nH + 0.1 nH = 1.1 nH , (1.7)

whereas totally molecular gas would obey the relation

nmolecular = 0.5 nH + 0.1 nH = 0.6 nH . (1.8)

In ionized gas, we need to count one electron per hydrogen and two per Helium, so we get

ne = nH + 2 × 0.1 nH = 1.2 nH (1.9)

and
nionized = ne + ni = 1.2 nH + 1.1 nH = 2.3 nH . (1.10)

In general, we will neglect the contribution of higher elements to these densities because they are
small (Table 1.4 in Draine) and because they would introduce a dependence on the metallicity.
We will write the number density of ionized hydrogen interchangeably as n(H+) or as the number
density of protons, np, depending on the context. In the case of pure hydrogen, ne = np, but that
is not the case once we include helium and metals as demonstrated above.

1.3 Pressure equilibrium
In hydrodynamics, we thought of pressure as an energy density in units of erg/cm3, equivalent to
thermal, kinetic, or magnetic energy. When studying the ISM, we are often more interested in
pressure as a proxy for the density and temperature of a medium. We convert

P = nkBT =⇒ P/kB = nT (1.11)

and write the pressure as P/kB, with units of K/cm3. While these units are not terribly meaningful,
the interpretation of the value of P/kB is straightforward: it is the product of number density per
cm3 and temperature in K.

One of the most noteworthy features of the densities and temperatures listed in Figure 1 is that
they result in very similar pressures for many phases, around 4400 K/cm3 for the HIM, WNM,
and CNM (the estimates for WIM and diffuse molecular gas vary quite a bit). On some level, this
result is expected because phases with higher pressure would expand and displace those with lower
ones until they reach an approximate equilibrium (e.g., Spitzer 1956). Molecular clouds tend to
have higher pressure because they experience self-gravity.
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Figure 3: All-sky maps of the Milky Way in various wave bands, from radio (top left) to X-rays (bottom
right). The projections are such that the center of the images shows the center of the Galaxy. The images are
from (1) the Effelsberg-Parkes H i survey, (2) the Planck satellite measurements of carbon-monoxide (CO)
line emission, (3) the Planck polarization measurements, which show magnetic field strength and direction,
(4) the IRAS satellite, (5) the 2MASS survey, (6) Finkbeiner (2003), (7) the GAIA satellite, and (8) the
eROSITA all-sky survey. If a wavelength range is given, the images are composites of various wavelengths.
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Component E (eV/cm3) Comments
Cosmic microwave background (CMB) 0.27
Far-IR radiation from dust 0.31
Starlight 0.54 For energies hν < 13.6 eV
Thermal energy 0.49
Kinetic energy 0.22 Largely from turbulence
Magnetic energy 0.89 For a median B ≈ 0.6µG

Cosmic ray energy 1.39

Table 3: Estimates of the energy per unit volume in the local ISM. The different forms of energy are
remarkably close to equipartition. Adapted from Table 1.5 in Draine.

1.4 Energetics
Besides the densities and pressures considered in the previous sections, another fundamental prop-
erty of the ISM is the energy density in various forms (such as thermal energy, light, gas motions,
cosmic rays, and magnetic fields). Some of the corresponding energy densities are hard to measure,
but Table 3 shows our best guesses for the local ISM. Many of the components are expected to
vary strongly across the galaxy. For example, the intensity of starlight depends on the distance to
the nearest massive star.

All of the energy densities listed are surprisingly close to equipartition, with no more than a
factor of a few between the smallest and largest. In some cases, this must be a coincidence. For
example, the intensity of the CMB is set by cosmology and has nothing to do with the ISM. If we
happened to live at z = 1, the CMB energy density would be (1 + z)4 = 16 times higher.

In other cases, however, there are good reasons to expect approximate equipartition. For
example, galaxies act as magnetic dynamos that will, after a sufficient number of rotations, bring
the magnetic field into approximate equipartition with the kinetic energy (see hydro notes). If
the kinetic energy is largely caused by turbulent motions, we would also expect an approximate
equipartition with thermal energy. As mentioned, the intensity of starlight could be much smaller
or greater depending on our exact location, but if it were orders of magnitude larger everywhere, it
would push ISM gas out of the galaxy, which would in turn slow down star formation and reduce
the stellar radiation field. In other words, some of the similarities between energy densities are
probably explained by equilibria between different processes such as star formation and gravity.
We will return to such overarching questions in §10.

1.5 Observations across the EM spectrum
Our knowledge of the galactic ISM is based on observations across almost the entire EM spectrum,
perhaps with the exception of γ-rays. Figure 3 shows an overview of all-sky projections across this
vast range of wavelengths. Figure 4 shows a schematic of the EM spectrum and the names typically
associated to certain wavelength ranges. These denominations are not always unique; for example,
the ranges of “far-infrared,” “sub-millimeter,” and “microwave” often overlap somewhat.

Generally speaking, the energy of the radiation is connected to the energy (and thus tempera-
ture) of the emitting processes. On the low-energy end of the spectrum, the spin-flip transition of
atomic hydrogen emits 21 cm radiation (§4), and rotational transitions in molecules emit photons
in the mm range (§8, first and second panels of Figure 3). The polarization of the CMB can tell us
about magnetic fields because of polarized emission from aligned dust grains (third panel). Dust
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-raysγ

Wavelength (m)Frequency (Hz)

X-rays

10−2 nm

700 nm

Infrared

Microwave

1 mm

Radio

1 m

10 nm
Ultraviolet

400 nm

Near-IR

Far-IR
Sub-mm

10 μm
100 μm

1 μm

1 mm
450 μm
30 μm

700 nm

Hard

1 nm
0.1 nm 0.2 nm

10−2 nm

10 nm
Soft

Figure 4: Overview of the electromagnetic spectrum. The bands are named according to astronomical
convention, although some divisions are not unique. For example, the ranges that are called “far-IR” and
“sub-millimeter” often overlap.

generally emits in the infrared (§8.3, fourth panel), whereas starlight dominates the near-IR and
optical bands (fifth and seventh panels). The hydrogen n = 3 → 2 transition is known as Hα, and
is a good indicator of star formation (§6.5, sixth panel). Although UV all-sky maps now exist, this
waveband is hard to observe because it is very efficiently absorbed by dust. Finally, hot gas emits
X-rays (§2, eighth panel). In these notes, we will generally tackle the different phases progressing
from hot to cold, though with some exceptions.
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2 The hot ionized medium
The term hot ionized medium (HIM) denotes gas with 105 < T < 107 K. While the HIM has a very
low density (of order 10−3/cm3), it fills about half the ISM volume in the Milky Way (Figure 1).
The main physical distinction of “hot” gas is that it is collisionally ionized (§2.1), a state that
leads to radiative cooling (§2.2 and §2.3). The necessary heat is mostly generated and maintained
by a combination of shock heating during infall into the galaxy, supernovae, and stellar winds (§2.4
and §2.5). The HIM is critical in setting the equilibrium pressure of the ISM (§2.6).

2.1 Collisional ionization equilibrium (CIE)
Collisional ionization means that the gas is so hot that particles (most notably, free electrons) have
sufficient kinetic energy to ionize hydrogen and possibly higher elements. The average energy per
particle reaches this threshold when

⟨Ekin⟩ = 3
2kBT = 13.6 eV =⇒ Tion ≈ 105 K , (2.1)

but in reality even a relatively small number of high-energy particles is sufficient to ionize the gas.
Thus, the characteristic temperature where hydrogen begins to be ionized is about 104 K. Elements
with more protons will naturally be ionized at higher temperatures, but partial ionization states
are reached at lower temperatures. For example, it takes about 24.6 eV to remove one electron
from Helium (“singly ionized”) and 54.4 eV to remove the second (“fully ionized”).

On the other hand, excited atoms will quickly return to their lower energy state (de-excite) and
free electrons will recombine with ions (§3.1). Assuming that photo-ionization is not important
and that enough time has passed, the gas will settle into collisional ionization equilibrium
(CIE), a steady state with fixed abundances of each ionization state of each element. The number
of both ionizations and recombinations scales with neni, where ni is the number density of ions.
De-excitations occur regardless of the number density, and thus follow the frequency of excitations,
which also scale with neni. We conclude that, in CIE, the ionization fractions depend only on
temperature!

Assuming that we know the elemental composition of a given gas, the independence from density
gives us a powerful observational tool to measure the temperature. Each (partially ionized) ion has
a temperature where it is most abundant, e.g., 105 K for C IV. If we observe a higher ionization
state, we know that the temperature must be higher than the maximum-abundance temperature
of the next-lower ion. For example, if we see C IV, T > Tmax(C III). Moreover, emission and
absorption in a collisionally ionized plasma depend differently on density (as n2 and n along the
line of sight, respectively). If we have both emission and absorption lines, we can thus measure n
and get T based on the highest ionization states present.

2.2 Cooling rates
While the continuous excitations and ionizations of ions are fueled by the kinetic energy of particles
(mostly electrons), the reverse processes of de-excitation and recombination both emit photons.
Thus, the net effect of CIE is cooling, that is, the removal of heat by radiating it out of the galaxy
(or at least out of the gaseous system we are considering). Since all processes involved scale as
neni, we typically express the cooling rate as

Λ =
( Λ

neni

)
× neni . (2.2)
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Figure 5: Numerically calculated cooling curves as a function of metallicity (left) and density (right) based
on the cooling rate tables of Ploeckinger & Schaye (2020). These tables approximately take into account
radiation backgrounds, cosmic rays, self-shielding, and many other effects. The cooling rates have already
been divided by n2

H, meaning that the right panel shows only the residual dependence of this approximately
density-independent quantity. The dashed lines show the Draine approximation for Z = Z⊙.

The quantity Λ/neni is now a function of metallicity and temperature only (at least approximately).
Draine §34.1 gives an overview of cooling processes in hot gas. There are fundamentally two regimes:
line cooling at temperatures below about 3 × 107 K, and free-free emission (Bremsstrahlung) at
higher temperature. The latter scales as Λff/neni ∝

√
T , which can be derived from first principles

(though including some quantum mechanics, see Draine §10.1 for details).
For the line emission that dominates below 3 × 107 K, we assume that collisions dominate over

photon interactions such as absorption and stimulated emission (§3, see §3.7 for details on how
line cooling rates are computed). Figure 34.3 in Draine shows the contributions of different ions
to the total cooling assuming CIE. Figure 5 shows more realistic cooling curves down to lower
temperature, which were computed based on the tables of Ploeckinger & Schaye (2020). These
tables do contain dependencies on density, but the right panel confirms that this dependence is
very weak at high temperatures. The most striking feature in the cooling curves is the drop in
Λ/n2

H by many orders of magnitude at T ≈ 104 K, where hydrogen begins to a) get collisionally
excited and thus contribute to cooling and b) be ionized and thus provide free electrons that can,
in turn, excite and ionize higher elements. As a result, gas can cool to 104 K relatively quickly but
may then get “stuck” at this temperature, depending on the metallicity.

2.3 Cooling times
The cooling rate is not a particularly intuitive quantity, which is why it is commonly converted
to a cooling time (Draine §34.2), defined as the time it would take gas to cool to zero given its
current cooling rate,

tcool ≡ T

|DT/Dt|
. (2.3)
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This time is an idealization because the cooling rate would change as soon as the temperature
changes, and also because we are neglecting conduction and heating. Nevertheless, the cooling
time gives us an order-of-magnitude of the kind of timescales on which a gas can cool significantly.
To derive a formula for the cooling time from hydrodynamics, we consider the Euler equation for
the energy of a Lagrangian fluid element (see also Draine Equation 35.24),

Dε

Dt
= −P

ρ
∇ · uuu + Γ

ρ
− Λ

ρ
. (2.4)

We neglect heating for now (Γ = 0). At first sight, things look bad because the equation depends
on the velocity field uuu, which is unknown for a general parcel of ISM gas. However, we recall that
the P∇ · uuu term physically represents PdV work. When we derived the Euler equations, we used
the divergence theorem to convert fluxes through the surface of the fluid element into divergences.
We now revert this logic to convert the divergence of velocity into a change in volume (using that
∇ · uuu is constant over a microscopic fluid element),

∇ · uuu = 1
V

∫
V

∇ · uuu dV = 1
V

∫
S

uuu · dSSS = 1
V

DV

Dt
. (2.5)

In the last step, we have made the physical connection that a net positive velocity perpendicular
to the surface of the fluid element means that the fluid element is expanding (similar to the mass
flux argument used when we derived the continuity equation). We now convert all quantities to P ,
T , V , and the constant mass of the fluid element, m, total number of particles, N , and the degrees
of freedom, Ndof . Given equipartition, we have a total internal energy of mε = N × Ndof × kBT/2.
We multiply Equation 2.4 by m,

D(mε)
Dt

= −PV ∇ · uuu − V Λ =⇒ Ndof
2

D(NkBT )
Dt

= −P
DV

Dt
− V Λ . (2.6)

The challenge is now to convert the derivative of V (which is meaningless, since the fluid element
is an imaginary quantity) into other derivatives. Thus, instead of pulling NkB out of the derivative
on the LHS, we recognize that N = nV and NkBT = PV . We add D(PV )/Dt to both sides and
expand it on the RHS,(

Ndof
2 + 1

) D(NkBT )
Dt

= −P
DV

Dt
− V Λ + P

DV

Dt
+ V

DP

Dt
= V

DP

Dt
− V Λ (2.7)

and, using n = N/V to eliminate the remaining V terms,

DT

Dt
= 2

(Ndof + 2)nkB

(DP

Dt
− Λ

)
= (γ − 1)

γnkB

(DP

Dt
− Λ

)
. (2.8)

As the temperature decreases, we can imagine that the pressure is constant and the fluid element
contracts, or that the density is constant and the pressure decreases accordingly. In the “isobaric”
(constant pressure) case, DP/Dt = 0 and(DT

Dt

)
isobaric

= −(γ − 1)
γnkB

Λ . (2.9)

In the “isochoric” (constant density) case, we have Dn/Dt = 0 =⇒ DP/Dt = nkBDT/Dt and thus

DT

Dt

(
1 − γ − 1

γ

)
= DT

Dt

(1
γ

)
= −(γ − 1)

γnkB
Λ , (2.10)
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Figure 6: Different estimates of the isochoric cooling time from a temperature T to 105 K at Z = Z⊙. The
dark blue line is estimated from the instantaneous cooling rate at T and relies on Draine’s approximation
for the cooling rate (Equation 34.2). The light-blue line was calculated by integrating over the evolution of
the cooling rate with temperature. For the green line, the approximate cooling rates were replaced by the
Ploeckinger & Schaye (2020) functions (Figure 5). The approximate cooling time agrees quite well with the
more sophisticated calculations.

and thus (DT

Dt

)
isochoric

= γ

(DT

Dt

)
isobaric

= −(γ − 1)
nkB

Λ . (2.11)

Given that we are dealing with gas that is too hot to contain molecules, we can safely assume
γ = 5/3 to get the cooling time,

tcool,isobaric = 5
2

nkBT

Λ and tcool,isochoric = 3
2

nkBT

Λ (2.12)

It makes sense that the isochoric cooling time is shorter, since the density remains higher than in
the isobaric case, meaning more cooling. We recall that Λ/n2 is a function of temperature only,
meaning that tcool × n is also independent of density. Thus, the cooling time actually scales as
f(T )/n. At low densities, the cooling time can get long!

We can also derive exact expressions for the cooling time by integrating Equation 2.3 over T
instead of assuming a constant Λ. In the isochoric case, we can keep n outside of the integral to
get

tcool,isochoric = 3
2nkB

∫ Thigh

Tlow

1
Λ(T ′)dT ′ , (2.13)

where Thigh is the starting temperature and Tlow the lower final temperature. In the isobaric case,
we need to convert density to pressure, n = P/kBT since the latter is constant, which gives

tcool,isobaric = 5
2P

∫ Thigh

Tlow

1
T ′ × Λ(T ′)dT ′ , (2.14)

It does not make sense to integrate to Tlow = 0, since the cooling rates become small at low T
(Figure 5), meaning that gas can never actually cool to T = 0. Figure 6 shows the isochoric
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cooling time calculated both based on the instantaneous cooling rate (Equation 2.12) and based on
integration (Equation 2.13). The instantaneous estimate compares surprisingly well to the more
accurate integral.

2.4 Radiative corrections to the Sedov-Taylor phase of supernovae
We now turn to the processes that heat gas and keep it hot. In the hydrodynamics part of the
course, we treated the self-similar expansion phase of a supernova remnant, known as the Sedov-
Taylor (ST) phase. From self-similarity and the given quantities of ejecta energy and surrounding
density, we found that the shock radius must scale as

Rs ∝
(

ESN
ρ1

)1/5
t2/5 . (2.15)

The requirement that the ST phase starts when the ejecta has swept up its own mass in material
sets the self-similar unit system. However, we neglected the effects of cooling. Based on our recently
acquired knowledge of the cooling function, we can compute at what point the ST solution becomes
invalid due to significant radiative energy losses. The following derivations follow Draine §39. We
use Draine’s way of quantifying the numbers in terms of characteristic input quantities,

E51 ≡ ESN
1051 erg n0 ≡ n1

1/cm3 t3 ≡ t

1000 yr (2.16)

where n1 = ρ1/1.4mp (see §1.2). In this convenient notation,

Rs = 5.0 pc × E
1/5
51 n

−1/5
0 t

2/5
3

us = 1950 km/s × E
1/5
51 n

−1/5
0 t

−3/5
3

Ts = 5.25 × 107 K × E
2/5
51 n

−2/5
0 t

−6/5
3 , (2.17)

where Ts is the temperature right behind the shock front. To get a sense of when radiative losses
become important, we compute the total energy radiated away,

∆E = −
∫ t

0
dt

∫ Rs

0
dr 4πr2Λ(ρ, T ) . (2.18)

The cooling function can be approximated as

Λ ≈ 1.1 × 10−22 erg cm3

s

(
T

106 K

)−0.7
nenH (2.19)

in the relevant temperature regime (Draine Equation 34.2). We convert using the expressions from
§1.2,

nH = n1

(
ρ

ρ1

)
ne = 1.2 × n1

(
ρ

ρ1

)
(2.20)

and solve the radial integral,

∆E = −1.2 × 1.1 × 10−22 n2
0

(
Ts

106 K

)−0.7 erg
cm3 s

∫ t

0
dt

4πR3
s

3

〈(
ρ

ρ1

)2 ( T

Ts

)−0.7
〉

. (2.21)

The average term is now purely a function of the self-similar ST solution and comes out to 1.817.
We plug in the forms of Equation 2.17 to get the fraction of the total supernova energy lost to
radiation,

∆E

ESN
≈ −2.38 × 10−6 × n−0.55

0 E−0.68
51 t3.04

3 . (2.22)
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We can decide at what fraction we declare the ST phase for no longer valid. We follow Draine in
setting this fraction to 1/3, which is reached after a time

trad = 4.9 × 104 yr × n−0.55
0 E0.22

51 . (2.23)

At that time, the shock has reached a radius

Rs,rad = 24 pc × n−0.42
0 E0.29

51 , (2.24)

which is a factor of five or so smaller than the ≈ 100 pc radius at which the shock can no longer be
supported without cooling (see hydro notes). Clearly, the radiative corrections make a big difference
in the ST solution!

2.5 Stellar winds
Intuitively, it might seem like winds could never be as energetic as supernovae, but a simple calcu-
lation shows that that’s not necessarily true:

Etot = 1
2Mwu2

w = 1
2Ṁ ∆t u2

w ≈ 1050 erg × Ṁ6 u2
3

( ∆t

107 yr

)
, (2.25)

where we have defined additional quantities of convenience for the mass loss rate, wind velocity,
and surrounding density,

Ṁ6 ≡ Ṁ

10−6 M⊙/yr u3 ≡ uw
1000 km/s n3 ≡ nH

103/cm3 . (2.26)

The total energy is not categorically different from the energy of a supernova. The terminal wind
velocity turns out to be about the escape velocity of the star. O stars have a mass of 60 M⊙ and
1.5 < u3 < 2.5; for B stars, we have 18 M⊙ and 0.3 < u3 < 1.5.

The next questions we might ask are how large the volume influenced by the stellar wind is,
and whether it grows forever or reaches a particular size. For simplicity, we assume that the stellar
wind turns on suddenly at t = 0 and expands into an already existing H ii region (hence the higher
environmental density n3 compared to the supernova calculation). As for a supernova blast wave,
the wind first expands freely before it sweeps up a mass comparable to its own mass. For the
supernova, this mass was constant, but for a wind it grows with the outflow rate. Thus, the time
when the free expansion phase ends is approximately described by

Ṁt ≈ 4π

3 ρ0u3
wt3 (2.27)

which we solve to find

t0 =
(

3Ṁ

4πρ0u3
w

)1/2

. (2.28)

We convert ρ to n as described in §1.2 and plug in our default numbers,

t0 ≈ 2.5 yr × n
−1/2
3 Ṁ

1/2
6 u

−3/2
3 . (2.29)

Clearly, the free expansion phase is so short that it will not be observable (and probably not physical
given that the star does not actually turn on instantaneously). As for the Sedov-Taylor phase of
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supernovae, we could derive the scaling of the shock radius in the self-similar phase purely from
dimensions. If we start at t0 and l0 = t0uw, we get

Rs = l0

(
t

t0

)3/5
=
(

3
4

Ṁu2
w

πρ0

)1/5

t3/5 ≈ 0.09 pc × t
3/5
3 n

−1/5
3 Ṁ

1/5
6 u

2/5
3 . (2.30)

This scaling is slightly different from the 2/5 for the ST phase because the stellar wind energy is
injected continuously, leading to the extra factor of t in Equation 2.27. The shock moves outward
with a velocity

us = ∂Rs
∂t

= 3Rs
5t

≈ 55 km/s × t
−2/5
3 n

−1/5
3 Ṁ

1/5
6 u

2/5
3 . (2.31)

In Appendix B.1 we present a more sophisticated derivation of the normalization of the shock radius
and speed (Draine §38.1), but the final result differs by only 20%.

As the shock decelerates and the Mach number drops, the gas is shock-heated less and its
cooling time decreases. Thus, the shock becomes “radiative,” meaning that the temperature quickly
decreases to the pre-shock temperature. This happens when the cooling time becomes comparable
to t. From Figure 36.2 in Draine, we learn that the cooling times for slow shock speeds are fairly
short. Indeed, an approximate calculation (Draine Equation 38.6) shows that the shock becomes
radiative after only about 7 years for the parameters assumed above! At this transition, the shock
velocity briefly drops, but the velocity and radius quickly recover to the same scalings as above.

As with the ST phase of supernovae, the energy-conserving phase ends when the shock speed
decreases to the sound speed of the surrounding ISM (about 15 km/s in H ii regions). From
Equation 2.31, that happens at t ≈ 4 × 104 yr, at which point the shock radius is Rs ≈ 1 pc. In
summary, stellar wind bubbles are much smaller than late-stage supernova remnants, but they still
inject a significant amount of energy into the ISM.

2.6 The supernova rate and the pressure of the hot ISM
To understand the importance of supernovae for the ISM as a whole, we need to know the supernova
rate. Observationally, we believe the rate in the MW to be about one per 40 years, or one per 60
years in the disk (within a radius of 15 kpc and thickness of 200 pc). The rate per volume is then

S =
(
60 yr × π(15 kpc)2 × 200 pc

)−1
= 1.2 × 10−13 1

pc3 yr ≡ 1.2 S13 . (2.32)

Using the final lifetime and size of SN remnants (tfade and Rfade, Draine §39.1), we can now
determine the average number of SNe affecting a random position in the ISM. We write

NSN = S × 4π

3 R3
fadetfade

≈ 0.24 S13 n−1.47
0 E1.26

51

(
cs

10 km/s

)−2.6
. (2.33)

The numerical pre-factor is remarkably close to unity! This fact led McKee & Ostriker (1977)
to postulate that NSN is not coincidentally close to one, but that supernovae maintain the ISM
pressure at a value that balances that of the SN remnants. If the pressure is lower, supernova
bubbles expand farther, raising the pressure. Once bubbles begin to overlap, on average, they
encounter a pressure similar to their interior and are stalled. This is a very simplistic assumption,
but it makes a reasonable prediction for the pressure in the ISM. We convert the sound speed in
Equation 2.33 to pressure,

P = c2
s ρ

γ
= c2

s × 1.4 nH mp
γ

, (2.34)
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and use our main assumption (NSN = 1) to solve for the pressure,

P/kB ≈ 5700 K/cm3 × S0.77
13 n−0.13

0 E0.97
51 . (2.35)

This estimate is remarkably close to the observed ISM pressure of about P/kB ≈ 4000 K/cm3!
Moreover, the estimate is almost independent of density, meaning that the only inputs are the
observed supernova rate and energy, as well as known physics such as hydrodynamics and the cooling
function. We conclude that supernovae are likely to contribute a large part to the pressurization
of the ISM. We explore this line of argument further in §10.2.
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3 Atomic physics I: Energy levels and transitions
In the ISM, the state of atoms, ions, electrons, molecules, and radiation plays a critical role. One
of the key processes is the excitation of atoms and ions into higher energy levels by either photons
or collisions with other particles. In preparation for the following topics, we dedicate this section
to studying the physics of atoms, and hydrogen in particular.

We begin by recapitulating the energy levels of atoms and transitions between them (§3.1 and
§3.2, Draine §4). We lay the necessary foundations in statistical mechanics in §3.3 (Draine §3).
We introduce the basic equations for radiative absorption and emission in §3.4 (Draine §6) and
for collisional excitation in §3.5 (O&F §3.5). We combine those mechanisms to describe the level
populations of a two-level system in §3.6 (Draine §17) and apply our insights to line cooling in §3.7.

3.1 Energy levels of atoms
To understand the ionization structure of gas in the ISM, we cannot only consider the ground and
fully ionized states because atoms (including hydrogen) have many intermediate energy levels. In
quantum mechanics, the orbitals of electrons are characterized by a principle quantum number,
n ≥ 1, and an orbital angular momentum quantum number l, where 0 ≤ l < n. This number
determines the quantized angular momentum of an electron, Le = lh̄. This angular momentum can
point in different directions, which we quantify via the component of the angular momentum that
points in the z-direction, mh̄, with −l < m < l. In addition to their orbital angular momentum,
electrons have a spin of h̄s, where s = ±1/2.

The Pauli exclusion principle states that only one electron can occupy a given state. Each
combination of n, l, and m can host two electrons whose spins point in opposite directions (spin-up
and spin-down). As a result, a given combination of n and l, which we call a subshell, can host
2(2l + 1) electrons with distinct quantum numbers. For historic reasons, the values of l = 0, 1, 2, 3
are labeled s, p, d, f (which stand for sharp, principal, diffuse, and fundamental). These subshells
can host at most 2, 6, 10, and 14 electrons, respectively. We can write down the occupation of
subshells with superscripts, e.g., 1s22s22p63s for the Z = 11 electrons of Sodium in its ground state
(Figure 7).

However, this notation does not tell us which states (values of m and s) are filled in an incomplete
subshell. It is thus not particularly useful if we want to understand the transitions between different
energy levels, which depend on the total change in energy and angular momentum between the
previous and new state of the electrons. Instead, we use spectroscopic notation to describe the
configuration of electrons in a subshell of a particular atom or ion. Depending on the ionization
state, a number of subshells will typically be filled entirely or partially. We are generally interested
in the “outermost” electrons because those are easiest to excite to a higher level (see, e.g., Table
4.1 in Draine). We sum the angular momenta of the electrons in a subshell in vector space so that
Lh̄ is the total orbital angular momentum, Sh̄ is the total spin, and JJJ = LLL +SSS is the total angular
momentum. A possible state of the subshell is called a term, which we write in spectroscopic
notation as

n2S+1Lp
J (3.1)

where L is written as a letter (S, P , D, F ), e.g., 32P1. The p stands for “parity” and can be blank
(even parity) or “o” (odd parity). This flag indicates whether the wave function changes sign if
all electrons are reflected through the origin. In principle, the number of possible combinations
in a term (called the “multiplicity”) is g = (2S + 1)(2L + 1), but not all of those possibilities are
necessarily distinct or allowed. The selection rules get complicated, and it is generally best to just
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Figure 7: Shells (n = 1, 2, 3) and subshells (l = 0, 1, 2) as filled in the ground state of Sodium (Z = 11).
Each arrow represents an electron with spin up or down.

look up which terms are present in different atoms and ions (see Draine §4.5 for details).
The J-number describes the different ways in which orbital and spin angular momenta can

combine in vector space, with the total angular momentum ranging from J = |L−S| to J = |L+S|.
From the perspective of the electrons, the protons in the nucleus are orbiting and thus creating a
magnetic field, which interacts with the spin of the electrons. This so-called spin-orbit coupling
leads to fine structure splitting between orbitals that would otherwise have the same energy
(same n and l). For example, four electrons in a 3P state (L = 1) can have J = 0, 1, 2, leading to a
“triplet” (as opposed to a “singlet” or “doublet” for one or two possible values of J). The number
of distinct combinations that leads to the same state is called the “degeneracy,” g = 2J + 1. Even
more subtly, the magnetic moments from the spin of the electrons and the protons in the nucleus
interact, leading to hyperfine splitting of the energy levels based on the relative spin orientations
(parallel or anti-parallel).

We can roughly estimate the differences between the various types of split in the energy levels.
The primary levels are determined by the Coulomb interactions between electrons and nuclei. The
relevant energy unit is the Rydberg, where1

Ryd ≡ 2π2meq
4
e

h2 = 13.6 eV . (3.2)

The primary energy levels of electrons are given by the quantum number n and have Eprimary ≈
13.6 eV(Z2/n2). For hydrogen in the ground state (Z = 1, n = 1), the ionization energy of 13.6 eV
corresponds to a UV wavelength of 912Å. The hyperfine differences are depressed by the “fine
structure constant,”

α ≡ q2
e

h̄c
≈ 1

137 , (3.3)

with an energy of Efine ≈ 13.6 eV(α2Z4/n5). Finally, the hyperfine splitting is suppressed by an
1We use Gaussian cgs units, where the often quoted factor of ϵ0 → 1/4π. The difference is balanced by a different

value of qe. See the hydro notes for details.
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Figure 8: Level transitions in the hydrogen atom. The ultraviolet n = 2 → 1 transition (called Lyman-α)
connects the 1s and 2p states because there is no allowed one-photon transition from 2s to 1s. The Hα and
Hβ lines are important optical tracers. Adapted from Trypsteen & Walker (2017).

additional factor of me/mp ≈ 1/2000. For hydrogen, the hyperfine split is of order 10−6 eV, which
corresponds to the famous 21 cm radiation (§4.1).

3.2 Transitions between levels
An atom can transition between energy levels by absorbing or emitting a photon of the right
frequency. It does not matter which electron in a subshell transitions — what matters are the
states of the subshell before and after the transition. For example, the strongest (most likely)
transitions are electric dipole transitions, but those can only occur between two terms that
satisfy five selection rules:

• Parity must change
• ∆L = 0, ±1, but L = 0 → 0 is forbidden
• ∆J = 0, ±1, but J = 0 → 0 is forbidden
• ∆S = 0
• If a single electron is involved, ∆l = ±1

Transitions that break only the ∆S = 0 rule are called semi-forbidden transitions and are
written with one square bracket, e.g., “NII] 2143.4Å 5So

2 → 3P2.” Transitions that violate at least
one of the other rules are called forbidden transitions and are written with two square brackets,
e.g., “[NII] 6549.9Å 1D2 → 3P1.” There are a few more levels of “forbidden-ness,” but the name is
misleading in that forbidden transitions can occur — they are just much less likely than “allowed”
transitions. Each transition occurs with a probability per time of A21(nL, n′L′), where n and L are
the original quantum numbers and n′ and L′ the new ones (more on that in §3.4). The decay rate
of a given energy level is then given by the sum over all possible transitions to a lower level. We
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can invert this decay rate to get the lifetime of level nL,

tnL = 1∑
n′<n

∑
L′=L,L±1 A21(nL, n′L′) . (3.4)

For hydrogen, the transition rates are roughly between 104/s and 108/s, which translates into
lifetimes of 10−8 to 10−4 s for the excited levels.

Figure 8 shows an overview of the energy levels and transitions of hydrogen. One significant
restriction imposed by the transition rules is that there is no allowed transition from 2s to 1s,
meaning that a hydrogen atom in the 22S state cannot decay to the 12S ground state using an
allowed transition! However, even the lifetime of the 22S state is only about 0.12 s. In §6.1, we will
see that the time it takes for the average atom to be ionized in typical astrophysical scenarios is
much longer. Thus, the vast majority of neutral atoms are in the ground state at any given time.

3.3 Thermodynamic equilibrium and blackbody radiation
In many situations, we will be interested in the state of atoms in equilibrium, that is, after enough
time that short-lived fluctuations have settled down. In this section, we give a very brief treatment
of the necessary background; more details can be found in Draine §3. We start from one of the
fundamental principals of statistical mechanics, the partition function of a system,

Zint(T ) =
∑

i

gi e−Ei/kBT , (3.5)

where i runs over all possible internal states, Ei is the energy associated with state i, and gi is the
statistical weight or “degeneracy” of the state (i.e., how many distinct quantum states share the
energy level i). The system could, for example, be an atom embedded in a gas with temperature
T . In addition to the internal quantum states, an atom (or other system) can also move in space.
Integrating over the possible velocities leads to an extra factor in the total partition function
per unit volume,2

p(X, T ) =
(2πmXkBT

h2

)3/2
Zint(T ) , (3.6)

where mX is the mass of the “system” X (Draine §3.1). We can think of the partition function as
the volume in phase space occupied by a given state i, which essentially translates into a probability
of the system being in this state given a temperature T . This principle applies to a reaction between
different states, say A + B ↔ C. If we assume local thermodynamic equilibrium (LTE), i.e.,
that the system has had enough time to settle into a balance of constant number densities nA, nB,
and nC, then those densities are related by the law of mass action,

nC
nAnB

= p(C)
p(A)p(B) . (3.7)

This logic can be extended to more reactant species, with densities and partition functions that
keep multiplying (Draine §3.2). A particularly elegant expression arises for a two-state system
where state “2” has a higher energy than state “1” by a difference E21. The kinetic term in the
total partition function cancels, leaving only the exponential dependence on temperature and the
statistical weights,

n2
n1

= g2
g1

e−E21/kBT (3.8)

2The partition function is commonly written as f(X, T ), but we use the notation p(X, T ) to avoid confusion with
the velocity distribution, f(u).
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Figure 9: Equilibrium distributions of particle and photon energies. Left: The Maxwell-Boltzmann distribu-
tion for electrons (solid) and protons (dashed) at different temperatures. Center: The blackbody distribution
for different temperatures as a function of wavelength, normalized such that all curves enclose the same total
energy. Note that J gives an intensity per frequency or per wavelength, which means that the normalized
distributions has units of inverse length. Right: The photon occupation number for a blackbody distribution.

This equation will turn out to be extremely useful because it applies to any system with quantized
energy levels, including the atomic energy levels as discussed in §3.1. In thermodynamical equilib-
rium, it can be shown that the partition function implies that the distribution of velocities follows
the Maxwell-Boltzmann distribution,3

fMB(u) =
√

2
π

(
me

kBT

)3/2
u2e−meu2/2kBT (3.9)

The left panel of Figure 9 shows Maxwell-Boltzmann distributions for electrons and protons at
different temperatures (on a linear scale). If radiation is also in thermal equilibrium then its
intensity follows the blackbody distribution,

Jν,BB = 2hν3

c2
1

ehν/kBT − 1
(3.10)

The mean intensity Jν has units of erg/cm2/s/Hz/sr = erg/cm2 (see Appendix 1 of O&F for
a summary of the different quantities describing intensity, flux, and so on). Since Jν gives the
intensity per steradian, 4πJν is the intensity from all directions (assuming an isotropic flux). The
center panel of Figure 9 shows the blackbody distribution at different temperatures, normalized
by the total energy emitted, σSBT 4 (which is the definition of the Stefan-Boltzmann constant). In
some cases, it will be convenient to replace the intensity with the photon occupation number,

n̄γ ≡ c3

8πhν3 Uν = c2

2hν3 Jν , (3.11)

3We use u to denote the speed of particles in these notes, even though we used w in the hydro notes. The
expression given here refers the isotropic MB distribution for one-dimensional velocities, which is responsible for the
u2 factor. We omit the factor of n that is included in the hydro notes. This difference corresponds to whether the
distribution is normalized such that its 6D phase-space integral gives the total particle number N in a unit volume
or unity. For these notes, the latter is more convenient. We note that technically, the MB distribution is valid only
if there are enough collisions between particles to establish equilibrium but not so many that they lead to collisional
exchange of momentum and energy (Appendix A.1). The missing factor of 2 in O&F Equation 2.6 appears to be a
typo.
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where Uν = 4πJν/c is the energy density of radiation at a frequency ν (Draine §17.1). The photon
occupation number is the number of photons per mode per polarization (Draine §7.1), which
provides a dimensionless way to describe a radiation spectrum. The bar symbol highlights that
the radiation is assumed to be isotropic, and it also distinguishes n̄γ from the symbol for number
densities (which it is not). For a blackbody, the pre-factors of Jν,BB and n̄γ cancel, giving

n̄γ,BB = 1
ehν/kBT − 1

(3.12)

To understand the meaning of n̄γ , we can consider the limits of the blackbody distribution. If the
temperature is cold compared to the photon energy, kBT ≪ hν, we approach the usual expression
for the partition function, n̄γ → e−hν/kBT . If kBT ≈ hν then n̄γ ≈ 1. For hot temperatures,
kBT ≫ hν, we get n̄γ → kBT/hν, meaning that the occupation number increases linearly with
temperature. These limits are highlighted in the right panel of Figure 9.

3.4 Absorption and emission
In this and the following sections, we consider systems with different, quantized energy levels and
the transitions between them. As in Equation 3.8, we assume a two-state system with an energy
difference E21. Some of the conclusions apply for multi-level systems, but we restrict our analysis
to two for simplicity. In this section, we consider the emission and absorption of photons and the
corresponding excitation and deexcitation of energy levels. The system in question could be an
atom, an ion, a molecule, or even a dust grain. The derivation largely follows Draine §6.1.

There are three fundamental ways by which the interaction with photons can change the state
of a system: absorption, spontaneous emission, and stimulated emission. Absorption means that
a photon kicks the system from the ground state to the excited state. The rate of this process must
be proportional to the product of the density of ground-state particles and photons of the right
frequency,

dn2
dt

∣∣∣∣
1→2

= − dn1
dt

∣∣∣∣
1→2

= n1B12Uν(ν21) , (3.13)

where ν21 = E21/h is the photon frequency that is needed for the transition and B12 is the Einstein
B coefficient for the transition. This coefficient has units of cm3/erg s because it multiplies the
energy density Uν . One could also define it with respect to the number density of photons, for
example.

The second important process is spontaneous emission, the opposite of absorption. This
process occurs at a rate that is independent of the radiation field at a rate, n2A21, where the
latter is called the Einstein A coefficient (which has units of 1/s, see §3.2). The situation is
symmetric thus far, but there is a third process that only occurs for deexcitation: stimulated
emission, where a photon of frequency ν21 triggers a deexcitation and emission of another photon.
Combining the two rates, we get a total rate for 2 → 1 transition of

dn1
dt

∣∣∣∣
2→1

= − dn2
dt

∣∣∣∣
2→1

= n2 [A21 + B21Uν(ν21)] . (3.14)

In principle, A21, B12, and B21 need to be calculated from the quantum mechanics of the system
in question (see Appendix 4 of O&F for details). However, they are related and reduce to a single
coefficient. We can show this by assuming that many particles form a system in thermal equilibrium
where

Uν(ν21) = 4π

c
Jν,BB(ν21) = 8πhν3

21
c3

1
eE21/kBT − 1

. (3.15)
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Moreover, we know that the level populations must follow
n2
n1

= g2
g1

e−E21/kBT (3.16)

in thermal equilibrium (Equation 3.8). We balance the three transition mechanisms,

n1B12Uν(ν21) = n2 [A21 + B21Uν(ν21)] , (3.17)

and insert the blackbody energy density and level populations,

B12
8πhν3

21
c3

1
eE21/kBT − 1

= g2
g1

e−E21/kBT

[
A21 + B21

8πhν3
21

c3
1

eE21/kBT − 1

]
. (3.18)

This equation looks complicated but simplifies in the limits of zero and infinite temperature, in
which it must still be valid. In the limit of T → 0, the −1 terms in the denumerators become
irrelevant, the exponentials on the LHS and RHS cancel, and the B21 term on the RHS vanishes,

B12
8πhν3

21
c3 = g2

g1
A21 . (3.19)

Physically, this means that stimulated emission plays no role any longer when the radiation field
approaches zero, which allows us to relate B12 and A21. We insert Equation 3.19 into 3.18,

A21
1

eE21/kBT − 1
= e−E21/kBT

[
A21 + B21

8πhν3
21

c3
1

eE21/kBT − 1

]
, (3.20)

and multiply by eE21/kBT − 1 to find

A21 = (1 − e−E21/kBT )A21 + B21
8πhν3

21
c3 . (3.21)

In the T → ∞ limit, the exponential on the RHS approaches unity and we obtain (together with
Equation 3.19)

B21 = c3

8πhν3
21

A21 and B12 = g2
g1

B21 = g2
g1

c3

8πhν3
21

A21 (3.22)

We can write the 1 → 2 and 2 → 1 transition rates in a particularly elegant form using the photon
occupation number (Equation 3.12),

dn1
dt

∣∣∣∣
2→1

= n2A21(1 + n̄γ)

dn2
dt

∣∣∣∣
1→2

= n1A21
g2
g1

n̄γ . (3.23)

Balancing these rates would return the expression for the level population (Equation 3.8). In
summary, we can now calculate the rates of absorption and emission in a radiation field given only
one system-dependent parameter, A21. This parameter can be looked up in tables, e.g., for the
energy levels of atoms (O&F §3.5).
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3.5 Collisional excitation
For atoms, another important source of excitations is provided by collisions with electrons (or other
particles, but we assume electrons for concreteness). This mechanism can contribute to radiative
cooling, where kinetic energy from electrons is converted into excited states that decay and emit
photons, which escape (§3.7). The kinds of atomic lines that are most relevant depends on the
composition and temperature of a gas.

Once again, we wish to calculate the rate at which such collisions happen and the populations
in the ground state and excited levels. As in the previous section, we consider a two-level system.
The cross-section for an excitation, σ12(u), depends on the electron velocity u and the properties
of a given atom. Near the lower velocity threshold set by meu

2/2 ≥ E21, σ ∝ 1/u2 because the
Coulomb force “focuses” slower electrons more effectively (O&F §3.5). This insight allows us to
write the cross-section as

σ12(u) = πh̄2

meu2
Ω12(u)

g1
, (3.24)

where Ω12(u) is called the collision strength for the 1 → 2 transition (which is only weakly dependent
on the velocity). There is a similar cross-section, σ21(u), for the opposite process, collisional
deexcitation. To relate this “reverse” cross-section to σ12, we take the concept of equilibrium even
further that previously. LTE means not only that the level populations are in equilibrium, but
also that the distribution of electron energies is constant. Thus, excitations and deexcitations must
balance at each energy, which is called the principle of detailed balance. The rate of collisions
is proportional to the cross-section times the electron velocity (i.e., the volume swept out per time
by a moving electron). By balancing the 1 → 2 and 2 → 1 rates we get

nen1u1σ12(u1)f(u1)du1 = nen2u2σ21(u2)f(u2)du2 , (3.25)

where the difference in velocities makes up for the energy difference between the levels,

meu
2
1

2 = meu
2
2

2 + E21 . (3.26)

From §3.3, we know that the level populations in equilibrium are related by
n2
n1

= g2
g1

e−E21/kBT (3.27)

and that the velocity distribution f(u) follows the Maxwell-Boltzmann distribution (Equation 3.9).
The exponentials from Equation 3.26 and the ratios of f(u) cancel, and we are left with the
particularly simple relation

g1u2
1σ12 = g2u2

2σ21 . (3.28)

To get the actual transition rate q21, we need to integrate over the electron velocities. This step is
easier for the deexcitation rate because there is no minimum velocity threshold. The rate per unit
volume per unit time is nen2q21, where

q21 =
∫ ∞

0
uσ21fMB(u)du =

√
2π

kBT

h̄2

me3/2
Υ12(T )

g2
, (3.29)

where Υ12(T ) is the velocity-averaged collision strength,

Υ12(T ) ≡ me
kBT

∫ ∞

0
Ω12(u)e−meu2/2kBT u du . (3.30)



ASTR 670 • The interstellar medium 29

Ground state, statistical weight g1

Excited state, statistical weight g2

p e

A
bs

or
pt

io
n

n 1
n̄ γ

(g
2/

g 1
)A

21

p
e

Sp
on

ta
ne

ou
s 

em
iss

io
n

p
e

n 2
A 2

1
p e

St
im

ul
at

ed
 e

m
iss

io
n

n 2
n̄ γ

A 2
1

p
e

p e

Co
lli

sio
na

l e
xc

ita
tio

n

n 1
n e

q 1
2

p e

e

p
e

e

Co
lli

sio
na

l d
e-

ex
ci

ta
tio

n

n 2
n e

q 2
1

p
e

e

p e

e

Figure 10: Schematic depiction of the five channels of excitation and deexcitation. Radiative processes are
represented with yellow arrows and collisional processes with red arrows. A hydrogen atom is used to depict
a system with two energy levels.

These collision strengths are dimensionless and can be found in lookup tables (e.g., O&F §3.5). We
use Equation 3.25 to work out the equivalent excitation rate,

q12 = g2
g1

q21e−E21/kBT =
√

2π

kBT

h̄2

me3/2
Υ12(T )

g1
e−E21/kBT . (3.31)

As with the radiative transitions in §3.4, we have reduced the number of unknown factors in the
collisional excitation and deexcitation rates to a single quantum-mechanical constant per transition.

3.6 Two-level atom with radiative and collisional excitation
In the previous two sections, we have treated the cases of photon and collisional excitation, which
give a total of five possible mechanisms for excitation and deexcitation (Figure 10). With all of
this machinery in place, we can now write down the balance of states in terms of both rates,

nen1q12︸ ︷︷ ︸
coll. exc.

+ n1n̄γ
g2
g1

A21︸ ︷︷ ︸
absorption

= nen2q21︸ ︷︷ ︸
coll. deexc.

+ n2(1 + n̄γ)A21︸ ︷︷ ︸
spont.+stim. em.

(3.32)

where we have written the radiative transition rates in terms of the photon occupation number as
in Equation 3.23. The ratio of level populations is then

n2
n1

= neq12 + n̄γ(g2/g1)A21
neq21 + (1 + n̄γ)A21

(3.33)

This ratio does not necessarily equal the thermal equilibrium expression (Equation 3.26) because
we did not assume equilibrium: the radiation field does not need to be a blackbody, and the velocity
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distribution of electrons could differ from Maxwell-Boltzmann. To gain insight into the meaning of
this equation, it helps to define the critical density of electrons where the collisional deexcitation
rate matches the radiative one,

ncrit ≡ (1 + n̄γ)A21
q21

(3.34)

This expression also includes stimulated emission. We can develop further intuition by taking
physically meaningful limits. When there is no radiation field, n̄γ = 0, we get

n2
n1

= neq12
neq21 + A21

= g2
g1

e−E21/kBT 1
1 + A21

neq21

= g2
g1

e−E21/kBT
(

1 + ncrit
ne

)−1
. (3.35)

The Einstein A21 coefficient is still present because spontaneous emission happens even in the
absence of any radiation field. The expression above highlights that the states are in thermodynamic
equilibrium except for the spontaneous emission term. We can think of this term as a comparison
between the electron density and the critical density. If ne ≫ ncrit, we recover the thermodynamical
equilibrium expression because the radiative term becomes insignificant. If ne ≪ ncrit, the upper
level is suppressed by ne/ncrit compared to the equilibrium expression because there are not enough
collisions to keep up with the radiative deexcitations.

Another interesting limit of Equation 3.33 is the low-density limit, ne → 0, in which case the
level populations are purely determined by the radiation field,

n2
n1

= g2
g1

n̄γ

(1 + n̄γ) . (3.36)

For a blackbody, we recover the thermodynamic equilibrium expression of Equation 3.26 once again.
Interestingly, the latter case applies more generally: as n̄γ approaches the blackbody distribution,
the occupation ratio approaches

n2
n1

=
neq21(g2/g1)e−E21/kBT + (g2/g1) 1

eE21/kBT A21

neq21 +
(
1 + 1

eE21/kBT −1

)
A21

= g2
g1

e−E21/kBT
neq21 + 1

1−e−E21/kBT A21

neq21 +
(

eE21/kBT

eE21/kBT −1

)
A21

= g2
g1

e−E21/kBT . (3.37)

We recover the thermodynamic equilibrium level occupation regardless of ne! When photons and
particles are in equilibrium, the photons alone bring the system into equilibrium and the additional
collisions with electrons do not change the level populations.

3.7 Line cooling
In §2.2, we simply stated that cooling rates can be computed from first principles. To do so, we ne-
glect absorption and stimulated emission, meaning that collisional excitation dominates. Collisional
deexcitation can play a significant role though, and the residual radiation fields cause departures
from exact equilibrium. The cooling rate for a given line can be worked out from the equations in
§3.6. If the electron density is very low, we can assume that each collisional excitation is directly
followed by the emission of a photon (O&F §3.5), and

Λce,12 = nen1q12hν21 . (3.38)
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If, however, the density is high enough for collisional deexcitation to be important, we need to use
Equation 3.35, which gives a cooling rate of

Λce,12 = n2A21hν21 = nen1q12hν21
1

1 + neq21
A21

. (3.39)

In the limit of high electron density, we recover the thermodynamic equilibrium cooling rate,

Λce,12 = n1A21hν21
g2
g1

e−E21/kBT . (3.40)

Either way, we sum over all possible lines to get the total line cooling rates shown in Figure 5.
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4 Neutral atomic gas
The majority of gas in the galactic ISM, about 60%, is in the neutral atomic phase, or H i. This
gas is cool enough to not be collisionally ionized, far enough from O stars to not be part of an
H ii region or otherwise photoionized (§6), but not cold enough to form molecules. However, the
ionization fraction is not identically zero because photons leaking out from O stars, cosmic rays,
and X-rays ionize a small fraction of the gas (Draine §16 and §29).

The H i is further sub-divided into two distinct phases, the Cold Neutral Medium (CNM)
and Warm Neutral Medium (WNM). The WNM slightly dominates, with about 60% of the H i.
As the names suggest, these phases are distinguished by their very different temperatures, roughly
100 K and 5000 − 8000 K (we will discuss the reasons in §10.1). The real temperatures vary and
are somewhat uncertain for the WNM, but it is clear that the two phases are in rather different
thermodynamic states. Given that all ISM phases are in approximate pressure equilibrium, the
roughly equal mass fractions and different temperatures translate into different number densities of
about 30 − 40/cm3 and 0.5/cm3, respectively. As a result, the WNM occupies a significant fraction
of the ISM volume, about 50% near the midplane of the Milky Way (Draine §29).

Given the relatively low temperature of the CNM, we might expect it to be hard to detect H i
directly, or that its signature might depend strongly on its temperature. Thankfully, nature has
provided an extremely useful observational diagnostic for H i: the 21 cm line. In the following
two sections, and using insights from §3, we derive the properties of this line and see how a given
density and temperature translate into observable 21 cm radiation.

4.1 Hyperfine splitting of hydrogen and the 21 cm line
The spin flip transition arises because the ground state of hydrogen splits into two different states,
with the proton and electron spins either anti-aligned (the lower level) or aligned (the upper level).
The latter state has g2 = 2S + 1 = 3 while the true ground state has g1 = 1. The energy difference
between spin states is much smaller than the lines we have encountered so far, E21 = 5.87×10−6 eV.
This corresponds to a wavelength of 21.11 cm or a frequency of 1420 MHz. The spontaneous decay
rate is also much smaller than those of normal atomic levels, A21 = 2.88 × 10−15/s, with an
equivalent lifetime t21 ≈ 107 yr (Draine §17.3).

What is the level population for this system? The energy difference corresponds to a tempera-
ture T21 = E21/kB = 0.0682 K, meaning that the 21 cm line is always collisionally excited as long
as the density is sufficient. However, since H i gas is mostly neutral by definition, electrons tend to
play a minor role; the majority of collisions is with other hydrogen atoms. The rate for this process
has been worked out and is approximately

q21(Tgas) = 10−10 cm3

s ×
{

1.19 T 0.74−0.20 ln T2
2 ∀ 20 K < Tgas < 300 K

2.24 T 0.207
2 e−0.876/T2 ∀ 300 K < Tgas < 1000 K ,

(4.1)

where T2 = Tgas/100 K (Draine §17.3). We can get the collisional excitation rate q12 from Equa-
tion 3.31,

q12 = q21
g2
g1

e−E21/kBTgas = q21 × 3e−0.0682 K/Tgas . (4.2)

For the average patch of H i gas in the Galaxy, we would not assume that any strong radiation
sources are present. However, the 21 cm line has such low energy that even the Cosmic Microwave
Background (CMB) can excite it! Besides the blackbody field with TCMB = 2.725 K, another
important source of radiation is galactic radio background due to synchrotron emission (basically
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Figure 11: Level population (left) and the equivalent spin temperature (right) for the 21 cm hyperfine
transition of hydrogen. Each line shows a different gas temperature. At very low densities, the line is
governed by the background radiation field, which is modeled as a blackbody with TA = 3.77 K and n̄γ = 55.

magnetic Bremsstrahlung), which has an equivalent temperature of Tsyn ≈ 1.04 K. Summing those
contributions,4 we get an “antenna temperature” of Tγ ≈ 3.77 K (Draine §17.3). At the frequency
of the 21 cm transition, the photon occupation number is then

n̄γ = 1
eE21/kBTγ − 1

≈ kBTγ

E21
≈ 3.77 K

0.0682 K ≈ 55 . (4.3)

The fact that n̄γ ≫ 1 reminds us that kBTγ ≫ E21. Given the large n̄γ , radiative excitation and
deexcitation will be important despite the small A21. We solve for the level populations using
Equation 3.33, but replacing ne with nH,

n2
n1

= nHq12 + n̄γ(g2/g1)A21
nHq21 + (1 + n̄γ)A21

. (4.4)

Figure 11 shows the solution for a range of gas temperatures and densities. The right panel shows
the equivalent spin temperature, which is defined as the temperature we would infer if the system
was in thermodynamic equilibrium (which it is most likely not),

n2
n1

= g2
g1

e−E21/kBTspin =⇒ Tspin = E21
kB ln(g2n1/g1n2) = 0.0682 K

ln(3n1/n2) . (4.5)

To understand the solution, we recall that the critical density (Equation 3.34) represents the density
at which radiation and collisions switch as the dominant factor setting the level populations,

ncrit = (1 + n̄γ)A21
q21

. (4.6)

The critical density is shown with colored points in Figure 11. We note that ncrit refers to the hy-
drogen density nH rather than the electron density in this case because the majority of collisions are

4In general, blackbody spectra of different temperatures do not simply add. However, in the so-called Rayleigh-
Jeans limit when hν ≪ kBT , we have ehν/kBT ≈ 1 + hν/kBT and Jν,BB ≈ (2ν2/c2)kBT , so that two blackbody
spectra do add. This case applies here because we are interested in the blackbody intensity at the frequency of the
21 cm line, for which hν is tiny.
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with atoms. At low densities, nH ≪ ncrit, radiative excitations dominate and the level populations
reflect the CMB+synchrotron temperature of the radiation. The solution tends to

n2
n1

→ g2
g1

n̄γ

(1 + n̄γ) = g2
g1

e−E21/kBTγ = 3e−0.0682 K/3.77 K ≈ 2.946 . (4.7)

The spin temperature approaches the radiation temperature, Tspin → Tγ . At nH ≫ ncrit, the level
populations reflect the thermodynamic temperature of the H i gas,

n2
n1

→ q12
q21

= g2
g1

e−E21/kBTgas = 3e−0.0682 K/Tgas . (4.8)

Equivalently, the spin temperature approaches the gas temperature, Tspin → Tgas. Whenever Tgas ≫
0.0682 K, the exponential tends to unity and n2/n1 → 3. Overall, we find that T21 ≈ 0.0682 K is
so small that even very cold gas or a weak radiation field such as the CMB is sufficient to push
the level population towards g2/g1 = 3, meaning that about 3/4 of the hydrogen atoms are in the
excited state regardless of density and temperature.

4.2 Emission and absorption in H i gas
Observationally, the finding that the level population is more or less constant has an important
consequence: the 21 cm emissivity of H i gas does not depend on density and temperature,
even in the regime where collisions dominate over radiation. Specifically, the emissivity5 is

jν = 1
4π

n2A21hν21ϕν ≈ 3
16π

nHA21hν21ϕν , (4.9)

where ϕν is the normalized line profile that accounts for the velocity distribution of the H i (Draine
§8.1). This is a key result because it means that the total emission is proportional to the total mass
of H i observed. However, a direct translation to a column density is possibly only if the observed
H i region is optically thin. To figure that out, we compute the attenuation coefficient,

κν = n1σ12 − n2σ21 , (4.10)

which has units of cm−1 and quantifies the chance of a photon to be absorbed along its path.
Here, σ12 and σ21 refer to the cross-sections for radiative excitation and deexcitation. We did not
define those because we used the Einstein B coefficients in §3.4, but it can be shown that B12 is
proportional to the integral of σ12 over frequency (Draine §6.2). Since B12 is directly related to
A21 (§3.4), we can write

σ12 = g2
g1

c2

8πν2
21

ϕνA21 (4.11)

and σ21 = (g1/g2)σ12, in analogy with the B coefficients (Equation 3.22). Putting these expressions
into Equation 4.10, we get

κν = n1
g2
g1

c2ϕνA21
8πν2

21

(
1 − g1

g2

n2
n1

)
= n1

g2
g1

c2ϕνA21
8πν2

21

(
1 − eE21/kBTspin

)
. (4.12)

The exponential form of the level populations is always valid by definition of the spin temperature
(Equation 4.5). Once again, we use that kBTspin ≫ E21, as well as n1 = nH/4, to write

κν ≈ 3
32π

c2h

ν21

nHA21ϕν

kBTspin
. (4.13)

5The emissivity has units of energy density per time per Hz per steradian, so that integrating it along a path gives
an intensity Jν , which has units of energy per area per time per Hz per steradian. In this formula, ϕν has units of
1/Hz = s and is normalized such that

∫
ϕνdν = 1.
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The absorption coefficient depends on the spin temperature! This may seem surprising because
the level populations barely deviate from g2/g1 as we saw in Figure 11. The key is that the
absorption depends on the difference between the rates of emission and absorption (Equation 4.10).
As Tspin → ∞, stimulated emission (n2σ21) becomes exactly as likely as absorption (n1σ12), and
the net result is nil.

To compute an optical depth for H i, we assume that the 21 cm line is broadened by particle
velocities u with a normalized Gaussian line profile,

ϕν = c√
2πν21σu

eu2/2σ2
u , (4.14)

where σu is the velocity dispersion; we insert this expression into Equation 4.13. We multiply κν

by a distance to get an optical depth, τν = κνL, which we express in terms of the column density,
NH = nHL. At the center of the line (i.e., ignoring the u-dependence of the velocity profile), we get

τ(ν21) = 0.22
(

NH
1020/cm2

)(
Tspin

100 K

)−1 ( σu
1 km/s

)−1
. (4.15)

We conclude that column densities up to NH ≈ 1020/cm2 are optically thin, meaning that the total
intensity of 21 cm radiation is an accurate proxy for the total column density of H i.
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5 Atomic physics II: Photoionization and recombination
In §3, we studied how photons can excite and deexcite energy levels in quantized systems such as
atoms. In this chapter, we complete the picture by also considering the ionization of atoms by
photons. We work out the cross-section for this process in §5.1 (Draine §13.1) and consider its
opposite, recombination, in §5.2 (Draine §14.1). We balance the two processes in equilibrium to
find the ionization state of a gas in §5.3 (Draine §3). A short overview of some of the topics can
also be found in O&F §2.2.

5.1 Photoionization
When studying H ii regions in §6, we will need to calculate the cross-sections for the ionization and
recombination of hydrogen atoms. We assume that all ionizations occur from the ground state,
which turns out to be justified by a comparison of the typical lifetime of excited states (small
fractions of a second, §3.2) and ionization times (about a year, §6.1).

The actual calculation of the ionization cross-section is complicated and quantum-mechanical
in nature, but it turns out that an analytical expression can be derived for systems with only one
electron and a nuclear charge Z (which is 1 for hydrogen),

σpi(ν) = 29π2αa2
0

3e4
1

Z2

(
Z2ν0

ν

)4
e4−4 tan−1(x)/x

1 − e−2π/x
x ≡

√
ν

Z2ν0
− 1 , (5.1)

where ν is the frequency of the (potentially) ionizing photons, ν0 is the frequency above which
photons can ionize hydrogen, α is the fine-structure constant, and a0 is the Bohr radius,

hν0 ≈ 13.6 eV α ≡ q2
e

h̄c
≈ 1

137 a0 ≡ h̄2

meq2
e

≈ 5.3 × 10−9 cm . (5.2)

We can interpret the expression for σpi as follows. The ionization energy is Z2ν0. As the photon
energy approaches the exact ionization energy, we have x → 0 and thus

σpi(ν → Z2ν0) → 29π2αa2
0

3e4
1

Z2 ≈ 0.07
Z2 πa2

0 ≈ 6.3 × 10−18 cm2
( 1

Z2

)
. (5.3)

We can think of the cross-section as a fraction of the “Bohr area” spanned by the pseudo-classical
radius of a hydrogen atom. Towards higher photon energies, the cross-section decreases steeply
due to the ν−4 term (Figure 2.2 in O&F or Figure 13.1 in Draine). In other words, the photon
frequency needs to be fairly finely tuned to the ionization energy. For systems with more than one
electron, the calculation gets much more complicated because the electron that is being removed
from the ion could have originated from different subshells. The resulting cross-sections may no
longer monotonously decrease with frequency because higher energies can open up lower-energy
shells for ionization (Figure 13.2 in Draine).

In astrophysical scenarios, we are less interested in the cross-section but rather in the number
of ionizations per unit volume per unit time given a certain density. To compute this number, we
need to integrate over all possible photon energies. We define the ionization rate per atom per
unit time for hydrogen,

Gpi ≡
∫ ∞

ν0

4πJν

hν
σpi(ν)dν (5.4)

where Jν is the mean intensity and the factor of 4π integrates over solid angles. Since Gpi has units
of s−1, nGpi has the desired units of a rate per unit volume per unit time.
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5.2 Recombination
We now consider the reverse process to ionization, recombination. As for ionization, we are in-
terested in a rate of recombinations per unit volume per unit time. Given that a proton and an
electron must meet for a recombination to happen, it is clear that we can write this rate as

recombinations
unit time × unit volume = nenp α(T ) (5.5)

where α(T ) is called the recombination coefficient. We have abbreviated the density of ionized
hydrogen as n(H+) = np. This coefficient has units of cm3/s so that its product with n2 gives
a rate per unit volume per unit time, as for the ionization rate. There are a number of ways in
which an electron can recombine with a an ion (see Draine §14), but we will focus on radiative
recombination, where a photon carries away the energy difference between the (moving) electron
and the state it settles into. That state, however, is not always the ground state: it is common
for an electron to settle into higher energy shells, which then quickly decay to the ground state
(§3.1). The recombination rate to a given level nl is the velocity-dependent cross-section multiplied
by the electron velocity u, i.e., the volume swept out by a moving electron per time. The total
recombination coefficient to that level is the integral over electron velocities,

αnl(T ) =
∫ ∞

0
uσnl(u)f(u)du , (5.6)

where σnl(u) is the cross-section for recombination into level nl and f(u) is the velocity distribution.
A priori, this distribution might not be straight-forward because it contains electrons that were
freed from atoms by ionization and are thus not in thermal equilibrium. However, the cross-section
for elastic scattering between electrons is much larger than the ionization cross-section, about
10−13 cm2. Thus, the photoionization electrons are quickly thermalized, and we can assume the
Maxwell-Boltzmann distribution (Equation 3.9). Alternatively, we can define the electron kinetic
energy, E = meu

2/2, and rewrite the coefficient as

αnl(T ) =
√

8kBT

πme

∫ ∞

0
σnl(E) E

kBT
e−E/kBT dE

kBT
. (5.7)

We defer the calculation of the cross-section σnl to §5.3, but it is roughly proportional to E−1. The
extra 1/T factor means that approximately αnl(T ) ∝ T −1/2. These rates are tabulated for a few
temperatures in Table 14.1 in Draine, and we can sum over all n and l to get the total coefficient,

αA(T ) =
∞∑

n=1

n−1∑
l=0

αnl(T ) (5.8)

This calculation, however, is not always valid. If the recombination is directly into the ground state,
the resulting photon has ν > ν0 and can ionize another hydrogen atom. If the surrounding medium
is optically thin to to ionizing radiation, this photon will escape and Equation 5.8 is correct. If,
on the other hand, the surrounding medium is optically thick to ionizing photons, the photon will
immediately ionize another atom, and the preceding recombination has no net effect. Contrary to
the optically thin Case A of Equation 5.8, the optically thick scenario is called Case B and results
in a coefficient

αB(T ) =
∞∑

n=2

n−1∑
l=0

αnl(T ) = αA(T ) − α1s(T ) (5.9)

Approximations for αA(T ) and αB(T ) are listed in Draine Table 14.1. They are not well described
by a simple power law (Draine §14.2).
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5.3 Ionization balance and the Milne relation
Our final task is to calculate the cross-section for recombination, σnl. It turns out that we can
achieve this goal by invoking an equilibrium balance between ionizations and recombinations. The
derivation is fairly lengthy; additional details can be found in Draine §3 and O&F Appendix 2.
Without loss of generality, we can imagine a system in photoionization equilibrium, meaning
that the rates of ionization and recombination are equal,

n0 Gpi = nenp α(T ) (5.10)

As described in §5.1 and §5.2, we have multiplied the ionization rate by the number density of
neutral hydrogen atoms, n0 ≡ n(H0), and the recombination coefficient by nenp = n2

e to obtain
units of cm−3s−1 on both sides. This equation will be the foundation of our modeling of the ionized
regions around stars (§6), where we use a known Gpi and α(T ) to infer the relative numbers of
neutral and ionized atoms. For now, our purpose is the opposite: we wish to relate the rates of
ionization and recombination. To achieve this, we need to know the densities. We use the idea of
thermodynamic equilibrium, specifically the law of mass action (Equation 3.7), which we apply to
the ionization/recombination reaction, e− + H+ ↔ H0,

n0
nenp

= p(H0)
p(e−)p(H+) =

(
h2

2πmekBT

)3/2 ∑
i g0,i e−E0,i/kBT

ge,i
∑

i gp,i e−E+,i/kBT
. (5.11)

The symbols E0,i and E+,i denote the energies of the different states of neutral and ionized hydrogen.
Note that the internal partition function of a single electron or proton is just ge = gp = 2 (spin up
and spin down). The degeneracy of the neutral state depends on the quantum number n, g0 = gn;
for the 1s state, g0 = 4 (both proton and electron can be either spin-up or spin-down).

We now make the key assumption that only the lowest-energy state (the first term in each
sum) contributes significantly, which corresponds to a relatively low temperature and thus sup-
pressed partition functions for states with E ≫ kBT . With this simplification, we obtain the Saha
equation for ionization,

n0
nenp

= gn
gegp

(
h2

2πmekBT

)3/2

e(E+−En)/kBT (5.12)

where En is the energy in shell n. Similar equations can be found for general scenarios; for hydrogen
we have E+ − E0 = 13.6 eV. We will now use the Saha equation to infer the recombination cross-
section based on an imaginary system in perfect equilibrium. In practice, however, we should not
assume that the equation applies to gases in the ISM because they are often out of equilibrium (for
example, due to non-blackbody radiation fields; Draine §3.3).

Combined with the Saha equation, the ionization balance establishes a relation between Gpi
and α(T ), but those rates are averaged over photon energies and electron velocities. Thus, we do
not yet have an expression for the recombination cross-section at a particular velocity. To solve
this issue, we once again take advantage of the concept of detailed balance (§3.5): there must be a
hypothetical system where the rate at which photons in an energy interval hdν are removed from a
fluid by ionization is balanced by the rate at which they are replenished by recombination. Thus,
we equate n0Gpi and nenpα(T ) as in Equation 5.10 but at each energy, i.e., without the integrals
in Equations 5.4 and 5.6,

n0
4πJν

hν
σpi(hν)dν = nenpufMB(u)σnl(u)[1 + n̄γ ]du . (5.13)
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Figure 12: Flowchart for the derivation of the ionization and recombination rates, and the resulting
ionization fraction. Dark blue fields represent assumptions that go into the respective derivations, cyan
fields represent input quantities, red fields represent expressions or equations, and yellow fields represent
results.

The 1 + n̄γ factor accounts for the possibility of stimulated emission, where a photon of the right
frequency triggers a recombination that produces a second photon of the same frequency (analogous
to stimulated emission, §3.4). To satisfy the principle of detailed balance, we need to consider the
electron velocity that corresponds to the difference between the photon energy hν and the ionization
energy,

meu
2

2 = h(ν − ν0) =⇒ u =
√

2h(ν − ν0)
me

=⇒ du = h

meu
dν . (5.14)

Moreover, we know that the radiation field must be a blackbody in thermodynamic equilibrium,
Jν = Jν,BB (Equation 3.10). We rearrange Equation 5.13 to solve for the ratio of the recombina-
tion and ionization cross-sections and insert the Saha equation (5.12) and the Maxwell-Boltzmann
distribution (3.9),

σnl(u)
σpi(hν) = n0

nenp

4πJν

hν

1
(1 + n̄γ)

1
ufMB(u)

meu

h

= gn
gegp

(
h2

2πmekBT

)3/2

ehν0/kBT 4π

hν

2hν3

c2
1

(ehν/kBT − 1)
1

1 + 1
ehν/kBT −1

×
√

π

4

(2kBT

me

)3/2 1
u2 emeu2/2kBT me

h

= gn
gegp

2π3/2ν2me
hc2

(
h2

πme2

)3/2 1
u2 exp

[
hν0
kBT

− hν

kBT
+ h(ν − ν0)

kBT

]
. (5.15)
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The exponentials all cancel and we are left with the Milne relation,

σnl(u)
σpi(hν) = 2 gn

gegp

(
νh

cmeu

)2
(5.16)

This expression is impressively simple! In particular, it does not depend on temperature. For
hydrogen, we recall that gn = 4 for the ground state and ge = gp = 2, so that the g factors cancel.
We are left with a dimensionless combination of ν, u, and physical constants.

We are now in a position to solve the radiative ionization and recombination balance for hy-
drogen. Equation 5.1 gives us an analytical expression for the ionization cross-section at a given
frequency, σpi(ν). Using Equation 5.16, we can infer the corresponding recombination cross-section
σnl(u) at the corresponding electron velocity. Given that virtually all neutral atoms are in the
ground state, the ionization rate Gpi can be found by integrating the radiation field and σpi over
energy (Equation 5.4). For recombinations, we similarly integrate over velocity or energy (Equa-
tions 5.5 and 5.6), but we need to repeat this procedure for all levels nl and sum the coefficients
(Equations 5.8 and 5.9). Given a number density, an ionization rate, and a recombination coeffi-
cient, we can use ionization equilibrium (Equation 5.10) to figure out the fraction of atoms that is
in a neutral state. Figure 12 shows a flow chart for this process.
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6 Photoionized gas and H II regions
When we considered hot gas in §2, the ionization state was simple: we assumed that all hydrogen
was ionized at the relevant temperatures. Inside an SN remnant, even higher elements are largely
ionized. In contrast, the densest parts of the ISM, molecular clouds, are basically neutral. Un-
fortunately, not all gas phases present us with such simple ionization states. For example, H i is
partially photoionized by stars and cosmic rays, with an ionization fraction that depends on density
and other parameters.

A particularly interesting situation arises in so-called H ii regions, bubbles around massive, blue
stars that ionize the gas that surrounds them. In this section, we consider the ionization state
(§6.1–6.3) and thermal balance (§6.4) in H ii regions, as well as general observational diagnostics
of ionized gas (§6.5) and diffuse ionized gas in the ISM (§6.6).

6.1 Ionization equilibrium around a star
We begin with an example to get a sense of the order of magnitude of some of the quantities
introduced in §5. In particular, we consider a pure-hydrogen bubble surrounding a single, hot star
(adapted from O&F §2.1). After a very short time, each place in the “nebula” will settle into
ionization equilibrium, meaning that the number of ionizations and recombinations will balance.
Given the discussion in §5, we need three inputs: the radiation field (for the ionization rate),
temperature (for the recombination coefficient), and density (for the ionization balance). In our
simple example, we assume that the nebula is optically thin to ionizing radiation. This will hold
close to the star where the hydrogen is already ionized, but it will clearly fail close to the edge of
the nebula. In the optically thin case, the mean intensity of radiation from the star is

4πJν = Lν

4πr2 , (6.1)

where Lν is the luminosity of the star at frequency ν. The first 4π factor comes from integrating
over all solid angles, the second from the surface of a sphere that is a radius r removed from the
star. The luminosity can be calculated from the blackbody flux at the stellar surface,

Lν = 4πR2
∗ × πJBB(ν, T∗) , (6.2)

where R∗ is the stellar radius and T∗ the surface temperature. The second factor of π is geometric
in origin and accounts for the difference between the blackbody radiation field (per steradian) and
outward flux from the stellar surface (e.g., Appendix 1 of O&F). We can obtain the total luminosity
of the star by integrating over frequency, which gives the Stefan-Boltzmann law,

L∗ = 4πR2
∗ × π

∫ ∞

0
JBB(ν, T∗)dν = 4πR2

∗σSBT 4
∗ . (6.3)

The ionization rate at a distance r is then

Gpi(r) ≡
∫ ∞

ν0

4πJν

hν
σpi(ν)dν = π

R2
∗

r2

∫ ∞

ν0

JBB(T∗)
hν

σpi(ν)dν . (6.4)

Before we dive into exact calculations, let us get a sense of the numbers we can expect. Imagine
we are 5 pc from an O star with T∗ ≈ 40000 K and R∗ ≈ 1012 cm. The number of ionizing photons
emitted from the star is

Q ≡
∫ ∞

ν0

Lν

hν
dν ≈ 1049

s , (6.5)
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which we can either compute numerically or look up (see Table 2.3 in O&F or Table 15.1 in Draine).
Taking into account the distance from the star, we estimate the intensity term in Equation 5.4,∫ ∞

ν0

4πJν

hν
dν = Q

4πr2 ≈ 3.4 × 109

cm2 s . (6.6)

As a rough approximation, we take the cross-section to be that at ν = ν0, σpi(ν0) ≈ 6 × 10−18 cm2,
and take it out of the frequency integral. We recall that this estimate is not too far from the Bohr
area estimate (§5.1).6 We now have an ionization rate per atom of

Gpi ≈ Q

4πr2 σpi ≈ 3.4 × 109

cm2 s × 6 × 10−18 cm2 ≈ 2 × 10−8

s . (6.7)

We can think of the ionization rate as the inverse lifetime of a neutral atom before it gets ionized,

tpi = 1
Gpi

≈ 1.6 yr , (6.8)

for our example. This time is much longer than the typical lifetime of energy levels (§3.1). We
conclude that virtually all neutral hydrogen in H ii regions is in the ground state! We
used this fact when deriving the ionization cross-section. Conversely, ions can recombine to an
excited level, which will quickly decay to the ground state.

Finally, we need the recombination coefficient, which we take to be αB(T ) ≈ 4 × 10−13 cm3/s
because recombinations into the ground state will quickly lead to another ionization (§5.2). By
assuming a constant αB(T ), we are implicitly assuming a constant temperature of a few thousand
Kelvin (Table 14.1 in Draine). We now express the densities in Equation 5.10 in terms of the
neutral fraction,

ξ ≡ n0
nH

=⇒ n0 = ξnH and ne = np = (1 − ξ)nH , (6.9)

which gives a balance equation of

ξ nH Gpi = (1 − ξ)2 n2
H αB(T ) . (6.10)

We try to solve for ξ and assume nH = 10/cm3, which gives the implicit equation

ξ

(1 − ξ)2 = nHαB(T )
Gpi

≈ 2 × 10−4 . (6.11)

The only way to solve this equation is if ξ ≪ 1 so that the denominator is ≈ 1 and ξ = 2 × 10−4.
Equation 6.11 makes it clear why the neutral fraction must be low: the ionization rate Gpi is larger
than αB by about five orders of magnitude. The extra factor of density “helps” the recombination
side, but we would need a very high density to balance the frequent photoionizations. The bottom
line is, hydrogen is almost completely ionized at a distance of 5 pc from an O star.

6The calculation in O&F uses a more exact number computed by integrating over the frequency-dependent cross-
section. We use the simpler, approximate expression since we are mostly interested in an order-of-magnitude estimate.
As a result, the following numbers differ from O&F by a factor of about 2.
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6.2 Strömgren spheres
Of course, the ionized zone must be finite since the star can only emit so many photons. We can
understand the nature of the transition zone to neutral gas. The width of this zone is approximately
one mean free path of an ionizing photon, where as before (Appendix A.1)

λmfp = 1
nσ

= 1
n0σpi

= 1
ξtransnHσpi

≈ 0.1 pc
(

n

1/cm3

)−1
, (6.12)

where we have assumed that the neutral fraction at the transition is ξtrans = 1/2. For the density
in our example above, nH = 10/cm3, we get a width of only 0.01 pc. Clearly, the transition zone
is extremely thin! This fact was one of the key realizations of Strömgren (1939): we can think
of the H ii region as an almost totally ionized zone with a sharp boundary.

If we assume that an H ii region has constant density inside the bubble and that it consists of
only hydrogen, we call the resulting approximate structure a Strömgren sphere. Let’s estimate
the size of this region. We recall that Equation 6.11 is valid only at low ξ, because a significant
neutral fraction would mean that the optically thin (Jν ∝ 1/r2) approximation would break down.
However, we can estimate it based on the fact that all ionizing photons from the star will be
absorbed within the H ii region, by construction (Draine §15.1.1). Assuming that the bubble is
isothermal and has a uniform density nH, we get

Q = 4π

3 R3
SαB(T )nenp , (6.13)

where RS is the Strömgren radius, the radius where the sharp transition to neutrality occurs.
By definition, all hydrogen is ionized inside RS, so that ne = np = nH. Once again, we choose
the Case B recombination coefficient because a recombination to the ground state releases another
ionizing photon that will be absorbed (§5.2). We use the approximate formula from Draine Table
14.1,

αB(T ) ≈ 2.56 × 10−13 cm3

s

(
T

104 K

)−0.83
. (6.14)

We solve for the radius,

RS =
(

3Q

4πn2
HαB(T )

)1/3

≈ 15 pc
(

Q

1049/s

)1/3 ( nH
10/cm3

)−2/3 ( T

104 K

)0.28
. (6.15)

The dependencies on stellar brightness and gas temperature are relatively weak, but the density
does matter for the size of the Strömgren sphere. For example, choosing nH = 1/cm3 we could get
sizes of more than 100 pc (O&F Table 2.3).

6.3 The radial evolution of ionization
We now return to the (arguably) most interesting question about Strömgren spheres: what is their
ionization structure ξ(r)? Does the neutral fraction gradually increase with radius? How small and
how large is it inside and outside the Strömgren radius?

To answer these questions, we wish to solve the ionization balance equation (5.10) with the
correct, radially varying radiation field. Compared to our simple estimates in §6.1, we need to
take into account the absorption of ionizing photons along the way, as well as the emission of new
photons following recombinations. The radiative transfer equation reads

dIν

ds
= −n0σpi(ν)Iν + jν , (6.16)
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Figure 13: The radial evolution of the optical depth (left) and neutral fraction (right) in Strömgren spheres,
computed numerically based on Equations 6.18 and 6.20. The radii are rescaled by the Strömgren radius. We
assume a star with radius R∗ = 1012 cm and T∗ = 4 × 104 K, roughly corresponding to an O star. Solutions
are shown for three different gas densities and temperatures, but those parameters have a relatively minor
impact on the solution (once radii are scaled to RS).

where Iν is the specific intensity of radiation and jν is the “local emission coefficient” (O&F §2.3;
Jν is the average of Iν over all directions). Since we care only about ionizing radiation, jν would
depend on the local recombination rate into the ground state and on the velocity distribution of
the electrons. However, as we saw in §5.2, we can ignore recombinations into the ground state as
long as the emitted photons cause another ionization (Case B). Here, we are treating a spatially
varying problem, which forces us to make the slightly stronger on-the-spot approximation that
the distance between the recombination and subsequent ionization is insignificant compared to the
other scales in the problem. This is an excellent approximation in H ii regions, and we will thus set
jν = 0 and use the Case B recombination coefficient. With this simplification, the solution to the
radiative transfer equation is clearly

Iν = Iν,0e−τν , (6.17)
where τν is the optical depth to ionizing photons of frequency ν that originated from the star,

τν(r) =
∫ r

0
n0(r′)σpi(ν)dr′ = nHσpi(ν)

∫ r

0
ξ(r′)dr′ . (6.18)

Thus, the balance equation (5.10) becomes

n0(r)
∫ ∞

ν0

4πJν(r)
hν

σpi(ν)dν = n0(r)
∫ ∞

ν0

Lν

4πr2hν
e−τν σpi(ν)dν = ne(r)np(r)αB(T ) , (6.19)

which we can more elegantly write in terms of the varying neutral fraction ξ(r),

ξ

4πr2

∫ ∞

ν0

Lνe−τν

hν
σpi(ν)dν = (1 − ξ)2 nH αB(T ) (6.20)

This equation cannot be solved analytically. Draine presents an approximate calculation (§15.3),
but it cannot cannot describe the shape of ξ(r) near the transition to neutrality. Thus, we need to
integrate the coupled differential equations 6.18 and 6.20. In this integration, we can treat nH and
T as constants or let them evolve based on more complex models for the density and temperature
structure of the H ii region. Figure 13 shows the result, which confirms that the transition to
neutrality at the edge of the Strömgren sphere is very sharp.
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6.4 Thermal balance
What is the temperature structure inside an H ii region? There are a number of heating and cooling
processes acting on the gas. We will consider them briefly without going into great mathematical
detail, which can be found in Draine §27 and O&F §3. We start from the Lagrangian internal
energy equation (Appendix A.1),

Dε

Dt
= −P

ρ
∇ · uuu + Γ

ρ
− Λ

ρ
. (6.21)

Since we are specifically interested in the evolution of temperature, we can cast this equation into
a more suggestive form. We assume that all internal energy is in the form of thermal energy
(γ = 5/3),

ε = εth = 3
2

kBT

mptl
, (6.22)

where mptl is the mass of the particles in question. We multiply the equation by ρ and use the
Lagrangian continuity equation,

Dρ

Dt
= −ρ∇ · uuu , (6.23)

to get rid of the divergence term,

3ρkB
2mptl

DT

Dt
= P

ρ

Dρ

Dt
+ Γ − Λ = nkBT

mptln
mptl

Dn

Dt
+ Γ − Λ . (6.24)

We cancel a number of terms to get a temperature evolution equation,

3
2nkB

DT

Dt
= kBT

Dn

Dt
+ Γ − Λ (6.25)

As expected, the thermal energy per unit volume is changed directly by the heating and cooling
rates, and adiabatic expansion or contraction (which we do not care about here).

There are a few main contributors to heating and cooling. First, we assume that the nebula is
optically thin to all non-ionizing radiation, which may excite hydrogen atoms (which then decay
back to the ground state) but not necessarily contribute to the temperature of the gas. Ionizing
radiation, however, gives an initial velocity to each freed electron. The resulting heating rate reads
similar to the ionization rate, but adding the excess energy beyond the ionization threshold into
the integral,

Γpi = n0

∫ ∞

ν0

4πJν

hν
σpi(ν)h(ν − ν0)dν . (6.26)

We can physically interpret this expression by dividing by the ionization balance equation, n0Gpi =
nenpαB(T ), to get

Γpi = nenpαB(T )
∫∞

ν0
4πJν

hν σpi(ν)h(ν − ν0)dν∫∞
ν0

4πJν
hν σpi(ν)dν

≡ nenpαB(T )3
2kBTi , (6.27)

where Ti is “ionization temperature” of the electrons freed from the atoms. It can be shown that
Ti is approximately T∗ (O&F §3.2), the temperature of the central star. If photoionization heating
was totally dominant, the gas would approach a temperature of Ti.

There are also a number of cooling processes acting. First, when electrons recombine, their
kinetic energy is lost from the fluid. We can quantify this loss with a similar argument as for
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ionization heating, namely, by integrating the recombination cross-section σnl(u) over the veloc-
ity distribution function. The resulting expression is similar to the recombination coefficient in
Equation 5.6,

Λrec = nenp

∞∑
n=1

n−1∑
l=0

∫ ∞

0
uσnl(u)mu2

2 fMB(u)du . (6.28)

As in §5.2, we had to some over all levels nl (O&F §3.3 and Draine §27.3.1). Besides photoioniza-
tion, gas in H ii regions is cooled by the same processes as hot ionized gas: Bremsstrahlung and
collisionally excited line radiation. Bremsstrahlung (or free-free emission) scales roughly as the root
of temperature,

Λff ≈ 1.8 × 10−23 erg
cm3 s

(
T

104 K

)1/2 ( ne
10/cm3

)2
, (6.29)

where we have assumed pure hydrogen and neglected complications due to Gaunt factors and such
(see O&F §3.4 and Draine §10.3).

The final cooling process, line emission, relies on metals because the temperature is generally
below 10000 K. In this regime, the collisional excitation of hydrogen (and helium) is inefficient
(Draine §34.1), but ions such as O II, O III, and N II have lower-lying energy levels that can be
excited. The cooling function for line emission, Λce, can more or less be worked out from first
principles (O&F §3.5), at least for the lines of single-electron systems (see §2.2).

In thermal equilibrium, DT/Dt = 0, and the temperature evolution Equation 6.25 simply reads
Γ − Λ = 0 (neglecting adiabatic changes). Thus, all heating and cooling terms must balance,

Γpi = Λrec + Λff + Λce . (6.30)

We can determine the equilibrium temperature of a system if we know its heating and cooling
terms. In H ii regions, the line emission term tends to dominate over recombination cooling and
the even weaker free-free emission (Draine Figure 27.1). The higher the metallicity, the stronger
line cooling becomes while the heating rate remains the same. Thus, higher metallicity shifts the
equilibrium to a lower temperature (Draine Figure 27.2).

6.5 Observational diagnostics
How can we actually observe H ii regions, or photoionized gas in general? The two quantities we
are most interested in are density and temperature. In principle, we can use emission or absorption
by any atom or ion that is sufficiently abundant to be observable. However, observing a single
line cannot tell us about both n and T , and the strengths of lines from different species obviously
depend on their respective abundances. Thus, we are ideally looking for systems of multiple lines
in the same ion whose ratios depend on density and/or temperature.

Let us first consider the most abundant element, hydrogen. As we saw previously, recombina-
tions into the n = 1 ground state produce ionizing photons that are almost immediately re-absorbed,
meaning that those “Lyman-continuum photons” are not observable. For the lower Lyman-series
lines, e.g., the 2 → 1 Lyman-α transition, the opacities are still very large (between 10 and 104 for
typical H ii regions) because those photons can easily find hydrogen in the ground state to excite.
Thus, Lyman photons are scattered around until they reach the edge of the H ii region. Balmer
photons, those originating from transitions in the n = 2 shell, can escape. Since recombinations
can happen into any shell, there will be cascades of excited states that eventually lead back to the
ground state. It can be shown that about half of those cascades include a 3 → 2 (Balmer-α or Hα)
transition. Thus, Hα is a prominent tracer of the total ionizing flux.
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We can find the temperature by considering two lines of the same ion. In particular, we need
two lines above the ground state that are both energetically accessible at the given temperature
(i.e., whose potential is not so large that they are exceedingly rare), and whose energy level differs
sufficiently so that their population is sensitive to the temperature (Equation 3.8). In such a case,
it can be shown that the ratio of the line intensities depends only on the temperature and on known
atomic physics such as the energy levels E21, Einstein coefficients A21, and collision strengths Υ12
(Draine §18.1). In typical H ii regions, these circumstances are given for N II and O III.

A similar logic can be applied to find density diagnostics. Imagine an ion with a singlet ground
state and an excited state that is split into multiple, very similar energy levels. If the density
is very small, the population in the excited state is negligible and every excitation is more or
less immediately followed by a decay back into the ground state. Thus, the ratio of the line
intensities approaches a constant that depends on atomic physics only. In the high-density limit,
the populations take on their thermal equilibrium values, but since their excitation energy is so
similar, the exponential term in Equation 3.8 essentially cancels. Once again, the line ratio is
determined by atomic physics, but with different coefficients that now depend on the degeneracies
of the states. Since the low- and high-density limits are generally different, we can use the line
ratio to infer intermediate densities, or at least lower or upper limits (Draine Figure 18.4).

Finally, we can use ratios of line intensities from different species to infer relative abundances.
See Draine §18 and O&F §5 for more detail on observational diagnostics.

6.6 Diffuse ionized gas
H ii regions are not the only places in the Galaxy where photoionized gas is found. In fact, up
to 90% of the photoionized gas might be in a diffuse phase called the Warm Ionized Medium
(WIM), which has a temperature of about 8000 K and a relatively low density around 0.1/cm3,
albeit with large scatter around these numbers (Haffner et al. 2009). While the WIM makes up for
a negligible fraction of the total gas in the Galaxy, its filling fraction might be as high as 0.1–0.3
because it has a larger scale height than the cooler components. This larger scale height might
indicate that the WIM has slightly lower pressure than the other ISM components. In Figure 1, we
assigned the WIM a density of nH = 0.2/cm3 to highlight pressure equilibrium, but it is possible
that the WIM has lower pressure and is pushed out of the disk.

The WIM is thought to be partially ionized, mostly by leakage of ionizing radiation from the
same O stars that create H ii regions. In a more realistic picture with strongly inhomogeneous
density structures around those stars, some photons will find channels low-density channels to es-
cape through. Additional ionizing radiation is provided by cosmic rays and X-rays. Our knowledge
about the WIM is very much evolving (see, e.g., the review by Haffner et al. 2009).
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7 Atomic physics III: Molecules
Molecules are collections of atoms that are bound by electrostatic forces or covalent bonds (the
sharing of electrons). These bonds are often of comparable strength to the excitation levels of
atoms. However, many molecules are much easier to dissociate radiatively because they tend to
have a broad spectrum of excited states that can decay in destructive ways. Thus, molecules are
virtually absent from the phases of the ISM that we have studied thus far. In the most dense
regions of the ISM, however, the column densities can get high enough to effectively shield gas from
stellar radiation fields. It is in these dense clouds that molecules form abundantly.

In this chapter, we aim to understand the energy levels, production, and destruction of molecules.
We begin by briefly introducing molecular energy levels in §7.1. As with the atoms they are com-
posed of, the quantized energy levels of molecules largely determine their physical behavior. We
then take a closer look at two of the most important molecules for astrophysics, H2 (§7.2) and CO
(§7.3).

7.1 Vibrational and rotational energy levels
For this discussion, we restrict ourselves to diatomic molecules, which are relatively simple due to
their rotational symmetry around the internuclear axis. For a more detailed treatment, see Draine
§5. Fundamentally, diatomic molecules have energy levels that correspond to vibration along the
internuclear axis and to rotation around it. As with atoms, those energy levels are further split when
we consider the relationship between the rotation of the molecule and the angular momentum of
the atoms’ electrons, and hyperfine-split if we additionally consider the interaction of the magnetic
fields that are generated. Molecular energy levels can be described by a notation similar to that
for the energy levels of atoms (§3.1, Draine §5.1.3).

To first order, we can approximate the vibrational and rotational energies in a classical sense,
as a harmonic oscillator and as solid-body rotation. The electric potential energy of the two nuclei
is approximately

V (rn) = E0(rn) + Z1Z2
q2

e
rn

, (7.1)

where rn is the distance between the nuclei, Z1 and Z2 are their changes in units of the electron
charge qe, and E0(rn) is an energy that depends on the quantum mechanical state of the two atoms
and their electrons. In the molecular ground state (with no vibrations), the atoms are separated by
some radius r0 where the potential is minimized. We can now imagine the vibrations as a harmonic
oscillator with a reduced mass

mr ≡ m1m2
m1 + m2

, (7.2)

oscillating around the point r = r0. We do not know the exact shape of V (r) because it depends on
forces other than the electrostatic repulsion between the nuclei, but we know that we can expand
it around its minimum,

V (r) ≈ V (r0) + 1
2k(r − r0)2 , k ≡ d2V

dr2 , (7.3)

where k is the spring constant (think Hooke’s law). The stronger the molecular bond, the larger k.
The fundamental angular oscillator frequency is, classically,

ω0 =
√

k

mr
. (7.4)
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Larger reduced masses lead to a faster vibration frequency. The reduced mass is smaller for more
uneven molecules, at fixed total mass. We recall that a QM oscillator cannot be in a state of zero
energy, but instead has a ground state energy of h̄ω0/2. Higher oscillations are described by a
quantum number v, with an energy of h̄ω0(v + 1/2).

We now turn to the rotational energy. Classically, an angular momentum of L = Jh̄ corresponds
to a rotational energy L2/2I, where I is the moment of inertia. We approximate the latter as
I ≈ mrr

2
0, and we replace J2 by J(J + 1) to account for quantum-mechanical effects. In total, we

thus have an energy of

E(v, J) = V (r0) + h̄ω0

(
v + 1

2

)
+ h̄2

2mrr2
0

J(J + 1) ≡ V (r0) + hν0

(
v + 1

2

)
+ BvJ(J + 1) (7.5)

The “fundamental vibrational energy” is now written as hν0 (with ν0 = ω0/2π). The rotational
energy depends on the vibrational state and is thus written as Bv, but purely rotational transitions
J → J −1 correspond to an energy of hν = 2BvJ . Our treatment has been highly simplified, but it
makes a basic prediction for the energy levels of molecules as a function of their nuclear properties.

Another important question is how the excited levels of molecules couple to photons, which
will determine their Einstein A21 coefficients. For a purely rotational J → J − 1 transition that
corresponds to a photon energy hν, this coefficient is

AJ→J−1 = ν3

6hπ2c3 µ2 J

J + 1/2 ∝ B3
0µ2 J4

J + 1/2 , (7.6)

where µ is the electric dipole moment of the molecule and B0 is the rotation constant in the
vibrational ground state (Draine §5.1.7). The main takeaway is that the transition rate strongly
depends on the electric dipole: a molecule with a strong dipole finds it easier to couple to photons
and to transition to a lower-J state.

7.2 Molecular hydrogen (H2)
H2 plays a prominent role as the by far most abundant molecule in the Universe. Its binding
energy is about 4.5 eV (Draine §31.2). Molecular hydrogen comes in two states: if the proton spins
are anti-aligned, we have para-H2, and if they are aligned, we have ortho-H2. For non-obvious
quantum-mechanical symmetry reasons, the spin alignment excludes certain rotation states so that
para-H2 has J = 0, 2, 4, ... whereas ortho-H2 has J = 1, 3, 5, ... (Draine §5.1.6).

The base vibrational wavelength of H2 is λ = 2.1×10−4 cm, which corresponds to a temperature
of T = hc/λkB ≈ 6800 K. Clearly, vibrations are not easy to excite thermally, given that molecules
exist in cold environments! The rotational energy levels are determined by the reduced mass,
mr = mp/2 (which is maximal for a symmetric molecule), and by the nucleon separation of about
0.75 Å in the vibrational ground state. We can compute the corresponding excitation temperature,

T = hν

kB
= 2B0

kB
= h̄2

kBmrr2
0

= 2h̄2

kBmpr2
0

≈ 170 K . (7.7)

While the rotational levels are more accessible than the vibrational ones, they are still too high to be
thermally excited in cold molecular gas with T ≈ 20 K (§8.1). Moreover, the transition probability
from a rotationally excited state via a photon is, to first order, zero because the molecular has no
permanent dipole, µ = 0 (Equation 7.6). This is the case for all symmetric diatomic molecules,
but it makes the life of the astronomer rather hard: there is no practical way to directly observe
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the most common molecule in the Universe! In the next section, however, we will explore CO as a
tracer of molecular hydrogen, and molecular gas in general.

As with H ii and H i in the previous chapters, the abundance of H2 is governed by a balance
between creation and destruction. Molecules can form through a number of processes, including
neutral-neutral and ion-neutral interactions. Naively, we might expect the dominant process to be
the simplest one,

H + H → H2 + hν , (7.8)

given that the H2 molecule has a binding energy of about 4.5 eV (§7.2). Due to the lack of an
electric dipole, however, the coupling to EM forces is weak and this process is so unlikely that
it can be ignored entirely. A more likely mechanism is an ion-neutral process called “radiative
association,”

H− + H → H2 + e− + kinetic energy , (7.9)

but the rate is still quite low. A more productive way to make molecules is provided by dust grains
via so-called grain catalysis. Atoms settle on the surfaces of dust grains, execute a random walk,
and may eventually meet another atom. The release of the binding energy propels the newly formed
molecule off the grain surface. Calculating the likelihood of this process is complicated due to the
diverse (and poorly understood) nature of dust grains, but the rate is roughly

Rgr ≈ 7.3 × 10−17 cm3

s

(
T

100 K

)1/2 ( Σgr
10−21/cm2

)
, (7.10)

where Σgr is the total dust cross-section per H atom (integrated over dust grains of all sizes, and
taking into account the relative dust abundance; Draine §31.2). This rate needs to be multiplied
by nHn0 to give the rate of molecule formations per time.

On the opposite side of the balance, we have a number of ways to destroy molecules: photoion-
ization, photodissociation, and incorporation into other molecular species. The most important of
these mechanisms is photodissociation, which happens when the molecule absorbs a photon that
has a frequency corresponding to one of its energy levels (§7.1). The numerous vibrational and
rotational levels of H2 (Draine Figure 5.2) mean that there is an entire band in which the molecule
is more or less excitable, the Lyman-Werner band (912 − 1100 Å). By symmetry, the excited
state must also be able to decay via a one-photon transition, which means the decay happens after
a relatively short lifetime. In 85% of cases, the H2 molecule decays back to the ground state and
emits another Lyman-Werner photon, but in 15% of the cases, the decay happens into the “vibra-
tional continuum,” meaning that a strong vibration leads to the molecule’s constituent atoms flying
apart. Thus, the Lyman-Werner band corresponds to energies between the lowest excited levels that
can destroy the molecule upon decay and the ionization energy of hydrogen. The strength of the
Lyman-Werner (or “FUV”) radiation field is a key parameter in the atomic-molecular balance. It
can be approximated as linear a linear radiation spectrum near 1000 Å, where the photodissociation
of H2 is most effective,

νUν ≡ χ × 4 × 10−14 erg
cm3

(
λ

1000 Å

)
, (7.11)

where χ is inversely defined as
χ ≡ (νUν)1000 Å

4 × 10−14 erg/cm3 . (7.12)

The measured value of χ is about unity at the solar system’s position (Habing 1968; Draine 1978),
but we do not know how representative this value is of the rest of the galaxy since it may strongly
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depend on nearby, massive stars. Parameterizing this uncertainty with the χ parameter, we have
a photodissociation rate per atom of about

ζdiss ≈ χ
4 × 10−11

s ≈ 5 × 10−11

s , (7.13)

where the latter estimate refers to the local FUV field. We can now write down an equilibrium
between H2 formation and photodissociation,

n2ζdiss(χ) = nHn0Rgr , (7.14)

where we use the notation n2 = n(H2). Using χ ≈ 1 and the grain catalysis rate quoted above, we
get

n2
nH

≈ 2 × 10−5
(

nH
30/cm3

)
, (7.15)

meaning that there would be barely any H2 in equilibrium! Higher density helps, but not enough
to counteract the destructive FUV radiation field. For gas to be molecule-dominated, it needs to
be self-shielded, a fancy term for there being a sufficient column density in the direction of any
radiation source to make a cloud optically think to Lyman-Werner radiation (Draine §31.4).

The picture that arises is one of dense, molecule-dominated clouds that are surrounded by
warmer H i, which shields them from radiation. The clouds often contain significant amounts of
metals and dust, which aids in the production of H2 and larger, more complicated molecules (Draine
§33). These reaction networks can get very complicated (e.g., Hollenbach & Tielens 1999). For
example, H ii regions typically expand into molecular clouds that formed the O stars in the first
place. At the edge of their Strömgren spheres, they form a photodissociation region (PDR),
where molecules are progressively destroyed by UV radiation penetrating into the cloud (Draine
§31.7). The structure of these regions can be solved numerically given a composition, radiation
field, and so on.

In summary, the H i/H2 balance depends mainly on three variables: the column density of gas to
sources of radiation, NH, the strength of the Lyman-Werner radiation field, χ, and the abundance of
dust, which is strongly correlated with the metallicity. A number of models have been put forward
to describe the fraction of gas in molecules as a function of these variables (e.g., Krumholz 2013).

7.3 Carbon monoxide (CO)
Given that we cannot observe H2, we will look at alternative observational tracers in §8.2. The
most prominent such tracer is carbon monoxide (CO). This molecule’s reduced mass is

mr = 12 × 16
12 + 16mp ≈ 6.9 mp . (7.16)

This larger mass reduces both the vibrational and rotational energies. The fundamental vibrational
energy is only about a factor of 2 lower than for H2 due to the strong covalent bond in CO (and the
resulting strong spring constant in Equation 7.3). However, the fundamental rotational energy is
reduced by 1/m2

r , and even though the separation r0 is slightly larger than for H2, we get a rotational
temperature of T ≈ 5.5 K. Thus, multiple rotational energy levels of CO can be thermally excited
even in the coldest clouds. Particularly, the J = 1 → 0 line has a frequency of 115 GHz and
a corresponding wavelength of λ = 2.6 mm, which lies in the far-IR or microwave band (Draine
§19.3). The transition rate is relatively low due to a small dipole moment,

AJ→J−1 ≈ 1.07 × 10−7

s
J4

J + 1/2 =⇒ AJ=1→0 ≈ 7.16 × 10−8

s , (7.17)
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meaning that the J = 1 state of CO has a lifetime of about half a year (Draine §5.1.7). We consider
the CO emission from astrophysical clouds in §8.2.
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8 Molecular gas and giant molecular clouds
At the densities where molecules can form in significant quantities, the self-gravity of gas clouds
starts to be important. Thus, molecular gas in the ISM is not a phase that permeates spaces at
a more or less fixed pressure and density, but it instead occurs in so-called molecular clouds. In
this section, we consider the general properties of molecular clouds (§8.1) and the observational
tracers that allow us to infer those properties (§8.2). Finally, we consider particles even larger
than molecules: dust grains, whose selective absorption of light is a key factor in observational
astronomy (§8.3). A much more detailed treatment of these topics can be found in Draine §5, §19,
§21–26, and §31–33. See Schinnerer & Leroy (2024) for an up-to-date review.

8.1 Properties of molecular clouds
The term “molecular cloud” is surprisingly poorly defined. Clouds are generally agglomerations of
molecular and other gas, but they can be diffuse, translucent, or opaque (Draine §32.1). They are
often called “dark clouds” because of their dust content (§8.3). Many clouds form stars, but that
is not a requirement. Most clouds are thought to be gravitationally bound, but we will see that
even that is not entirely certain in many cases. The term Giant Molecular Cloud (GMC) is
used to describe large clouds, with masses of 103 − 2 × 105 M⊙ or so. Some clouds are collected in
larger, gravitationally bound complexes (e.g., Orion with a mass of 3 × 105M⊙). The sizes clouds
and GMCs are also diverse, ranging from a fraction of a pc to 10s of pc. The gas in clouds takes
on temperatures between ≈ 8 K in the densest “cores” to ≈ 100 K in the surrounding CNM (§4).
Clearly, molecular gas occurs in many shapes, densities, and temperatures (see, e.g., Bergin &
Tafalla 2007, for a review).

In this section, we try to get a sense of the most important properties of molecular clouds
(hereafter simply called clouds). Comparing them to the other ISM phases, we find that they are
somewhat overpressurized. For example, the CNM phase that is thought to surround cold clouds
has a pressure of about

PCNM/kB ≈ 100 K × 40/cm3 × 1.1 = 4400 K/cm3 , (8.1)

whereas a typical cloud might have

Pcloud/kB ≈ 10 K × 1000/cm3 = 10000 K/cm3 (8.2)

or even more, given that the chosen values of density and temperature are relatively low. The
larger pressure indicates that clouds need to be gravitationally bound, given that they do not seem
to be expanding into the surrounding medium. However, turbulence may play an important role
(§9). To see why, we consider the famous size-linewidth relation that was observationally found
by Larson (1981),

σu ≈ 1.1 km
s

(
L

1 pc

)β

(8.3)

where β ≈ 0.38,7 though newer investigations have found a range of different values (Draine §32.9).
This relation is valid between approximately 0.1 ≤ L ≤ 100 pc. This velocity dispersion is large
compared to the sound speed in molecular gas,

cs =
√

γP

ρ
=
√

γkBT

µmp
≈ 0.24 km

s

(
T

10 K

)1/2
. (8.4)

7The exponent is commonly denoted as γ, but we change this notation to avoid confusion with the adiabatic index
of an ideal gas.
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We have assumed µ = 2.36 (§1.2) and γ = 5/3 because the gas is too cold for the rotational degrees
of freedom of H2 to be excited. The sound speed is slower than the velocity dispersions of all but
the smallest clouds, meaning that the turbulent motions are supersonic!

We can infer a cloud’s mass by assuming that it is in virial equilibrium. Broadly speaking,
if a system is in virial equilibrium, we expect its kinetic energy to be half its potential energy,
2Ekin = Epot. We imagine a molecular cloud to be a sphere of uniform density ρ, mass Mcl,
diameter L, and velocity dispersion σu. The gravitational potential energy of a self-gravitating
sphere can be found by integrating the potential from each shell,

Epot =
∫ R

0

GM(< r)
r

dM = G

∫ R

0

4πρr3

3
4πr2ρ

r
dr = 3G

(4πρ

3

)2 R5

5 = 3GM2
cl

5R
= 6GM2

cl
5L

(8.5)

since R is the radius and L is the diameter. The kinetic energy due to the gas motions is Mclσ
2
u/2,

so that we have
2 × Mclσ

2
u

2 = 6GM2
cl

5L
. (8.6)

We solve this equation for the virial cloud mass,

Mcl ≈ 5σ2
uL

6G
≈ 230 M⊙

(
L

1 pc

)2β+1
(8.7)

where we have used Larson’s relation to substitute L for σu. Similarly, we can solve for the density,

ncl ≈ 1.3 × 104

cm3

(
L

1 pc

)2β−2
(8.8)

or column density,

Ncl = nclL ≈ 4 × 1022

cm2

(
L

1 pc

)2β−1
(8.9)

These relations are approximate but roughly describe observed clouds to a factor of 2 or so. A final,
fairly fundamental question we might ask about molecular clouds is how long-lived they are. We can
estimate their lifetime by counting the star formation rates in clouds across a range of evolutionary
stages, as well as the ages of star clusters without molecular gas. From such estimates, we find that
clouds tend to be short-lived with lifetimes of about 3 to 20 million years. Their destruction is
almost certainly determined by feedback processes to some extent, and turbulence may also create
and disperse clouds (§9). Either way, the cloud lifetime is so short that some chemical processes
will not have reached equilibrium yet, making molecular chemistry somewhat time-dependent in
addition to all its other complexities.

8.2 Observational tracers of molecular gas
In §7.2, we already discussed why H2 is essentially unobservable: its rotational energy levels are too
high (T > 170 K) and it has no dipole that would efficiently couple its excited states to radiation.
Thus, we must use other molecules whose abundance (hopefully) correlates well with that of H2.
Another alternative is to assume a dust-H2 connection and measure the continuum radiation from
dust (§8.3).

By far the most commonly used tracer is CO due to its low excitation temperature and relative
brightness. In particular, the J = 1 → 0 and J = 3 → 2 lines are popular tracers, not least
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because their mm wavelengths fall just to the blue side of the atmospheric radio window, making
them observable from the ground. On the other hand, observing H2 via CO introduces a number
of serious complications. First, the CO line is almost always optically thick. The attenuation
coefficient can be computed along the same lines as for H i (Equation 4.12). Multiplying with the
size of a cloud, we obtain an optical depth of about 50 for n ≈ 103/cm3 and a cloud size of 3 pc (with
some additional assumptions; Draine §19.3.1). How can we use an optically thick line to estimate
the total molecular mass? The key insight is that the velocity dispersion of clouds scales with their
mass (Equation 8.3). Thus, much of the gas in a cloud does not contribute to absorption at the
wavelength where it was emitted, and the total emission in the broadened line correlates well with
the total CO mass. The CO-H2 conversion factor can be derived analytically for a spherical cloud
in virial equilibrium with constant density, constant CO abundance, and so on (Draine §19.4–19.6),

NH2 = XCOICO , XCO ≈ 2 × 10−20 1
cm2

1
K km/s , (8.10)

where ICO is the intensity of the J = 1 → 0 (2.6 mm) line, expressed as an integral of the antenna
temperature (equivalent blackbody temperature) over the line profile broadened by velocity. We
can convert this factor to a surface density in astronomical units,

ΣH2 = αCOICO , αCO ≈ 4.3 M⊙
pc2

1
K km/s . (8.11)

These factors are uncertain by about ±30% (Bolatto et al. 2013). Surprisingly, the conversion
factor is approximately independent of the CO abundance! This is a positive side effect of the
optical thickness (Draine §19.6).

To test the conversion factor observationally, we can infer the total masses of clouds from virial
equilibrium and compare to their total CO luminosity. Such investigations generally find a good
correlation, albeit with large scatter (Bolatto et al. 2013). One complicating factor is metallicity:
CO lives towards the center of molecular clouds, at even higher densities and lower temperatures
than H2. The relative sizes of these regions, and thus the abundances of CO and H2, depend on
the metallicity of the gas. This effect leads to a variable XCO factor and even to “dark molecular
gas,” i.e., H2 that lacks corresponding CO emission (Wolfire et al. 2010).

8.3 Dust
We have already alluded to dust, for example in the context of dark clouds or grain catalysis. While
dust is a negligible fraction of the ISM by mass, it has an outsize impact because it is very effective
at absorbing (or scattering) light over a large range of frequencies and reemitting it in the infrared.
While we understand the basic principles by which dust operates, much remains mysterious about
it, most notably its chemical composition. In this section, we present a cursory glance at some of
these topics. For a much more detailed treatment, see Draine §21–26.

Dust is a catch-all term for tiny, solid particles with a distribution of sizes between roughly
10−6 cm and 10−4 cm, though these numbers are uncertain (Draine §21.5). The composition of
dust is also largely a mystery. We can glean some insight from absorption spectra, which show
that certain elements are suppressed compared to solar abundances in sightlines through the local
ISM. These elements, most notably C, Mg, Si, and Fe, might be missing because they have been
integrated into dust grains (Draine §23.1). Combined with other considerations, the abundance
pattern indicate that the most promising candidates are silicates and graphite-like substances.
The former include silicon-based molecules that we know as crystals on Earth, e.g. pyroxenes such
as MgSiO3 or FeSiO3 and olivines such as Mg2SiO4 or MgFeSiO4. In the latter category, we have
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pure-carbon crystals such as graphite or diamond and so-called “polycyclic aromatic carbohydrates”
(PAH), large molecules made of carbon rings. Additionally, oxides (e.g., SiO2) and carbides (e.g.,
SiC) may contribute to dust (Draine §23.1).

The most important feature of dust grains is that they have a large cross-section for absorbing
and scattering light across a wide range of frequencies. In particular, all UV, optical, and infrared
light is absorbed by dust, and only microwave and radio waves with λ > 1 mm or so are unaffected.
The absorption is much stronger at short wavelength (e.g., Draine Figure 21.1), which is why the
absorption-wavelength relation is often called a reddening law (Draine §21.1). The strength of
the absorption is typically expressed as an extinction,

Aλ ≡ 2.5 log10

(
F 0

λ

Fλ

)
= 2.5 log10 (eτλ) = 1.086 τλ (8.12)

where F 0
λ is the flux from the source at wavelength λ, Fλ is the observed flux, and τλ is the

corresponding optical depth. In other words, Aλ is the reduction of flux in magnitudes, which is
almost equal to the optical depth (but not quite because 2.5 log10 is not the same as natural log).

The electromagnetic energy absorbed by the dust goes into heating it to some equilibrium
temperature, but most of it is reemitted as thermal radiation (Draine §24.3). The emission spectrum
broadly covers the infrared range (Draine Figure 24.7), but spinning dust grains also emit in the
microwave range seen by CMB satellites such as Planck. This radiation is polarized by the dust
because the grains are aligned by magnetic fields in the ISM (Draine §21.3). For a much more
extensive treatment of the theory of dust absorption and scattering as a function of grain size and
wavelength, see Draine §22.

The temperature of dust is set by a balance of radiative heating and cooling, but the meaning
of temperature refers to the internal state of the grains rather than their spatial motions. Like
molecules, dust grains have internal degrees of freedom such as vibrational modes that are excited
at higher temperatures (Draine §24). The result of the cooling and heating balance is a relatively
low dust temperature,

Tdust,Si ≈ 16 K
(

a

0.1 µm

)−1/15 ( U∗
10−12 erg/cm3

)1/6

Tdust,C ≈ 22 K
(

a

0.1 µm

)−1/40 ( U∗
10−12 erg/cm3

)1/6
, (8.13)

where a is the grain size and U∗ is the energy density in starlight (see Draine §24.1.1 for the exact
definition). The two temperatures refer to silicate-like dust grains with sizes 0.01 <∼ a <∼ 1 µm and
graphite-like dust grains with 0.005 <∼ a <∼ 0.15 µm (Draine §24.1.4). We note that the dependencies
on grain size and radiation intensity are weak.

Finally, the processes by which dust is created and destroyed are poorly understood at this point.
Some important mechanisms are thought to be condensation from gas, accretion of additional gas
onto grains, sputtering (breaking up of grains by gas), shattering of grains into smaller grains,
coagulation into larger grains, and destruction by supernova shocks. However, this list is almost
certainly incomplete, and much remains to be understood about the formation, destruction, and
dynamics of dust (Draine §25–26).
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9 Star formation in a turbulent ISM
In the previous chapter, we considered dense, mostly molecular clouds and their even denser sub-
structure. So-called star-forming cores typically have a mass of 0.3–10 M⊙ and form either a
single star, a stellar binary, or fragment into a few stars. Clumps contain multiple cores and thus
produce a population of stars. Theoretically, however, the challenge of transforming a core into
a star is formidable: the material must be compressed from pc scales to stellar scales (such as
R⊙ = 7 × 1010 cm), which represents a compression by roughly 21 orders of magnitude (Draine
§41.1). Meanwhile, angular momentum and magnetic fields resist the collapse and must be removed
somehow.

We begin by considering the simplest model for collapse, gravitational free-fall, in §9.1. We
compare the predictions of this picture with observations of stars and star formation in the real
Universe in §9.2. More recent work has established that turbulence plays a critical role in the
(temporary) creation of molecular clouds and cores, and thus in the initial mass function of the
formed stars. We consider its effect on star formation in §9.3.

9.1 Free-fall collapse and the Jeans mass
Assuming that gravity is the mechanism by which clouds collapse and form stars, we are faced
with a basic competition between pressure supporting a cloud and gravity contracting it. The
gravitational potential of a cloud grows with cloud mass, whereas the pressure corresponds to a
fixed energy per unit volume. Thus, we expect there to be a mass scale where gravity “wins,” called
the Jeans length (see hydro notes),

λJ ≡ 2π

kJ
=
√

πc2
s

Gρ0
=
√

πγkBT

µmpGρ0
. (9.1)

In the last expression, we have inserted the ideal gas sound speed, c2
s = γkBT/(µmp). If we apply

this picture to a spherical cloud, we can also define the mass within a sphere of diameter λJ, the
Jeans mass,

MJ ≡ 4πρ0
3

(
λJ
2

)3
= π5/2

6

(
γkBT

µmpG

)3/2

ρ
−1/2
0 (9.2)

To get a sense of the numbers, we substitute γ = 5/3 and µ = 2.36 to account for cold molecular
gas (where the rotational degrees of hydrogen are not excited since T ≪ 170 K). The conversion
ρ0 = 1.4mpnH holds even for molecular gas owing to the definition of nH (§1.2). We get

λJ ≈ 0.035 pc
(

T

10 K

)1/2 ( nH
106/cm3

)−1/2
(9.3)

and a resulting Jeans mass of

MJ ≈ 0.78 M⊙

(
T

10 K

)3/2 ( nH
106/cm3

)−1/2
. (9.4)

To recapitulate, this mass represents the smallest mass that can collapse given the pressure (tem-
perature) and density of star-forming cores. This result is encouraging, as it seems to explain why
the masses of stars are of the order of the mass of the Sun!

The Jeans mass can also be derived in other ways. For example, by equating the gravitational
(circular) velocity, v =

√
GM/R, with the sound speed we derive the same result within 10%. The
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calculation can also be based on the idea of virial equilibrium: the internal pressure of the cloud, its
gravitational energy, and the external pressure at the cloud’s surface must balance. This balance
results in a minimum mass at which the pressure equilibrium can be overcome by gravity called the
Bonnor-Ebert mass, which is very similar to the Jeans mass, MBE ≈ 1.18 MJ (Draine §14.3).

The next pressing question is how long the collapse of a Jeans-unstable perturbation would
take. An estimate is given by the free-fall time for a sphere of uniform density (see hydro notes),

tff =
√

3π

32Gρ0
= 4.4 × 104 yr

(
nH

106/cm3

)−1/2
. (9.5)

Implicitly, we have made the assumption that gravity has won over pressure once the perturbation
has crossed the “Jeans threshold,” meaning that we neglect pressure. Even though the free-fall
time depends on density, it is always quite short for the conditions found in star-forming cores.

However, the simple, spherical collapse envisioned by the free-fall time cannot actually occur in
the presence of angular momentum. While different star-forming cores probably have different net
rotation velocities, a relatively simple calculation shows that their collapse would be halted by the
“angular momentum barrier” long before they reach the radii of stars (Draine §41.5). In reality,
the gas forms a rotating accretion disk that transports angular momentum outwards and to the
surrounding gas. The exact mechanisms by which this happens are still not understood in detail
(Draine §41.6).

Another complication that we have yet to consider are magnetic fields: as flux lines are “frozen”
in the plasma, a star would inherit the entire magnetic field strength of the collapsing cloud that
created it. In reality, the magnetic fields observed in stars are orders of magnitude lower. Thus,
magnetic fields must diffuse out of the cloud (Draine §41.4). Either way, magnetic fields will act as
a pressure source in addition to thermal pressure and thus help to stabilize clouds against collapse,
increasing the equivalent Jeans mass.

9.2 Basic observations of star formation
Observationally, we would ideally measure the star formation rate (SFR) by resolving individual
stars in some population (or galaxy), determine their ages, and thus measure the rate at which new
stars form. Such high-resolution observations are not generally possible though, meaning that we
need to interpret the average emission from entire stellar populations. Most observational tracers of
star formation rely on the signatures of the most massive stars and their H ii regions because those
stars have short lifetimes. For example, some O stars live for less than 10 million years, meaning
that they must have formed recently if we detect their signature. Unfortunately, the brightest tracer
of ionization, Hα radiation, suffers from significant dust obscuration, meaning that we can use it
only in cases where we have a handle on the dust in the system. Infrared tracers can get around
the dust issue. For example, the N II 205 µm line is excited in H ii regions and thus a signature of
recent star formation, as is free-free radio emission (Bremsstrahlung) due to the electrons (Draine
§42.4). Each star formation tracer has its own systematics and tracks star formation on a different
timescale. Combining different tracers helps to eliminate systematic errors.

From observations, we believe that the Milky Way has a star formation rate of about 1.3 M⊙/yr.
We can now compare this rate to the prediction from Jeans collapse. If all molecular gas in the
Milky Way (about 109 M⊙) was free-fall collapsing to form stars, we would expect an SFR of

Ṁff = MH2

tff
≈ 109 M⊙

6.2 × 106 yr ≈ 160 M⊙
yr , (9.6)
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where we have computed the free-fall time from the approximate average density of the molecular
gas, nH ≈ 50/cm3, rather than from the density of star-forming cores. Nevertheless, our estimate is
orders of magnitude larger than the actual SFR, meaning that star formation must be an inefficient
process! Most of the molecular gas is not actively star-forming and not all gas from star-forming
clumps/cores actually makes it into the stars (for the reasons discussed in §9.1).

While we might be tempted to throw out the free-fall argument altogether at this point, it does
make an interesting prediction for the scaling of SFR with density. If we assume that the free-fall
time does tell us about the timescale of star formation but that this process is somehow inefficient,
we can introduce a dimensionless efficiency ϵff ,

SFR
unit volume = ϵff

ρ

tff
∝ ρ

ρ−1/2 ∝ ρ3/2 . (9.7)

Observationally, we typically have access to surface densities rather than volume densities, but the
two should be intimately related (for example, Σ ∝ ρ in a galactic disk of constant thickness). The
relation between surface density of gas and SFR is known as the Kennicutt-Schmidt relation
(Schmidt 1959; Kennicutt 1998),

ΣSFR ≈ (1.7 ± 0.4) × 10−4 M⊙

kpc2 yr

( ΣH2

M⊙/pc2

)1.4±0.1
(9.8)

The exact normalization and exponent for this relation depend on the galaxy sample, the spatial
scale over which the quantities are averaged, and other observational systematics. Nevertheless,
most investigations agree relatively well on the power law with index 1.4, which is strikingly similar
to the SFR ∝ ρ1.5 scaling of Equation 9.7! Similar relations exist for the surface density of neutral
gas and for H i (e.g., Bigiel et al. 2008), but they are less tight than that for molecular gas (which
is expected, given that stars form from dense, molecular gas).

We can think of the observed timescale of star formation as a depletion time, the time it
would take for a system (a cloud or galaxy) to use up all its molecular gas. For example, for the
Milky Way we have a molecular depletion time of

tdep = MH2

SFR ≈ 109 M⊙
1 M⊙/yr ≈ 1 Gyr . (9.9)

Depletion times of a Gyr are common in the local Universe. There is evidence that they were lower
(about 0.5 Gyr) at z = 2 (e.g., Tacconi et al. 2018).

Another fundamental quantity in the study of star formation is the initial mass function
(IMF), the abundance of stars as a function of mass. The pioneering study of Salpeter (1955)
suggested that the IMF is proportional to dN/dM∗ ∝ M−2.35

∗ , and this slope has held amazingly
well at high stellar masses. At low masses, the mass function must turn over and cease entirely
at 0.08 M⊙, the hydrogen burning limit below which gas balls turn into brown dwarfs rather than
stars. The most prominent fitting functions that capture this behavior are those by Miller & Scalo
(1979), Kroupa (2002), and Chabrier (2003). Figure 14 shows these functions and the cumulative
fraction of stars above mass m. One important aspect of these functions is the fraction of stars above
8 M⊙, since those explode as core-collapse supernovae (§2.4). An important, ongoing discussion is
whether the IMF is universal or whether it depends on the properties of the gas and galaxy within
which the stars are formed, such as metallicity (Bastian et al. 2010). Given that stars of different
masses produce drastically different spectra, the answer may have a large impact on inferences
drawn from starlight.
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Figure 14: Fitting functions for the initial stellar mass function (Salpeter 1955; Miller & Scalo 1979; Kroupa
2002; Chabrier 2003). The panels show both the differential IMF (left) and the cumulative fraction of stars
above a certain mass (right). The functions are normalized to give unity stellar mass across the range from
0.08 to 150 M⊙.

9.3 The role of turbulence
One of the major riddles in star formation is what physical mechanisms give the IMF its shape. This
question is far from settled, but the distribution of core masses in molecular cloud complexes can
have a strikingly similar shape to the IMF, although shifted to higher mass (e.g., Alves et al. 2007).
This match suggests a direct relation between the mass of the core and the star(s) it forms, with
an inefficiency factor lowering the mass. Contemporary simulations show that the fragmentation
of cores into multiple stars also plays an important role.

Either way, if core sizes do set stellar masses, we need to ask what distribution the core masses
take on and why. This question leads us to turbulence because the ISM is, in general, a turbulent
medium. Turbulence is continuously stirred up by the differential rotation of gas disks, by super-
nova blastwaves, by the expansion of H ii regions, and by other feedback mechanisms such as jets
(Lequeux §13.3).

There is plenty of evidence to suggest that turbulence plays an important role in shaping
molecular clouds. First, their irregular shapes simply look like turbulent collections of gas rather
than spherical clouds in virial equilibrium. A self-similar turbulent cascade would suggest that the
average velocity on some scale l is ul ∝ l1/3 (see hydro notes). If the velocity dispersion we see in
clouds is, indeed, due to turbulent motions, we would expect a σu ∝ L1/3 relation with the size
of the clouds. We recall that the Larson relation (Equation 8.3) has an exponent γ ≈ 0.35 − 0.5,
which is close to 1/3. The difference could be due to additional motion caused by gravitational
forces. We also recall that molecular clouds are over-pressurized compared to the CNM (§8.1).
Turbulence could provide some of the pressure needed to maintain this disequilibrium state. Such
a turbulent pressure would modify the Jeans dispersion relation, slowing gravitational collapse
(Lequeux §14.1.2).

Given these arguments for the influence of turbulence, we wish to analyze the distribution of
densities in a turbulent gas, imagining that the densest regions might end up forming clouds, cores,
and eventually stars. Unfortunately, the problem is significantly more complicated than suggested
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by the Kolmogorov-Obukhov law. First, turbulent motions within the ISM tend to be supersonic,
and the emerging shocks violate the assumption of a constant, gradual transfer of kinetic energy
between scales. As a result, the slope of the turbulent power spectrum depends on the Mach
number, M. Second, observations indicate that the ISM is magnetized to a level where MHD
is important. Thus, we need to consider MHD turbulence, including flows that are not only
supersonic but also super-Alfvénic (meaning that the velocities are larger than the Alfvén speed).
Third, self-gravity does clearly matter, which changes the distribution of turbulent velocities and
densities. And fourth, the injection of energy happens at different scales, unlike the constant
scale L envisioned in the cascade picture. Instead, the shearing motion of a rotating galaxy induces
motions on kpc scales, supernova bubbles on 100 pc scales (§2.4), and H ii regions on even smaller
scales.

For all of these reasons, we need simulations to adequately test the predictions of turbulence
for star formation. A key result has been that the probability distribution function (pdf) of
overdensity approaches a log-normal distribution (e.g., Vazquez-Semadeni 1994),

p(s) = 1√
2πσs

e−(s−s0)2/2σ2
s , s ≡ ln

(
ρ

ρ0

)
, (9.10)

where ρ0 is the mean density and s0 the mean logarithmic density. Physically, we can understand
the origin of this distribution based on supersonic turbulence, where shocks compress the density
field. For isothermal shocks, we learned that ρ2/ρ1 ∝ M2 (see hydro notes). We expect there to
be shocks with a range of Mach numbers, which means that the density is effectively multiplied by
a series of random numbers. In logarithmic space, multiplications become additions, which means
that we are adding random numbers the log density s. The central limit theorem says that such
a process, it it goes on for long enough, produces a normal distribution; hence the log-normal pdf
of density. Simulations have further shown that the width of this distribution, σs, is approximately

σ2
s ≈ ln

(
1 + b2M2

s

)
, (9.11)

where Ms is the typical sonic Mach number and b ≈ 0.5 (e.g. Burkhart 2018). More recent work
has shown that the picture is a little more complicated: at the high-density end, the pdf takes
on a power-law shape with more gas at very high density than predicted by the rapidly declining
log-normal. The reason for this tail is gravity: once a certain density threshold has been crossed,
a cloud begins to collapse, which increases its density regardless of turbulent motions. This result
has been confirmed observationally and implies that both turbulence and gravity play an important
role.

Given a density pdf, we can now establish the connection to star formation. For example, we
can posit that there is a critical density above which stars will be formed. The SFR is then the
integral over the pdf above that density. Stronger turbulence (higher Ms) broadens the log-normal
distribution but also makes it harder for gas to become self-gravitating. This picture is quite
successful at explaining the observed SFRs in the ISM (e.g., Burkhart & Mocz 2019).
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10 Global models of the ISM
After considering the various phases of the ISM and the physical processes most relevant to each,
we try to tie it all together in this final chapter. We will be guided by a few classic models that
have been proposed to understand the interaction of different ISM components and to explain their
observed properties. All of these model invoke some sort of stable equilibrium state, which is a
simplification. Most of the models are furthermore incomplete in the sense that they try to explain
only certain aspects of the ISM or that they make drastic assumptions. Specifically, in §10.1 we
begin with the key observation that multiple phases of neutral gas coexist at the same pressure.
In §10.2, we consider the model that proposed supernovae as regulators of the ISM pressure. In
§10.3, we look at a model that invokes hydrostatic balance in galactic disks. In §10.4, we present
a feedback-regulated equilibrium model that predicts star formation rates.

10.1 Two-phase medium in thermal equilibrium
In §4, we observed that atomic H i exists in two phases, the WNM and CNM. They are in pressure
balance because both their densities and temperatures differ, but why do they take on characteristic
temperatures of T <∼ 300 K and T >∼ 6000 K? Why not a temperature in between? It turns out
that the answer is intimately related to thermal equilibrium and the cooling function.

We have previously considered thermal equilibrium where heating and cooling balance, Γ = Λ
(e.g., in H ii regions, §6.4). The heating rate is approximately proportional to density, for example
because higher n means that an incident radiation field can be absorbed by more atoms (in this
section, we write n = nH for simplicity). Cooling relies on processes involving two atoms, and
thus scales as n2. We use these scalings to write the heating and cooling rates as approximately
density-independent rates,

Γ ≈ Γ′n Λ ≈ Λ′(T )n2 . (10.1)

The heating rate per mass is approximately independent of temperature, but the cooling rate tends
to increase with temperature (though not monotonically, §2.2). For the problem at hand, we care
less about cooling and heating individually and more about the net cooling rate per unit mass,

L
n

≡ Λ − Γ
n

≈ nΛ′(T ) − Γ′ . (10.2)

In thermal equilibrium, we must have L = 0, but, not every equilibrium point is stable: the
evolution of temperature than depends on how the net cooling rate evolves with T . In particular,
we encounter a thermal instability if

∂L
∂T

∣∣∣∣
P

< 0 (10.3)

because raising T means lowering L, which further raises T (and vice versa). Conversely, the system
is stable if

∂L
∂T

∣∣∣∣
P

> 0 , (10.4)

because raising T means raising L, which pushes T back down (see Clarke & Carswell 2014 §10.3
for a more formal derivation of the stability criterion). We can further deduct how the stability
criterion depends on Λ′(T ) because the ISM pressure, P/kB = nT , is approximately constant, so
that the density simply adjusts to temperature,

dn

n
= −dT

T
. (10.5)
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Figure 6. A density-temperature phase diagram for the gas in
the fiducial simulation at T = 600 Myr. We indicate the regions
of phase space we use to define various components of the ISM.

curve for each equilibrium component. Non-equilibrium
phases, including gas heated by H ii region feedback and
supernova thermal feedback, fall above the equilibrium
cooling curve. Note that while we do not explicitly in-
clude a prescription for the formation of molecular hy-
drogen, our star formation threshold corresponds approx-
imately to the transition to the molecular phase, and so
our star forming phase can be thought of as correspond-
ing to the molecular gas phase in a real galaxy.

We can quantitatively compare the impact of star for-
mation feedback on the structure of the ISM by finding
the gas mass in each ISM component as a function of
time for each of our simulated galaxies. The results of
this comparison are shown in Figure 7. We show sim-
ulations without (left column) and with (right column)
feedback, for each choice of initial gas fraction.

In all three simulations without feedback, the bulk of
the gas mass is locked up in dense star forming gas.
Over the course of the simulation, this gas is converted
into star particles, until eventually the gas supply is ex-
hausted. While there is still substantial gas left at the
end of the simulation in the low gas fraction run, the bulk
of the gas in fiducial and high gas fraction is converted
into stars over the course of the simulation.

The story is markedly di↵erent in the simulations with
feedback. Rather than being locked up in star forming
gas, the bulk of the ISM is in the WNM or CNM. In the
low gas fraction case, the gas is approximately evenly
split between WNM and CNM, with a smaller fraction
ending up as star forming gas. In the fiducial and high
gas fraction cases, the bulk of the gas ends up in the
CNM and star forming gas is a substantially larger frac-
tion of the ISM mass compared to the LGF run. In both
the fiducial and low gas fraction cases, the ISM devel-
ops an equilibrium configuration, where the mass of each
component is approximately constant over timescales of
several hundred Myr. While the mass of gas heated in
the H ii heated phase is non-negligible in the runs with
feedback, this gas is small fraction of the overall mass
of the ISM. In all cases the mass of SN heated gas is
negligible.

3.4. Gravitational Instability
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Figure 7. The time evolution of the masses of the ISM com-
ponents depicted in Figure 6 (solid lines) along with the mass of
dynamically formed stars (dot-dashed line). The left column shows
simulations without feedback, while the right column shows those
with feedback.

Here we focus on the gravitational instability that de-
velops in our simulated galaxies. In Section 3.4.1, we
focus on the velocity structure in the gas. This is fol-
lowed in Section 3.4.2 by a discussion of the evolution of
the Toomre Q parameter in our simulated disks, show-
ing how an equilibrium value of Qtotal naturally develops.
Lastly, in Section 3.4.3, we measure the mean radial mass
transport rate, and compare it with the star formation
rate.

3.4.1. Velocity Structure

As we showed above, the gas in our simulated galaxies
undergoes a cycle of collapse into gravitationally bound
clouds, rarefaction due to supernova feedback, followed
by re-collapse into gravitationally bound clouds. Both
supernova explosions and local departures from a purely
axisymmetric gravitational potential generate substan-
tial turbulent velocity dispersions. In addition, super-
nova explosions, winds from massive stars, and H ii re-
gions can heat the gas, providing support for the gaseous
disk in the form of thermal pressure.

We can see the typical velocity structure in the gaseous
disk by inspecting Figure 8, where we plot the time av-
erage of the gas e↵ective sound speed, sound speed, tur-
bulent velocity dispersion, and the anisotropy in the tur-
bulent velocity dispersion as a function of galactocentric
radius. At all radii, ce↵ & 8 km/s, reaching as high as

Figure 15: Density-temperature distribution of the ISM in a simulation of a Milky Way-mass disk galaxy.
The gray regions highlight gas heated by supernovae and H ii regions, as well as gas that is dense and cold
enough to be deemed star-forming. Constant pressure would correspond to diagonal lines in n-T space, and
a lot of gas occupies a narrow range in pressure (yellow ridge). A significant amount of gas does reside in
the thermally unstable region between the WNM and CNM, highlighting that models that allow only two
possible temperature are overly simplistic. Of course, the exact distribution depends on the feedback physics
implemented in the simulation, as well as the initial conditions. Figure from Goldbaum et al. (2016).

If we raise T , the density goes down, which relatively increases the heating rate compared to the
cooling rate. For stability, the cooling rate must increase with temperature faster than
the density decreases, meaning faster than Λ′ ∝ T !

At temperatures of around 300 < T < 4000 K, we encounter unstable conditions because Λ′(T )
evolves with T relatively slowly, too slowly to counteract the increase in Γ rate with decreasing n
(Figure 5). Gas tends to evacuate this unstable temperature range and takes on either CNM or
WNM densities and temperatures. At lower and higher temperatures, Λ′(T ) is a steeper function,
leading to a net increase in L with T and thus stability. At low T , the behavior of the cooling
function is largely driven by a sharp increase of C II and O I cooling around 100 K and by Lyman-α
picking up around 10,000 K (Draine §30.4). Below the CNM and above the WNM temperatures,
we need to consider other physical effects in the cooling curve, e.g., collisionally excited plasma
cooling for very hot gas.

In summary, the majority of the gas in the Galaxy (neutral H i) exists as a multi-phase
medium, where two well-defined gas phases coexist in pressure equilibrium. The temperatures
and densities of these phases are largely set by the cooling curve. This concept of multi-phase
pressure balance was established in Field et al. (1969), who model the ISM as a two-phase system.
However, this simple picture is not entirely realistic. Figure 15 shows the n-T distribution of ISM
gas in a modern simulation of a Milky Way-like galaxy (Goldbaum et al. 2016). Clearly, a significant
amount of gas resides in the unstable region, presumably because the thermal instability has not
yet had time to push it into either the WNM or CNM. Nonetheless, we do see that a large fraction
of cool and cold gas shares an approximately constant pressure (diagonal line in n-T space).
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A number of works have presented improved models of the thermal equilibrium, for example
taking into account advancements in our understanding of the heating and cooling sources (e.g.,
Wolfire et al. 2003) and dependencies on additional variables, most notably on metallicity (e.g.,
Bialy & Sternberg 2019).

10.2 Three-phase medium with supernovae as pressure regulators
The idea of two-phase thermal equilibrium is elegant, and it conforms to the long-established idea
that the ISM phases have to be in approximate pressure equilibrium (Spitzer 1956). But what
actually sets the equilibrium pressure? After all, the CNM and WNM can co-exist at a range of
pressures. However, Spitzer (1956) already predicted the need for a third, hot phase. By the 1970s,
it was furthermore known that supernova (SN) remnants can fill a significant fraction of the ISM
volume (e.g., Cox & Smith 1974).

Thus, McKee & Ostriker (1977) introduced a hot medium into their model. The key assumption
is that the rate of supernovae essentially sets the ISM pressure: if the pressure is lower than the
“SN pressure,” bubbles will expand further and heat more material until the pressure has adjusted
to resist the expanding bubbles. In this scenario, we would expect that a random place in the ISM
is part of about one SN remnant. In §2.6, we showed that this assumption can be used to derive a
characteristic pressure that roughly matches the observed one (to a factor of two or so).

McKee & Ostriker (1977) take this argument as a starting point (their Equation 2) and build
a complex, three-phase model of the ISM. Their predicted pressure is somewhat lower than
modern observations suggest (about 1600 K/cm3; compare to §1.3), but they more or less correctly
predict the densities, temperatures, and filling fractions of the CNM, WNM, and HIM. The model is
explicitly not concerned with very cold gas or molecular clouds and therefore makes no predictions
regarding star formation.

10.3 Hydrostatic balance
The two-phase and three-phase models in the previous sections neglected one important aspect:
gravity. Effectively, we have been treating the ISM as a gas system in some volume of arbitrary
shape and size. In reality, most star formation happens in relatively thin galactic disks that largely
shaped by gravity and angular momentum.

To take gravity into account, Ostriker et al. (2010) assert that the pressure at the center of the
disk (the mid-plane pressure) is set by the gravitational potential, much like the pressure of the
Earth’ atmosphere is set by gravity pulling the gas downwards. In their hydrostatic equilibrium
model, Ostriker et al. (2010) balance the gravitational force (at each radius) by heating from star
formation. This system forms an equilibrium because too low a gas pressure would allow gravity to
push gas into the disk, which would lead to additional star formation (and vice versa). As in McKee
& Ostriker (1977), the ISM gas is modeled with three components (HIM, WNM, and CNM).

The Ostriker et al. (2010) model has three important free parameters, namely, the fraction
of pressure that stems from thermal energy (as opposed to turbulence, cosmic rays, etc.), the
fractions of H i that reside in the CNM and WNM, and the efficiency of star formation in dense,
self-gravitating gas. Once values for those parameters have been chosen, the model can be initialized
with observed surface densities of gas, from which it predicts the surface density of star formation.
The agreement with observations of certain disk galaxies in the local Universe is striking.

One important difference between the McKee & Ostriker (1977) and Ostriker et al. (2010)
models is the heating mechanism (SN bubbles vs. stellar UV light). How can both models make
valuable predictions? We note that both mechanisms are directly proportional to star formation,
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Figure 16: Predictions of the two-phase equilibrium model of Springel & Hernquist (2003). The only
input to the model is density. The temperature (top left) bifurcates into an imaginary “cold” component
with T = 1000 K and a hot component whose temperature increases with density. The pressure (top right)
increases faster than suggested by an ideal gas equation of state (straight line in log space). The fraction of
gas in the “cold” phase (bottom left) varies between 80% and 100%. By construction, the model predicts an
SFR (bottom right) that is proportional to ρ3/2 and thus matches the observed Kennicutt-Schmidt relation.
Below the star formation threshold of about 0.13/cm3, the model is inactive.

so that both models capture a fundamental balance between star formation and the feedback it
produces.

10.4 Feedback-regulated two-phase equilibrium
The models presented thus far provide valuable insight into the interplay of the ISM phases, but
they have not made any predictions regarding star formation. Modeling the SFR is crucial in
simulations, where the resolution has historically been (and typically still is) too low to resolve
individual molecular clouds. In this low-resolution regime, we need to add a so-called “subgrid”
prescription for star formation.

Springel & Hernquist (2003) created such a model based on the idea of equilibrium. Their two-
phase model predicts pressure, temperature, and SFR from only density (Figure 16). We imagine
a volume of gas that contains hot ISM and “cold” clouds with a fixed T = 1000 K (though the
exact temperature chosen for this phase is not critically important). Mathematically, Springel &
Hernquist (2003) write down differential equations for star formation, cooling (using realistic cooling
tables), and heating by supernovae. These equations can almost entirely be solved analytically. The
SFR scales with the density of gas in the cold phase as ρ3/2, based on the free-fall argument from
§8.1. However, as the SFR goes up with density, so does the supernova rate, which evaporates more
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cold gas. This interplay leads to a feedback-regulated equilibrium, where the pressure and SFR are
largely determined by the supernova rate (similar to the McKee & Ostriker (1977) model).

This type of modeling can be made arbitrarily complicated by adding more phases or more
processes that shift gas between the phases or change its energy, and by making those processes
more realistic. For example, the Springel & Hernquist (2003) model neglects the effects of metallicity
and other ISM physics such as a realistic split of the gas into a WNM, CNM, and molecular gas. To
alleviate these issues, Braun & Schmidt (2012) present a model with numerous phases (including
H2) and processes (such as turbulence). However, the predictions of such models also become
harder to interpret as the complexity increases.
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Appendix

A Background
A.1 Hydrodynamics
Gases and fluids are described by the equations of hydrodynamics, as long as certain conditions are
fulfilled. We imagine the fluid to be composed of parcels called “fluid elements.” The mean free path
of the constituent particles, λmfp = 1/nσ, must be short compared to these elements (meaning that
collisions are frequent within each element). Second, there must be sufficient particles per fluid
element for averaged quantities such as temperature to be well-defined. And third, changes in
the averaged quantities must be small across the size of the fluid elements. As long as all three
conditions are met, we can apply the Euler equations of hydrodynamics to the fluid elements. We
may write those equations either from the “Lagrangian” perspective of each fluid element (where
the mass of the element is conserved and we imagine to be moving along with the element) or from
the “Eulerian” perspective at fixed points in space. The two types of derivatives are connected by
the relation

DQ

Dt
= ∂Q

∂t
+ uuu · ∇Q , (A.1)

where Q represents an arbitrary fluid quantity and uuu is the velocity of the fluid. Based on the
microscopic properties of the particles making up the fluid, we define the density ρ, pressure P ,
and internal energy ε of the fluid, which then obey the Euler equations:

Eulerian fluid equations

∂ρ

∂t
+ ∇ · (ρuuu) = 0

∂uuu

∂t
+ uuu · ∇uuu = −∇P

ρ
− ∇Φ

∂ε

∂t
+ uuu · ∇ε = −P

ρ
∇ · uuu + Γ

ρ
− Λ

ρ

Lagrangian fluid equations

Dρ

Dt
= −ρ∇ · uuu

Duuu

Dt
= −∇P

ρ
− ∇Φ

Dε

Dt
= −P

ρ
∇ · uuu + Γ

ρ
− Λ

ρ

Besides the fluid quantities, we have included the effects of a gravitational potential Φ as well as
heating and cooling,

Γ ≡ ρ

(Dε

Dt

)
heating

and Λ ≡ ρ

(Dε

Dt

)
cooling

. (A.2)

The total energy of the fluid is the sum of the kinetic, internal, and gravitational, and magnetic
energies,

E ≡ ρ

(
|uuu|2

2 + ε + Φ + BBB2

8π

)
. (A.3)

Although magnetic fields are important in the ISM, we do not solve the MHD equations in this
course and have left magnetic fields out of the Euler equations. However, we do wish to calculate
the magnetic energy at times (where we have assumed that BBB is in cgs units). The internal energy
refers to all degrees of freedom (translational, rotational, or vibrational). We typically express the
number of degrees of freedom, Ndof , as

γ = Ndof + 2
Ndof

, (A.4)
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where almost all gases treated in this course have only translational degrees, meaning Ndof = 3 and
γ = 5/3. Molecular gas can additionally have rotational degrees, meaning Ndof = 5 and γ = 7/5.
The internal energy is in equipartition between all degrees of freedom, but only the translational
degrees of freedom contribute to temperature and pressure. Thus, the translation between density,
internal energy, and pressure (the equation of state) depends on γ,

P = nkBT = ρkBT

µmp
= ρε(γ − 1) , (A.5)

where mptl = µmp is the average particle mass. This equation of state is valid only for ideal gases,
but that includes all gases considered in this course. Finally, the speed of sound in an ideal gas is

cs =
√

γP

ρ
. (A.6)

For more details on these concepts, please see the hydrodynamics notes.
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B Derivations
B.1 Shock radius for stellar wind
Draine §38.1 proposes a slightly more accurate, albeit much more complicated, derivation for the
normalization of the shock radius of a stellar wind. The idea is to not use the mass swept up during
the free expansion phase as the starting point but to equate the energy injected by the shock to
the energy in the bubble behind the shock. We parameterize the shock radius using a self-similar
power-law scaling,

Rs ≡ Atη =⇒ us = ∂Rs
∂t

= ηRs
t

. (B.1)

Modeling shows that the shock energy is about equally distributed into kinetic and thermal energy.
If we assume that the kinetic energy is roughly determined by the post-shock velocity of the gas
in the shell, and that the post-shock velocity is 3/4 us (Draine §38.1), then we can write the total
energy inside the shell as

E(t) ≈ 2 × Vbubble ρ0
2

(3
4us

)2
= 4πR3

s ρ0
3

(3
4

ηRs
t

)2
≈ 1

2Ṁu2
wt , (B.2)

which we solve for the shock radius,

R5
s = (Atη)5 = 2Ṁu2

w
3πη2ρ0

t3 . (B.3)

We see that 5η = 3, or η = 3/5 as expected. We insert η,

Rs =
(

50
27

Ṁu2
w

πρ0

)1/5

t3/5 ≈ 0.11 pc × t
3/5
3 n

−1/5
3 Ṁ

1/5
6 u

2/5
3 . (B.4)

This expression is identical to the one based on the free expansion phase (Equation 2.30), except
that the pre-factor has changed from (3/4)1/5 to (50/27)1/5, a change of about 20%. The shock
velocity would increase by the same factor. Given this modest difference, the more simplistic
derivation purely based on self-similarity and the free expansion phase seems adequate.
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