ASTR 670: Interstellar medium and gas dynamics

Prof. Benedikt Diemer

Chapter 8 • Molecular gas and giant molecular clouds

§8.1 • Properties of molecular clouds

Molecular clouds near the Sun

Gas phases (in the Milky Way)

	Phase	Т (К)	n _H (cm ⁻³)	f∨ -	P/k _B (K/cm³)	Comments
H II 23%	Hot ionized medium (HIM)	10 ^{5.7}	0.004	0.5	4400	Collisionally ionized, shock-heated by supernovae and stellar winds
	H II regions	10000	0.1-104	0.01	varies	Photo-ionized nebulae around stars; density and pressure vary across these bubbles
	Warm ionized medium (WIM)	8000	0.2	0.1	4400	Diffuse photo-ionized gas, large scatter in temperature and density
H I 60%	Warm neutral medium (WNM)	8000	0.5	0.4	4400	About 60% of HI by mass; in pressure equilibrium witn CNM
	Cool neutral medium (CNM)	100	40	0.01	4400	Significant fraction of the mass despite small volume filling fraction
H ₂ 17%	Diffuse molecular gas	50	150	0.001	4400	Self-shielded against dissociation, but not dense enough to form stars
	Molecular clouds	10-50	10 ³ -10 ⁶	0.0001	>10000	The site of star formation; more or less gravitationally bound

Size-linewidth relation

Molecular cloud scaling relations

§8.2 • Observational tracers of molecular clouds

Integrated CO line

Images by Karin Sandstrom

Integrated CO line

CO as a tracer for cloud mass

Disagreement about CO-H₂ conversion

Method	$\begin{array}{c c} X_{\rm CO}/10^{20} \rm cm^{-2} \\ (\rm K \ km \ s^{-1})^{-1} \end{array}$	References			
Virial	2.1	Solomon et al. (1987)			
	2.8	Scoville et al. (1987)			
Isotopologues	1.8	Goldsmith et al. (2008)			
Extinction	1.8	Frerking, Langer & Wilson (1982)			
	2.9-4.2	Lombardi, Alves & Lada (2006)			
	0.9–3.0	Pineda, Caselli & Goodman (2008)			
	2.1	Pineda et al. (2010b)			
	1.7–2.3	Paradis et al. (2012)			
Dust emission	1.8	Dame, Hartmann & Thaddeus (2001)			
	2.5	Planck Collaboration XIX et al. (2011)			
γ-rays	1.9	Strong & Mattox (1996)			
	1.7	Grenier, Casandjian & Terrier (2005)			
	0.9–1.9 ^a	Abdo et al. (2010c)			
	1.9–2.1ª	Ackermann et al. (2011, 2012c)			
	0.7–1.0 ^a	Ackermann et al. (2012a,b)			

Metallicity-dependent CO-H₂ conversion?

Metallicity-dependent CO-H₂ conversion?

Bolatto et al. 2013

Extragalactic molecular gas

Resolved HI and CO observations

VERTICO: Virgo Cluster in CO

Declination (J2000)

VERTICO survey • Brown et al. 2021

VERTICO: Virgo Cluster in CO

Evolution of gas abundance over cosmic time

Walter et al. 2020

Dust absorption

- Struve 1847: number of stars decreases in all directions
 - makes sense only if we are at center of spherical distribution
- Barnard 1910s / 1920s: catalog of dark clouds
 - Revisited Herschel's "holes in the sky"
 - Realized something seemed to absorb starlight

Dust absorption

• Trumpler 1930

- Measured distance to star clusters from their size and brightness
- General dimming of stars with distance
- Brightness falls off with distance!
- Extinction depends on wavelength ("reddening")
- "...interstellar light absorption may be a consequence of light scattering by small particles, fine cosmic dust, thinly spread through the vast spaces occupied by our Milky Way system."

What is dust made of?

Polycyclic aromatic hydrocarbons (PAH)

Dust extinction

Draine §22.1

Emission spectrum

EM spectrum in astronomy

IRAS (infrared)

Planck (microwave, 3.5 - 100 mm)

Planck collaboration

Dust Moving Through Magnetized Gas

BLACK DOTS represent dust grains

COLORS

0.025

show gas velocity relative to mean

 $|\mathbf{u}_g - \langle \mathbf{u}_g \rangle|/c_s^0$

Hopkins Group / CalTech (video page)

Dust in Turbulence

BLACK DOTS represent dust grains

COLORS

show gas vorticity (*spinning* or *stretching*) yellow - higher vorticity blue - lower vorticity

Hopkins Group / CalTech (video page)

altech

Dust dynamics

Hopkins & Lee 2015

Reading

