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ABSTRACT

We present results of numerical simulations of sequences of binary-single scat-

tering events of black holes in dense stellar environments. The simulations cover

a wide range of mass ratios from equal mass objects to 1000:10:10 M⊙ and com-

pare purely Newtonian simulations to simulations in which Newtonian encounters

are interspersed with gravitational wave emission from the binary. In both cases,

the sequence is terminated when the binary’s merger time due to gravitational

radiation is less than the arrival time of the next interloper. We find that black

hole binaries typically merge with a very high eccentricity (0.93 ≤ e ≤ 0.95 pure

Newtonian; 0.85 ≤ e ≤ 0.90 with gravitational wave emission) and that adding

gravitational wave emission decreases the time to harden a binary until merger

by ∼ 30 to 40%. We discuss the implications of this work for the formation of

intermediate-mass black holes and gravitational wave detection.

Subject headings: black hole physics — galaxies: star clusters — globular clusters:

general — stellar dynamics

1. Introduction

Recent observations suggest that large black holes may reside in the centers of some

stellar clusters. X-ray observations in the last few years have shown unresolved sources in

galaxies offset from their nuclei and with fluxes that, if isotropic, correspond to luminosities

of L ≈ 1039 to 1041 erg s−1 (e.g., Fabbiano, Schweizer, & Mackie 1997; Colbert & Mushotzky

1999; Matsumoto et al. 2001; Fabbiano, Zezas, & Murray 2001). Many of these sources are

associated with stellar clusters (Fabbiano et al. 1997; Angelini, Loewenstein, & Mushotzky

2001). The strong variability observed in these sources suggests that they are black holes,

and if the observed fluxes are neither strongly beamed nor super-Eddington, the implied
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masses are as high as M & 103 M⊙. The fact the sources are non-nuclear implies masses

M . 106 M⊙ since a larger mass would have rapidly sunk to the center of the host galaxy due

to dynamical friction (< 109 yr for a dispersion velocity of 100 km s−1 and a separation from

the galaxy nucleus of 102 pc as in the case of M82; Kaaret et al. 2001). In addition, optical

observations of the globular clusters M15 and G1 show velocity profiles consistent with central

black holes with masses of 2.5 × 103 M⊙ and 2.0 × 104 M⊙, respectively (Gebhardt et al.

2000; Gerssen et al. 2002; van der Marel, et al. 2002; Gebhardt, Rich, & Ho 2002), although

Baumgardt et al. (2003) demonstrate with their N-body simulations that the observations

of G1 can be explained without a large black hole. Such intermediate-mass black holes

(IMBHs) would be in a different mass category, and thus likely indicative of a different

formation scenario, from either 3 - 20 M⊙ stellar-mass black holes, which are thought to be

the result of core-collapse supernovae, or 106 - 1010 M⊙ supermassive black holes, which are

found in the centers of many galaxies.

Several models have been proposed to account for the origin of IMBHs. Madau &

Rees (2001) and Schneider et al. (2002) suggest that they are the remnants of massive

(M & 200 M⊙) Population III stars. The low metallicity of these stars precludes cooling

through metal line emission and enables them to reach masses much larger than ordinary

main sequence stars. These large stars avoid significant mass loss due to stellar winds or

pulsations, and the star may collapse to form a black hole with almost the same mass as the

progenitor star. Portegies Zwart & McMillan (2002) and Gürkan, Freitag, & Rasio (2004)

show with numerical simulations that the core of a young stellar cluster may collapse rapidly

such that direct collisions of stars will lead to runaway growth of a single object with as

much as 10−3 of the original cluster mass over the course of a few million years. Miller &

Hamilton (2002a) propose that over a Hubble time stellar-mass black holes in dense globular

clusters may grow by mergers to the inferred IMBH masses. In their model, a black hole

with mass greater than 50 M⊙ will interact with other massive objects to form binaries that

will merge due to gravitational radiation. The merger process may proceed more quickly

in the presence of encounters with a third black hole or another black hole binary (Miller

& Hamilton 2002b) if the encounters shrink the binary’s orbit, as is known to happen with

hard (tight) binaries (Heggie 1975).

Wherever and however IMBHs formed, the best candidates are found in stellar clusters

where three-body encounters are important. An IMBH in a cluster, whether formed there or

later swallowed by the cluster, will find its way to the center. As all of the heaviest objects in

a cluster sink to the center in a process known as mass segregation, the IMBH will interact

primarily with other massive objects and binaries (Sigurdsson & Hernquist 1993; Fregeau et

al. 2002). A single IMBH will tend to acquire companions through exchanges with binaries

because the most massive pair of objects in a three-body encounter preferentially end up in
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the binary (e.g., Heggie, Hut, & McMillan 1996). The IMBH binary will encounter other

objects in the dense center of its host cluster, harden further, and ultimately merge.

These events are important sources of gravitational waves. The Advanced LIGO (Laser

Interferometer Gravitational Wave Observatory) detector is expected to be capable of de-

tecting mergers of IMBHs with M . 100 M⊙ (Barish 2000), and LISA (Laser Interferometer

Space Antenna) is expected to detect the earlier inspiral phase of an IMBH merger (Danz-

mann 2000). In order to predict the gravitational wave signature of the inspiral, the expected

separations and eccentricities of the binaries must be known. Because three-body encounters

alter the orbital parameters, simulations are needed to predict their distributions as well as

the source population and event rates.

The three-body problem has been studied extensively, but with every new generation of

computing power, our understanding of the problem advances with a wider range of numer-

ical simulations and a changing perspective on this rich but conceptually simple problem.

Previous studies of the three-body problem have tended to focus on the case of equal or

nearly equal masses (e.g., Heggie 1975; Hut & Bahcall 1983) though other mass ratios have

been studied (e.g., Fullerton & Hills 1982; Sigurdsson & Phinney 1993; Heggie et al. 1996).

The nearly equal mass case does not apply to the case of an IMBH in the core of a stellar

cluster. In addition the vast majority of previous work has studied the effect of a single en-

counter on a binary. To determine the ultimate fate of an IMBH, simulations of sequences of

encounters are needed. Furthermore, to our knowledge no previous work has considered the

effects of orbital decay due to gravitational radiation between encounters, which we expect

to be important for very tight binaries.

In this paper we present numerical simulations of sequences of high-mass ratio binary-

single encounters. We describe the code used to simulate the encounters in § 2. Next, we

present results of the simulations of sequences of encounters on a range of mass ratios with

Newtonian gravity (§ 3.1) and with gravitational radiation between encounters (§ 3.2) and

show that including gravitational radiation decreases the duration of the sequence by ∼ 30

to 40%. In § 4 and § 5 we discuss the implications of these results for IMBH formation and

gravitational wave detection.

2. Numerical Method

We perform numerical simulations of the interactions of a massive binary in a stellar

cluster. Simulating the full cluster is beyond current N-body techniques, so we focus instead

on a sequence of three-body encounters. Massive cluster objects, such as IMBHs and tight
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binary systems, tend to sink the centers of clusters so that a single IMBH is very likely to

meet a binary (Sigurdsson & Phinney 1995). Exchanges in which the IMBH acquires a close

companion are common. Such a binary in a stellar cluster core will experience repeated

interactions with additional objects as long as the recoils from these interactions do not

eject the binary. Therefore, we simulate a sequence of encounters between a hard binary and

an interloper. We perform one interaction and then use the resulting binary for the next

encounter. This is repeated multiple times until the binary finally merges due to gravitational

radiation. Because typical velocities involved are non-relativistic and the black holes are tiny

compared to their separations, they are treated as Newtonian point masses. In order to test

the influence of the binary’s mass, we use a range of binary mass ratios. To simplify the

problem we study a binary with mass ratio of N :10 M⊙ and a 10 M⊙ interloper, designated

as N :10:10, and vary N between 10 M⊙ and 103 M⊙.

The simulations were done using a binary-single scattering code that was written to

be as general purpose as possible. Because of the vast parameter space that needs to be

covered, the code uses a Monte Carlo initial condition generator. The orbits are integrated

using hnbody, a hierarchical, direct N-body integrator, with the adaptive fourth order Runge

Kutta integrator option (K. Rauch & D. Hamilton, in preparation)1. Because we focus on

close approaches where a wide range of timescales are important, an adaptive scheme is often

better than symplectic methods.

In wide hierarchical triples, direct integration can consume a large amount of compu-

tational time. To reduce this, we employ a two-body approximation scheme that tracks the

phase of the inner binary. For a sufficiently large outer orbit, the orbit is approximately that

of an object about the center of mass of the binary. We calculate this approximate two-body

orbit analytically and keep track of the inner binary’s phase. When the outer object nears

the binary again, we revert to direct numerical integration.

The orbit is integrated until one of three conditions is met: 1) one mass departs along a

hyperbolic path, 2) the system forms a hierarchical triple with outer semimajor axis greater

than 2000 AU, an orbit so large that it would likely be perturbed in the high density of

a cluster core and not return, or 3) the integration is prohibitively long, in which case

the encounter is discarded and restarted with new randomly generated initial conditions.

Roughly 10−4 of all encounters had to be restarted with most occurring for higher mass

ratios where resonant encounters (encounters that have more than one close approach and

are not simple fly-bys) are more common. In half of our simulations, we evolve the binary’s

orbit due to gravitational wave emission after each encounter. Since a binary in a cluster

1See http://janus.astro.umd.edu/HNBody/.
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spends most of its time and emits most of its gravitational radiation while waiting for an

encounter rather than during an interaction, we only include gravitational radiation between

encounters. To isolate this effect, we run simulations both with and without gravitational

radiation. We include gravitational radiation by utilizing orbit-averaged expressions for the

change in semimajor axis a and eccentricity e with respect to time (Peters 1964):

da

dt
= −

64

5

G3m0m1 (m0 + m1)

c5a3 (1 − e2)7/2

(

1 +
73

24
e2 +

37

96
e4

)

(1)

and
de

dt
= −

304

15

G3m0m1 (m0 + m1)

c5a4 (1 − e2)5/2

(

e +
121

304
e3

)

, (2)

where m0 and m1 (m0 ≥ m1) are the gravitational masses of the binary pair. Here G is the

gravitational constant, and c is the speed of light. The orbital elements are evolved until

the next encounter takes place, at a time that we choose randomly from an exponential

distribution with a mean encounter time, 〈τenc〉 = 1/ 〈nv∞σ〉, where n is the number density

of objects in the cluster’s core, v∞ is the relative velocity, and σ is the cross-section of the

binary. If we assume the mass of the binary m0 + m1 ≫ m2, then

σ ≈ πr2
p + 4πrpG (m0 + m1) /v2

∞
, (3)

where rp is the maximum considered close approach of m2 to the binary’s center of mass.

For a thermal distribution of stellar speeds, v∞ = (mavg/m2)
1/2 vms, where mavg = 0.4 M⊙ is

the average mass of the main sequence star and vms is the main sequence velocity dispersion.

In our simulations, the second term of Eq. 3, gravitational focusing, dominates over the first.

Averaging over velocity (assumed to be Maxwellian) we find

〈τenc〉 = 2 × 107
( vms

10 km s−1

)

(

106 pc−3

n

) (

1 AU

rp

) (

1 M⊙

m0 + m1

) (

1 M⊙

m2

)1/2

yr. (4)

We then subject the binary to another encounter using orbital parameters adjusted by both

the previous encounter and the gravitational radiation emitted between the encounters. This

sequence of encounters continues until the binary merges due to gravitational wave emission.

If orbital decay is not being calculated, then we determine that the binary has merged

when the randomly drawn encounter time is longer than the timescale to merger, which is

approximately

τmerge ≈ 6 × 1017 (1 M⊙)3

m0m1 (m0 + m1)

( a

1 AU

)4
(

1 − e2
)7/2

yr (5)
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for the high eccentricities of importance in this paper.

Global energy and angular momentum are monitored to ensure accurate integration.

The code also keeps track of the duration of encounters, the time between encounters, changes

in semimajor axis and eccentricity, and exchanges (events in which the interloping mass

replaces one of the original members of the binary and the replaced member escapes).

As a test of our code, we compared simulations of several individual three-body encoun-

ters to compare with the work of Heggie et al. (1996). As part of a series of works examining

binary-single star scattering events, Heggie et al. (1996) performed numerical simulations of

very hard binaries with a wide range of mass ratios and calculated their cross-sections for

exchange. We ran simulations of one encounter each of a sample of mass ratios for com-

parison. To facilitate comparison of encounters with differing masses, semimajor axes, and

relative velocities of hard binaries, Heggie et al. (1996) use a dimensionless cross-section,

σ̄ =
2v2

∞
Σ

πG (m0 + m1 + m2) a
, (6)

where v∞ is the relative velocity of the interloper and the binary’s center of mass at infinity

and Σ is the physical cross-section for exchanges. We calculate Σ as the product of the

fraction of encounters that result in an exchange (fex) and the total cross-section of encoun-

ters considered: fexπb2
max, where bmax is an impact parameter large enough to encompass all

exchange reactions. Our cross-sections are in agreement with those of Heggie et al. (1996)

within the combined statistical uncertainty as seen in Table 1.

3. Simulations and Results

We used our code to run numerical experiments of three-body encounter sequences with

a variety of mass ratios. The binaries consisted of a dominant body with mass, m0 = 10, 20,

30, 50, 100, 200, 300, 500, or 1000 M⊙ and a secondary of mass m1 = 10 M⊙. Because of

mass segregation, the objects that the binary encounters will be the heaviest objects in the

cluster. In order to simplify the problem, we consider only interactions with interlopers of

mass m2 = 10 M⊙. The binary starts with a circular a = 10 AU orbit, and the interloper has

a relative speed at infinity of v∞ = 10 km s−1 and an impact parameter, b, relative to the

center of mass of the binary such that the pericenter distance of the hyperbolic encounter

would range from rp = 0 to 5a. For all binaries, vcirc = [G (m0 + m1) /a]1/2 ≥ 40 km s−1 ≫

v∞, and thus all are considered hard. The Monte Carlo initial condition generator distributes

the orientations and directions of encounters isotropically in space, and the initial phase of

the binary is randomized such that it is distributed equally in time. We assume the cluster
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Table 1. Single Encounter Cross-sections for Exchange

m0:m1:m2 Ejected Mass HHM96 This Work

10 : 1 : 1 1 1.054 ± .105 1.086 ± .023

10 —– —–

10 : 1 : 10 1 7.825 ± .360 7.741 ± .255

10 0.520 ± .087 0.513 ± .043

3 : 1 : 1 1 2.311 ± .170 2.465 ± .073

3 0.059 ± .025 0.072 ± .007

Note. — This table compares dimensionless cross-sections for exchange σ̄ (see text for

details) calculated by Heggie et al. 1996 and by us. The first column lists the masses, with

binary components m0 and m1. Column two shows the mass of the ejected object. The

ejection of the smaller mass is energetically favored so it always has a larger cross-section.

There is general agreement between the two calculations to within the statistical uncertainty,

which we calculate as σ̄/N
1/2
ex , where Nex is the total number of exchanges.
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core has a density of n = 105 pc−3 and an escape velocity of vesc = 50 km s−1 for the

duration of the simulation. We discuss the consequences of changing the escape velocity

in § 4. For each mass ratio, we simulate 1000 sequences with and without gravitational

radiation between encounters.

3.1. Pure Newtonian Sequences

Figure 1a shows the change of semimajor axis and pericenter distance as a function of

time over the course of a typical Newtonian sequence. The encounters themselves take much

less time then the period between encounters, so a binary spends virtually all its time waiting

for an interloper. Most of the time in this example is spent hardening the orbit from 1 AU to

0.4 AU because as the binary shrinks, its cross-section decreases and the timescale to the next

encounter increases. Figure 1b shows the same sequence plotted as a function of number of

encounters. The semimajor axis decreases by a roughly constant factor with each encounter.

This is expected for a hard binary, which, according to Heggie’s Law (Heggie 1975), tends

to harden with each encounter at a rate independent of its hardness. The eccentricity and

therefore the pericenter distance, rp = a (1 − e), however, can change dramatically in a

single encounter (for a discussion on eccentricity change of a binary in a cluster, see Heggie

& Rasio 1996). This sequence ends with a very high eccentricity (e = 0.968), which reduces

the merger time given by Eq. 5 to less than τenc.

Table 2 summarizes our main results and shows a number of interesting trends. The

average number of encounters per sequence, 〈nenc〉, increases with increasing mass ratio since

the energy that the interloper can carry away scales as ∆E/E ∼ m1/ (m0 + m1) (Quinlan

1996) and since nenc ∼ E/∆E for a constant eccentricity. Energy conservation assures that

every hardening event results in an increased relative velocity between the binary and the

single black hole. If the velocity of the single black hole relative to the barycenter, and

thus the globular cluster, is greater than the escape velocity of the cluster core (typically

vesc = 50 km s−1 for a dense cluster; see Webbink 1985), then the single mass will be ejected

from the cluster. The average number of ejected masses per sequence, 〈nej〉, also increases

with increasing mass ratio because the higher mass ratio sequences have a larger number of

encounters and because the larger mass at a given semimajor axis has more energy for the

interloper to tap. Conservation of momentum guarantees that when a mass is ejected from

the cluster at very high velocity, the binary may also be ejected. Table 2 lists 〈fbinej〉, the

fraction of sequences that result in the ejection of the binary from the cluster. As expected,

the fraction decreases sharply with increasing mass such that virtually none of the binaries

with mass greater than 300 M⊙ escape the cluster.
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Fig. 1.— Newtonian 1000:10:10 sequence. These panels show the semimajor axes (upper

lines) and pericenter distances (lower lines) as functions of time (left panel) and number of

encounters (right panel) for one sequence of encounters with no gravitational wave emission.

Each change in a and rp is the result of a three-body encounter. Since the binary is hard, the

semimajor axis gradually tightens by a roughly constant fractional amount per encounter

with most of the time spent hardening the final fraction when close encounters are rare. The

pericenter distance, however, fluctuates greatly due to large changes in eccentricity during

a single encounter. The sequence ends at a very high eccentricity when the binary would

merge due to gravitational radiation before the next encounter.
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Table 2. Sequence Statistics

m0 Case 〈nenc〉 〈nej〉 〈fbinej〉 〈tseq〉 /106 yr 〈af 〉 /AU 〈ef〉

10 Newt. 51.6 3.9 0.880 82.72 0.164 0.929

GR Evol. 48.7 3.7 0.839 59.89 0.190 0.901

20 Newt. 51.3 6.5 0.835 65.94 0.178 0.924

GR Evol. 47.1 6.1 0.776 43.46 0.230 0.898

30 Newt. 58.9 9.3 0.753 49.11 0.198 0.926

GR Evol. 55.1 8.6 0.676 31.89 0.222 0.892

50 Newt. 73.2 14.6 0.581 33.75 0.230 0.919

GR Evol. 66.7 13.0 0.455 22.73 0.285 0.892

100 Newt. 102.0 24.0 0.229 21.35 0.327 0.936

GR Evol. 93.4 20.1 0.161 14.97 0.357 0.873

200 Newt. 158.4 38.2 0.043 15.13 0.387 0.938

GR Evol. 140.3 31.5 0.026 9.998 0.444 0.872

300 Newt. 208.5 49.1 0.013 11.89 0.468 0.943

GR Evol. 184.0 39.4 0.006 7.822 0.445 0.874

500 Newt. 308.7 71.1 0.001 9.920 0.528 0.944

GR Evol. 269.1 54.9 0 6.225 0.488 0.860

1000 Newt. 562.4 117.3 0 7.363 0.641 0.953

GR Evol. 483.0 88.9 0 4.427 0.556 0.851

Note. — Table 2 summarizes the main results of our simulations of sequences of three-

body encounters. For each dominant mass, m0, we ran 1000 sequences of pure Newtonian

encounters (Newt.) and 1000 sequences of the more realistic Newtonian encounters with

gravitational radiation between encounters (GR Evol.). The columns list the average number

of encounters per sequence 〈nenc〉, the average number of black holes ejected from the cluster

in each sequence 〈nej〉, the fraction of sequences in which the binary is ejected from the

cluster, 〈fbinej〉, the average total time for the sequence 〈tseq〉, the average final semimajor

axis 〈af 〉, and the average final eccentricity 〈ef 〉.



– 11 –

The shape and size of the orbit after its last encounter determine the dominant gravita-

tional wave emission during the inspiral and are of particular interest to us. The distribution

of pre-merger semimajor axes for all mass ratios is shown in Figure 2. The distributions all

have a similar shape that drops off at low a because the binary tends to merge before another

encounter can harden it. For large orbits the binary will only merge for a high eccentricity,

and thus there is a long tail in the histograms towards high a from encounters that resulted in

an extremely high eccentricity. The distributions for lower mass ratios are shifted to smaller

a because for a given orbit, a less massive binary will take longer to merge. This can also be

seen in the mean final semimajor axis, 〈af〉, in Table 2.

Figure 3 shows the distribution of binary eccentricities after the final encounter for one

mass ratio. The plot is strongly peaked near e = 1, a property shared by all other mass ratios.

This distribution is definitely not thermal, which would have a mean eccentricity 〈e〉th ≈ 0.7.

The high eccentricity before merger results from both the strong dependence of merger time

on eccentricity and the fact that the eccentricity can change drastically in a single encounter

(see Fig. 1). As the semimajor axis decreases by roughly the same fractional amount in each

encounter, the eccentricity increases and decreases by potentially large amounts with each

strong encounter. When the eccentricity happens to reach a large value, the binary will merge

before the next encounter. Figure 4 shows the eccentricity distribution for all encounters

after the first 10 for all 1000 sequences with a mass ratio of 1000:10:10. The distribution is

roughly thermal up to high eccentricity where the binaries merge. Thus merger selectively

removes high eccentricity binaries from a thermal distribution.

3.2. General Relativistic Binary Evolution

The addition of gravitational radiation between Newtonian encounters is expected to

alter a sequence since it is an extra source of hardening and since it circularizes the binary.

Figure 5 shows a typical sequence for the 1000:10:10 mass ratio including gravitational

radiation. Three-body interactions drive the binary’s eccentricity up to e = 0.959 and

its semimajor axis down to a = 0.713 AU. Then starting at t = 2.2 × 106 yr over the

course of about ten interactions that only weakly affect the eccentricity and semimajor axis,

gravitational radiation causes the orbit to decay to a = 0.550 AU and e = 0.946 while the

pericenter distance remains roughly constant. The corresponding semimajor axis change in

the Newtonian only sequences in Figure 1 takes 45 encounters and more than twice as long

although one must be careful when comparing two individual sequences. Gravitational waves

make the most difference when the pericenter distance is small, which is guaranteed at the

end of a sequence, but can also happen in the middle as Figure 5 shows.
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Fig. 2.— Histograms of final semimajor axes for all mass ratios. The solid histograms are

pure Newtonian sequences, and the hatched histograms are sequences with gravitational

radiation between encounters. The histograms all have similar shapes with a sharp drop at

low a since the binary tends to merge before another encounter can harden it, and it has

long tail at high a where the binary will only merge with high eccentricity. The sequences

with gravitational radiation have falloffs at smaller a than those without due to both the

circularization and the extra source of hardening.
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Fig. 3.— Histogram of final eccentricities for 1000:10:10 mass ratio. The solid histogram is

from pure Newtonian sequences, and the hatched histogram is from sequences with gravi-

tational radiation between encounters. The histogram is cut at e = 0.8 because ef < 0.8

is rare. The histograms have roughly the same shape for both cases and for all mass ratios

although the gravitational wave sequences have a consistently lower mean at higher mass

ratios because gravitational wave emission damps eccentricities. The histograms show a de-

cidedly non-thermal distribution and are strongly peaked near e = 1. Because the timescale

to merge due to gravitational radiation is so strongly dependent on e, the binary will merge

when it happens to reach a high eccentricity.
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Fig. 4.— Solid line is a histogram of all eccentricities after each encounter except for the first

ten for all pure Newtonian sequences of 1000:10:10. The dashed line is a thermal distribution

of eccentricities. The distribution is roughly thermal for low eccentricity but deviates for

e & 0.6. The expected thermal distribution of eccentricities is altered by losses of high

eccentricity orbits to merger.
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Fig. 5.— 1000:10:10 gravitational radiation sequence. Same as Figure 1a but for a sequence

with gravitational radiation between encounters. The effects of gravitational radiation can

be seen between 2.2 and 2.4 × 106 years. Over this period, the binary undergoes about

ten interactions that do not significantly affect its orbit. During this time, the semimajor

axis decays from a = 0.713 AU to 0.550 AU while the pericenter distance remains small and

roughly constant. When an encounter reduces the eccentricity at 2.4×106 years, gravitational

radiation is strongly reduced. Gravitational radiation becomes important again at the end

of the sequence. The sequence ends with the binary’s merger from gravitational waves.
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Table 2 summarizes the effect of adding gravitational radiation. In general the effect is

greater at higher masses because gravitational radiation is stronger for a given orbit. Because

of the extra energy sink, the binaries merge with fewer encounters, fewer black holes are

ejected, and the fraction of sequences in which a binary is ejected is smaller. The most

dramatic change is in the duration of the sequence, which gravitational radiation reduces

by 27% to 40%. The distributions of final semimajor axes (Fig. 2) and final eccentricities

(Fig. 3) have similar shapes to the Newtonian only distributions. Due to the circularizing

effect of gravitational radiation, binaries of all mass ratios merge with a smaller 〈ef 〉 than

Newtonian only sequences with the largest difference at high mass ratios. Gravitational

radiation also produces a smaller 〈af 〉 for m0 & 300 M⊙. This can be seen in Figure 2 where

the gravitational radiation simulations display an excess number of sequences with low af ,

which is a consequence of the binaries’ lower ef .

4. Implications for IMBH Formation

We can use these simulations to test the Miller & Hamilton (2002a) model of IMBH

formation. We assume that a 50 M⊙ seed black hole with a 10 M⊙ companion will undergo

repeated three-body encounters with 10 M⊙ interloping black holes in a globular cluster with

vesc = 50 km s−1 and n = 105 pc−3. We also assume that the density of the cluster core

remains constant as the IMBH grows. We then test whether the model of Miller & Hamilton

(2002a) can build up to IMBH masses, which we take to be 103 M⊙, 1) without ejecting too

many black holes from the cluster, 2) without ejecting the IMBH from the cluster, and 3)

within the lifetime of the globular cluster. We also test how these depend on escape velocity

and seed mass.

If the number of black holes ejected is greater than the total number of black holes in

the cluster core, then the IMBH cannot build up to the required mass by accreting black

holes alone. To calculate the total number of black holes ejected while building up to large

masses, we sum the average number of ejections using a linear interpolation of the values

in Table 2. Assuming a cluster escape velocity of vesc = 50 km s−1, we find that the total

number of black holes ejected when building up to 1000 M⊙ is approximately 6800 for our

Newtonian only and 5300 for gravitational radiation simulations. This is far greater than the

estimated 102 to 103 black holes available (Portegies Zwart & McMillan 2000). If there were

initially one thousand 10 M⊙ black holes in the cluster, mergers of the massive black hole

with a series of 10 M⊙ black holes would exhaust half of the black holes in ∼ 2.6 × 108 yr

and would ultimately produce a 240 M⊙ black hole. Increasing the seed mass increases the

final mass of the IMBH when half of the field black holes run out. If the seed mass were
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100, 200, or 300 M⊙, then the model would produce a 270, 330, or 410 M⊙ black hole after

exhausting half of the cluster black hole population in 1.9, 1.1, or 0.8 × 108 yr, respectively.

Figure 6 shows the number of black holes ejected as a function of initial black hole mass for

a range of escape velocities. Growth times are much shorter than the ∼ 109 yr necessary

for stellar-mass black holes to eject each other from the cluster (Sigurdsson & Hernquist

1993; Portegies Zwart & McMillan 2000; J. M. Fregeau, S. A. Rappaport, & V. Corless, in

preparation; R. O’leary et al., in preparation). Therefore, self-depletion of stellar-mass black

holes is not a limiting factor.

Of particular concern is whether the three-body scattering events will eject the binary

from the cluster. The black hole can only merge with other black holes while it is in a

dense stellar environment. The probability of remaining in the cluster after one sequence is

P = 1 − 〈fbinej〉. As can be seen in Table 2, once the black hole has built up to ∼ 300 M⊙,

it is virtually guaranteed to remain in the cluster. When starting with 50 M⊙, we calculate

the total probability of building up to 300 M⊙ to be 0.0356. Figure 7 shows the probability

of building up to 300 M⊙ as a function of starting mass for different escape velocities for the

gravitational radiation case. Table 3 lists probabilities for selected seed masses and escape

velocities for the gravitational radiation case.

In a similar manner, we calculate the total time to build up to 1000 M⊙, assuming that

the supply of stellar-mass black holes and density remain constant, an assumption which

leads to an underestimation of the time. While the time per merger is larger for the smaller

masses, the total time is dominated at the higher masses since more mergers are needed

for the same fractional increase in mass. For Newtonian only simulations the total time is

1.1 × 109 yr, and for simulations with gravitational radiation the total time is 7.1 × 108 yr.

These are much less than the age of the host globular clusters. Figure 8 shows the time to

reach a specified mass for both the Newtonian and gravitational radiation cases.

Although there is clearly enough time to build IMBHs as Miller & Hamilton (2002a)

propose, the issues of whether there are enough stellar-mass black holes and whether the

cluster will hold onto the IMBH remain. The combination of an initial mass of 50 M⊙ and an

escape velocity of 50 km s−1 is not likely to produce an IMBH in a globular cluster through

three-body interactions with 10 M⊙ black holes, but the general process could still produce

IMBHs. Miller & Hamilton (2002a) argued that a seed mass of 50 M⊙ would be retained, but

for analytical simplicity they assumed that every encounter changed the semimajor axis by

the same fractional amount 〈∆a/a〉. Some encounters, however, can decrease the semimajor

axis by several times the average value and thus impart much larger kicks. The authors

therefore underestimated the minimum initial mass necessary to remain in the cluster. A

hierarchical merging of stellar-mass black holes could, however, still produce an IMBH if 1)
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Fig. 6.— Plot of total number of black holes ejected in building up to 1000 M⊙ as a function

of seed mass for the gravitational radiation case assuming different escape velocities. The

four curves show different assumed cluster escape velocities in km s−1. For all but the largest

seed masses, the number of black holes ejected is greater than the estimated ∼ 103 (indicated

by the dashed line) present in a young globular cluster.
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Fig. 7.— Plot of an IMBH’s probability of remaining in the cluster and building up to

300 M⊙ as a function of starting mass of the dominant black hole for the gravitational

radiation case assuming different escape velocities labeled in km s−1. Once the black hole

has built up to 300 M⊙ it is very unlikely that it will be ejected from the cluster. The lowest

mass binaries are much more readily ejected and thus are very unlikely to survive a sequence

of encounters. Miller & Hamilton (2002a) suggest that IMBHs can be built in this manner

with a starting mass ≈ 50 M⊙. We find that such small initial masses are likely to be ejected

from the cluster core for reasonable escape velocities of dense clusters.
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Table 3. IMBH Formation

Seed Mass vesc Probability to remain Number of Time

(M⊙) (km s−1) in cluster BH ejections (108 yr)

50.0 40.0 0.00264 6414 7.06

50.0 0.0356 5276

60.0 0.129 4038

70.0 0.269 3573

100.0 40.0 0.0821 6312 6.15

50.0 0.290 5188

60.0 0.525 3963

70.0 0.698 3606

200.0 40.0 0.670 5995 4.93

50.0 0.842 4922

60.0 0.932 4077

70.0 0.978 3417

300.0 40.0 1.000 5561 4.05

50.0 1.000 4564

60.0 1.000 3777

70.0 1.000 3164

Note. — This table lists values for selected seed masses and cluster escape velocities for

the gravitational radiation case. Column 3 lists the probability for the IMBH to remain in

the cluster until it reaches a mass of 300 M⊙. The fourth column lists the total number of

black holes ejected in building up to 1000 M⊙. Column 5 lists the total time to build up to

1000 M⊙. The total time is not affected by the escape velocity because the density of black

holes in the cluster core is taken to be constant.
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Fig. 8.— Plot of total time to build up to a certain mass when built by mergers with 10 M⊙

black holes for Newtonian only results and for runs with gravitational radiation between

encounters. The Newtonian only simulations are slower to build up, but both cases reach

1000 M⊙ within about 109 years. The time plotted assumes a constant density of black holes

for the duration of IMBH formation.
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the initial mass of the black hole were were greater than 50 M⊙, 2) the escape velocity of the

cluster were greater than 50 km s−1, or 3) additional dynamics were involved. We consider

each of these in turn.

If the mass of the initial black hole were, e.g., 250 M⊙ before the onset of compact object

dynamics, dynamical kicks would not be likely to eject the IMBH, and it would require fewer

mergers to reach 1000 M⊙ and thus a smaller population of stellar mass black holes. The

initial black hole could start with such a mass if it evolved from a massive Population III

star or from a runaway collision of main sequence stars (Portegies Zwart & McMillan 2002;

Gürkan et al. 2004), or it could reach such a mass by accretion of young massive stars, which

would be torn apart by tidal forces and impart little dynamical kick.

If the initial globular cluster mass is high enough (work by Meylan et al. 2001 indicate

masses of 107 M⊙ are available), then the cluster’s gravity may be strong enough to retain

the gas normally expelled by the first generation of supernovae. If that increases the escape

velocity to, e.g., vesc = 70 km s−1, the interactions result in a smaller fraction of ejected

binaries. The probability of building from 50 M⊙ to 1000 M⊙ then increases by almost an

order of magnitude.

In addition, processes with lower dynamical kicks could prevent ejection. One promis-

ing mechanism is the Kozai resonance (Kozai 1962; Miller & Hamilton 2002b). If a stable

hierarchical triple is formed, then resonant processes can pump up the inner binary’s ec-

centricity high enough so that it would quickly merge due to gravitational radiation and

without any dynamical kick to eject the IMBH from the cluster. Two-body captures (cap-

tures in which an interloper passes close enough to the isolated IMBH that it becomes

bound and merges due to gravitational radiation) would also result in mergers without dy-

namical kicks. Both Kozai-resonance-induced mergers and two-body captures are devoid of

dynamical kicks, but they would suffer a gravitational radiation recoil. A system in which a

10 M⊙ black hole merges into a 130 M⊙ non-rotating black hole would have a recoil velocity

20 km s−1 ≤ vr ≤ 200 km s−1 (Favata, Hughes, & Holz 2004). Since vr ∼ (m1/m0)
2, a

merger between a 10 M⊙ black hole and a seed black hole of mass of 250 M⊙, as discussed

above, would experience a recoil velocity . 50 km s−1. Mergers with lower mass objects that

are torn apart by tidal forces, such as white dwarfs, would receive no gravitational radiation

recoil. Finally, a range of interloper masses instead of the simplified single mass population

that we used here may also affect retention statistics since a smaller interloper would impart

smaller kicks while still contributing to hardening.

Increasing the seed mass and the escape velocity will reduce the number of field black

holes ejected but not by enough. As seen in Figure 6, using a seed mass m0 = 250 M⊙ and

an escape velocity vesc = 70 km s−1 reduces the number of black holes ejected by 40%, but
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this is still several factors more than are available. The Kozai-resonance-induced mergers

and two-body captures, however, are methods of merging without possibility of ejecting

stellar-mass black holes. In order to reach our canonical 1000 M⊙ intermediate mass while

ejecting fewer than 103 black holes, 70-80% of the mergers must come from these ejectionless

methods.

5. Implications for Gravitational Wave Detection

Our simulations make predictions interesting for gravitational wave detection. After the

last encounter of a sequence, the binary will merge due to gravitational radiation. As the

binary shrinks and circularizes, the frequency of the gravitational radiation emitted passes

through the LISA band (10−4 to 100 Hz) (Danzmann 2000) and then through the bands

of ground-based detectors such as LIGO, VIRGO, GEO-600, and TAMA (101 to 103 Hz)

(Fidecaro et al. 1997; Schilling 1998; Barish 2000; Ando et al. 2002). By the time the

binaries are detectable by ground-based instruments, they will have completely circularized,

but while in the LISA band, some will have measurable eccentricities. We calculate the

distribution of eccentricities detectable by LISA by integrating Equations 1 and 2 until the

orbital frequency reaches νorb = 10−3 Hz at which point the gravitational wave frequency is

in LISA’s most sensitive range and is above the expected white dwarf background. Figure 9

shows the distribution of eccentricities for binaries with gravitational radiation in the LISA

band. There are more low eccentricities at higher mass ratios. This is because at low mass

ratios each encounter takes a fractionally larger amount of energy away from the binary than

at high mass ratios. Thus at low mass ratios, the last encounter will tend to harden the

binary such that it is closer to merger. At high mass ratios, however, encounters take a

smaller fractional amount of energy from the binary, and, thus, the high mass ratio binaries

have more time to circularize more during their orbital decay. For the 1000:10:10 mass

ratio, a large fraction of the eccentricities are in the range 0.1 . e . 0.2 where the binary

is eccentric enough to display general relativistic effects such as pericenter precession, but

circular templates may be sufficient for initial detection of the gravitational wave. Finally,

because the first few hundred million years of a cluster’s life witness a large number of

mergers, recently formed and nearby super star clusters are promising sources of gravitational

waves from IMBH coalescence.
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Fig. 9.— Distribution of eccentricities after integrating the Peters (1964) equations until

in LISA band when the orbital frequency νorb = 10−3 Hz. The solid histograms are the

Newtonian only sequences, and the hatched histograms are sequences with gravitational

radiation. The sequences with gravitational radiation tend towards lower eccentricity since

they have already started to circularize during the sequence. There is more difference between

the two cases at higher mass ratios since gravitational radiation is stronger. Higher mass

ratio binaries have lower eccentricities than lower mass ratio binaries since the latter start

closer to merger after the final encounter. The 1000:10:10 mass ratio shows that a large

number of detectable binaries would have 0.1 . e . 0.2 such that they would likely be

detectable by LISA with circular templates yet display measurable pericenter precession.
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6. Conclusions

We present results of numerical simulations of sequences of binary-single black hole

scattering events in a dense stellar environment. We simulate three-body encounters until

the binary will merge due to gravitational radiation before the next encounter. In half of

our simulations, we include the effect of gravitational radiation between encounters.

1. Sequences of high mass ratio encounters. Our simulations cover a range of mass ratios

including those corresponding to IMBHs in stellar clusters. Because the binaries simulated

are tightly bound, the encounters steadily shrink the binary’s semimajor axis until it merges.

The eccentricity, however, jumps chaotically between high and low values over the course of

a sequence. Merger usually occurs at high eccentricity since gravitational radiation is much

stronger then.

2. Gravitational wave emission between encounters. The inclusion of gravitational

radiation between encounters affects the simulations in several ways. The extra source of

shrinking caused by gravitational wave emission has the effect of shortening the sequence

in terms of both the number of encounters and the total time, and the circularization from

gravitational waves has the effect of decreasing the final eccentricity of the binary before it

merges.

3. IMBH formation. Our simulations directly test the IMBH formation model of Miller

& Hamilton (2002a). We find that there is sufficient time to build up to 1000 M⊙ when

starting from 50 M⊙, but our simulations also show that if there are a thousand 10 M⊙

black holes in the globular cluster, the seed black hole would only be able to grow to 240 M⊙

before exhausting half of the black holes in the cluster. In addition, the probability of the

binary’s remaining in the cluster during a growth from 50 to 240 M⊙ is small. In order

to avoid ejection from the cluster with a reasonable probability, either the black hole must

have a larger mass at the onset of dynamical encounters, the cluster’s escape velocity must

be larger, or the black hole must grow by some additional mechanisms such as by Kozai-

resonance-induced mergers, two-body captures, or from smaller interlopers.

4. Gravitational wave detection. The mergers of binary black hole systems are strong

sources of detectable gravitational waves. We find that the merging binary will typically

start with very high eccentricity. By the time the binary is detectable by the Advanced

LIGO detector, it will have completely circularized, but when detectable by LISA, it may

have moderate eccentricity (0.1 . e . 0.2) such that it will display general relativistic

effects such as pericenter precession and still possibly be detectable with circular templates.

We find a high rate of mergers in the first few hundred million years of a globular cluster.

This suggests that recently formed, nearby super star clusters are promising sources for
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gravitational radiation from IMBH coalescence.

Further work in this study will be to include a distribution of interloper masses instead

of a single population of 10 M⊙ black holes. A mass distribution of black holes is a more

realistic model of a cluster core and could change the outcomes of the sequences. Exchanges

will be more important since encounters with the more prevalent smaller black holes may do

most of the hardening until a more massive black hole exchanges into the binary.
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