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ABSTRACTMi
ron-sized 
ir
umplanetary dust parti
les are subje
t to various non-gravitational perturbations,prin
ipally solar radiation pressure and ele
tromagneti
 for
es, whi
h are typi
ally a few per
ent asstrong as the planetary gravity. Individually, these perturbations 
an 
ause some orbital evolution,but when the perturbations a
t in 
on
ert the ex
ursions 
an be mu
h larger. We demonstratethis e�e
t for a single example, the 
oupling between resonan
es and drag for
es. Throughoutthis work, we emphasize the parallels between satellite-satellite gravitational resonan
es and theirele
tromagneti
 
ounterparts (Lorentz resonan
es).INTRODUCTIONA dynami
al system typi
ally has a set of natural frequen
ies at whi
h it 
an rotate or vibrate.When su
h a system is for
ed at one of these natural frequen
ies (or a multiple of it), the amplitudeof os
illations grows as a result of the 
umulative e�e
t of in-phase perturbations; the system is saidto be in resonan
e. A 
hild on a swing provides a familiar example of a resonant system. If the swing(initially at rest) is pushed at an arbitrary frequen
y or at random times, the amplitude of os
illationis likely to remain small; if, however, the swing is pushed on
e per period, the os
illation amplitudewill grow quite large. In an entirely similar manner, 
harged dust grains os
illate wildly near thelo
ations of \Lorentz resonan
es" whi
h o

ur at those positions where the ele
tromagneti
 for
esensed by an orbiting parti
le (and arising from a planet's spinning magneti
 �eld) has a 
omponentthat mat
hes a natural frequen
y of the orbit /1/. The abrupt verti
al expansion of the jovian ringinto its halo and the disappearan
e of the halo itself /1,2/ have been as
ribed to the a
tion of theseLorentz resonan
es on orbiting dust grains.Gravitational resonan
es o

ur when the orbital periods of two obje
ts are nearly a simple ratioof integers. Many features in the main saturnian ring system have been su

essfully attributedto gravitational resonan
es with exterior satellites. For example, the 2:1 resonan
e with Mimasde�nes the inner edge of the Cassini division, whi
h divides the A and B rings, while the sharpouter edge of the A ring o

urs at a 7:6 resonan
e with the moon Janus. Satellites themselves areoften found in resonan
es with one another; examples in
lude the saturnian pairs En
eladus/Dione,Titan/Hyperion and Mimas/Tethys, as well as the jovian triple Io/Europa/Ganymede (see /3/ fora qualitative physi
al des
ription of these gravitational resonan
es).In this paper we wish to illustrate how resonan
es 
ouple with drag for
es. This idea is not new;indeed it has been extensively studied in the 
ontext of satellite evolution where tidal e�e
ts from the
entral body 
reate small drags on satellite orbits. This problem has been thoroughly treated usingHamiltonian me
hani
s (see e.g., /4/). The purpose of the 
urrent paper is twofold. First, we wish todraw parallels between the extensively studied satellite (gravitational) resonan
es and their less wellknown relatives, Lorentz resonan
es. Se
ondly, we will reprodu
e some results of the Hamiltoniantheory using the Lagrangian orbital perturbation equations /5/, whi
h are written in terms of theorbital elements. The latter quantities provide a physi
ally meaningful des
ription of an orbit; fororbits 
on�ned to a parti
ular plane, the semimajor axis a, the e

entri
ity e, and the longitude



of peri
enter ~! are suÆ
ient. These three elements, respe
tively, des
ribe the instantaneous size,shape, and orientation of an ellipti
al orbit; the Lagrangian equations that des
ribe the time rateof 
hange of su
h orbital elements are well suited to visualizing the results of orbital perturbations.The advantage of our approa
h is its simpli
ity: many non-intuitive e�e
ts of resonan
es, su
h asresonant trapping and jumps, will be elu
idated.RESONANCE EQUATIONSThe problem of determining the perturbing e�e
ts of one satellite on another is fundamental to
elestial me
hani
s and has been studied for 
enturies. It is not solvable in 
losed form, but anapproximate solution 
an be developed as a power series of small quantities. The typi
al pro
edure(
f. /5/, p. 339) is as follows. First, one evaluates the disturbing fun
tion, de�ned as the negative ofthe perturbing satellite's potential, at the position of the perturbed parti
le. Next, the disturbingfun
tion is written in terms of the orbital elements; this step requires 
ompli
ated power seriesexpansions in e

entri
ities, in
linations, and the semimajor axis ratio. Finally the 
hanges to theorbital elements 
an be 
al
ulated with the potential form of Lagrange's planetary equations (/5/,p. 336) whi
h relate the time rates of 
hange of the orbital elements to derivatives of the disturbingfun
tion and to instantaneous values of the elements themselves.We pro
eed in a similar manner for Lorentz resonan
es. Be
ause the Lorentz for
e due to a magneti
�eld 
annot be derived from a potential, we must 
al
ulate the ele
tromagneti
 for
e arising froman arbitrary magneti
 �eld and express it in terms of orbital elements, an arduous task whi
hrequires power series expansions in the parti
le's e

entri
ity and in
lination. These for
es are theninserted into an alternate form of Lagrange's planetary equations (/5/, p. 327). The results ofthis 
al
ulation yield, as above, expressions for time derivatives of the orbital elements whi
h arefun
tions of the instantaneous values of these elements. We plan to submit the details of this
al
ulation for publi
ation in I
arus.In both of the above derivations, se
ular terms (i.e., those that do not depend on satellite longitudes)as well as periodi
 terms (with longitude dependen
e) appear. Se
ular terms are ubiquitous, whereasperiodi
 terms, over long times, average to zero at all but a few resonant lo
ations. In this paperwe fo
us on one of these lo
ations as an example: the 2:1 (�rst-order) e

entri
ity resonan
e. Nearthis lo
ation, the resonant argument � is given by:
� = �� 2�0 + ~!; (1)

where � and �0 are the longitudes of the perturbee and perturber, respe
tively. At the resonantlo
ation (de�ned by _� = 0 - see �gure 1), the perturbed body 
ompletes approximately two orbitsfor every one 
y
le of the perturbing for
e (the period of an exterior satellite in the gravitational
ase or the planetary spin period for Lorentz resonan
es). We ignore all periodi
 terms with di�erentfrequen
y dependen
ies (sin
e they average to zero), and the se
ular perturbations (whi
h are small
ompared to the strong 2:1 resonant terms).The orbital elements most strongly a�e
ted by su
h a resonan
e are the abovementioned a, e, and~!. Instead of the semimajor axis a, we use the unperturbed orbital mean motion n � _�, whi
h isrelated to the semimajor axis via n2a3 = GMp, where G is the gravitational 
onstant and Mp is theplanetary mass (/5/, p. 131). Writing out the Lagrange perturbation equations to lowest order ine

entri
ity and in
lination, we �nd that the e�e
ts of both the gravitational and Lorentz versionsof the 2:1 �rst-order e

entri
ity resonan
e 
an be represented by a set of equations of the followingform:
dndt = �3en2� sin� (2a)



dedt = �nA1� sin� (2b)
d~!dt = �nA2�e 
os�: (2
)

Here t is time, � (always positive) measures the appropriate resonan
e strength and the Ai are 
on-stants. The quantity � is a 
ompli
ated fun
tion of the semimajor axis ratio whi
h must be expandedas a power series; a
ross the small distan
e over whi
h the resonan
e exerts its in
uen
e, however,� 
an be treated as a 
onstant. In the gravitational 
ase, � is �rst order in the satellite/planet massratio and A1 = A2 = 1. In the Lorentz 
ase, � depends on the parti
le's 
harge-to-mass ratio, dis-tan
e from the planet, and the magneti
 �eld strength. For �rst-order ele
tromagneti
 resonan
es,A1 = A2 = n=n0 � 1, so the 2:1 resonan
e, like gravity, has A1 = A2 � 1. The dominant 
ontributionto this resonan
e 
omes from the g32 
omponent of the magneti
 �eld (a non-symmetri
 o
tupoleterm - see /2/ whi
h gives values for the giant planets).Although we have spe
ialized equations (2a-
) to the 2:1 e

entri
ity resonan
e, the form of theequations for other �rst-order e

entri
ity resonan
es (2:3, 3:4, 1:2 et
.) is entirely similar - onlythe parameters � and the Ai need to be 
hanged. First-order in
lination resonan
es (whi
h exist forLorentz for
es but not for satellite gravity) and higher-order resonan
es are also not too di�erent.A

ordingly, the general behavior dis
ussed below for the 2:1 e

entri
ity resonan
e a
tually appliesto a wide variety of other types of resonan
es as well; that is to say, the trapping and jumps dis
ussedbelow are general phenomena.

Fig. 1. S
hemati
 diagram showing the 
entral planet, the orbiting dust grain, and the 2:1 resonan
e.The outermost line represents the lo
ation of the perturbing satellite (for a gravitational resonan
e)or of syn
hronous orbit (for a Lorentz resonan
e). A grain drifting through a �rst-order resonan
etoward this lo
ation may be
ome trapped while one drifting away from it will experien
e a jump.



DRAG FORCESSeveral drag for
es operate in the magnetospheres of the giant planets. Most large satellites aredriven slowly outward by tidal for
es from the primary while small parti
les are a�e
ted by a host ofpro
esses /6/ in
luding plasma, atmospheri
, and Poynting-Robertson drags whi
h, for dust grains,operate mu
h more rapidly than tidal evolution. Be
ause drag for
es are typi
ally mu
h smaller thanmany other orbital perturbations, their e�e
ts on most orbital elements 
an often be ignored. Unlikemost other perturbations, however, drag for
es systemati
ally a�e
t an orbit's energy and thereforeits size and mean motion. Furthermore, be
ause of the limited radial extent of the resonan
e zone,we 
an approximate the fun
tional form of the drag rate in this region by a simple 
onstant _ndrag.The in
lusion of drag for
es requires that we repla
e equation (2a) with
dndt = �3en2� sin�+ _ndrag: (3)

RESONANCE TRAPPINGWhen _ndrag < 0, orbits evolve outward: near the 2:1 resonan
e, this evolution is toward the perturb-ing satellite (in the 
ase of gravity) or toward syn
hronous orbit (in the Lorentz 
ase). For this typeof evolution, resonan
e trapping, in whi
h the evolution in mean motion 
eases, is possible (�gure1). Clearly trapping 
an o

ur only if the �rst term in equation (3) is equal and opposite to these
ond for some �. Solving equation (3) for sin� in this 
ase and substituting into equation (2b),we �nd
dedt ����trapped = � _ndragA13ne ; (4)

whi
h is easily integrated yielding:
e = �e20 � 2 _ndragtA13n �1=2: (5)

Linearizing equations (2a-
) around this solution, we �nd that it is stable against small perturba-tions. Note the remarkable fa
t that the rate of growth of the e

entri
ity given by equation (5) isindependent of the resonan
e strength �. This result 
an also be obtained from equation (7) below,whi
h expresses the 
onservation of energy in a rotating referen
e frame (see /2/). Thus the \squareroot growth" in time (equation 5) is a property shared by gravitational and Lorentz resonan
es of alltypes and orders. An example of resonant trapping and the asso
iated e

entri
ity growth is shownin �gure 2; for the parameters given in the �gure 
aption, equation (5) redu
es to e � 0:00145N1=2(N is the number of perturber orbits) in rough agreement with the �gure. This behavior holds untile � 0:5 at whi
h time higher-order e�e
ts be
ome important.JUMPS AT RESONANCEWhen _ndrag > 0, inner orbits evolve away from the perturbing satellite (or from syn
hronous orbit).In this 
ase trapping for low e

entri
ities is not possible as 
an be seen from equation (5) whi
h im-plies that e

entri
ity be
omes imaginary! Instead we shall �nd a di�erent behavior at the resonantlo
ation.Be
ause drag for
es are so small, the �rst term in equation (3) is usually far greater than the se
ond;this fa
t allows us to obtain an adiabati
 invariant. Ignoring the drag term for the moment, we divideequation (2a) by equation (2b) and �nd



dnde = 3enA1 ; (6)
whi
h 
an be integrated to yield

ln� nn�� = 3e22A2 (7)
where n� is an integration 
onstant. Re
alling that equation (2a-
) are a

urate to only �rst orderin e

entri
ity, we solve this equation to lowest order in e and �nd that

n� = n�1� 3e22A1 � (8)
is a 
onserved 
onstant of the motion (see /7/). Sin
e the resonan
e zone is traversed qui
kly,equation (8) remains approximately 
onstant during the passage. The half-width of the libratingzone, dn=2, 
an be 
rudely estimated by setting the derivative of equation (1) equal to zero, takingn = 2n0 + dn=2 and 
os� = 1, and solving for dn. We �nd dn � 2n�A2=e. Inserting this into equation(6), and negle
ting the di�eren
e between de and e, we �nd:

de =�2A1A2�3 �1=3: (9)
This 
ase is displayed in �gure 3; using the parameters from the �gure 
aption, we 
al
ulate thejump amplitudes from equations (9) and (6) and obtain de � 0:04 and dn � 0:012 - values smallerthan, but in rough agreement with, the �gure.DISCUSSIONLorentz and gravitational resonan
es di�er primarily in the magnitudes of the resonant strength�. For mi
ron-sized dust grains around the jovian planets, � is orders of magnitude larger in theLorentz 
ase; thus Lorentz resonan
es are more e�e
tive at trapping dust parti
les and are able toindu
e larger orbital jumps than resonan
es due to a satellite's gravity. Slight additional di�eren
esarise when Ai 6= 1; most �rst-order Lorentz resonan
es have Ai < 1 whi
h redu
es the trapped growthrate (equation 5) and jump amplitude (equation 9). Despite this small di�eren
e between the twotypes of resonan
es, the equations that govern them are remarkably similar and, 
onsequently, it isnot surprising that orbital behavior at Lorentz and gravitational resonan
es is so alike.REFERENCES1. J.A. Burns, L.E. S
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Fig. 2. RESONANCE TRAPPING: A plot of the orbital evolution determined by equations (2b,
and 3) for physi
ally realisti
 parameters � = 10�4;A1 = A2 = 1; _ndrag = 10�6n02. Plotted againsttime are the mean motion ratio n=n0, the e

entri
ity e, and the resonant angle �. Initial 
onditionsare n = 2:03n0; e = 0, and � = 0. Noti
e that the mean motion is de
reasing as the orbit evolvesaway from the planet either toward the perturbing satellite (gravitational resonan
e) or towardsyn
hronous orbit (Lorentz resonan
e). The e�e
t of the 2:1 resonan
e is to 
hange the se
ularredu
tion of the orbit's mean motion into a se
ular in
rease in its e

entri
ity. The resonant angle� librates with small amplitude around a slightly negative value whi
h 
an be found by settingequation (3) to zero and solving for �.



.

Fig. 3. JUMPS AT RESONANCE: A plot of the orbital evolution determined by equations(2b,
 and 3) with the parameters � = 10�4;A1 = A2 = 1; _ndrag = �10�6n02. Initial 
onditionsare n = 1:97n0; e = 0, and � = 0. Noti
e that the jumps in semimajor axis and e

entri
ity o

ursimultaneously near n � 2n0 as required by equations (6) and (9). The resonant argument � libratesaround a value near 180Æ until the jumps o

ur after whi
h it 
ir
ulates.


