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ABSTRACT

We argue that the gas giants Jupiter and Saturn were both formed with their

rotation axes nearly perpendicular to their orbital planes, and that the large cur-

rent tilt of the ringed planet was acquired in a post formation event. We identify

the responsible mechanism as trapping into a secular spin-orbit resonance which

couples the angular momentum of Saturn’s rotation to that of Neptune’s orbit.

Strong support for this model comes from i) a near match between the precession

frequencies of Saturn’s pole and the orbital pole of Neptune and ii) the current

directions that these poles point in space. We show, with direct numerical inte-

grations, that trapping into the spin-orbit resonance and the associated growth

in Saturn’s obliquity is not disrupted by other planetary perturbations.

Subject headings: planets and satellites: individual (Saturn, Neptune) — Solar

System: formation — Solar System: general

1. INTRODUCTION

The formation of the Solar System is thought to have begun with a cold interstellar gas

cloud that collapsed under its own self-gravity. Angular momentum was preserved during

the process so that the young Sun was initially surrounded by the Solar Nebula, a spinning

disk of gas and dust. From this disk, planets formed in a sequence of stages whose details

are still not fully understood. One stage that both Jupiter and Saturn, large planets with

nearly solar compositions, must have undergone, however, is the direct accretion of gas

from rotating subnebulae. In the simplest models, the vast majority of the gaseous material

making up Jupiter and Saturn must have flowed through these accretion disks, which

should have been coplanar with the Solar Nebula. Conservation of angular momentum in

this formation scenario predicts spin axes for these planets that are nearly perpendicular to
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their orbital planes, and indeed, Jupiter’s tilt is only 3.1◦. Saturn, however, has an obliquity

of 26.7◦, in apparent contradiction to this likely formation scenario.

The cleanest way out of this paradox is to invoke an additional process to tip Saturn

after its accretion was essentially complete. Two main possibilities have been suggested

previously: giant impacts (Lissauer and Safronov 1991, Parisi and Brunini 2002) and an

external torque on the entire Solar System (Tremaine 1991). The requirements for each

of these hypotheses are rather strict, and at present there seems to be no clear way to

test either one. Here, and in the companion paper (Ward and Hamilton 2004, henceforth

paper I), we suggest an alternative evolutionary process that tilted Saturn subsequent to

its formation: a secular spin-orbit resonance with the planet Neptune. Our preceding paper

treats this scenario analytically using the Cassini State formalism originally developed

by Colombo (1966) and explored by Peale (1969), Ward (1975) and others. The critical

simplifying assumption underlying our analytical study is that Saturn’s orbit can be treated

as of constant inclination, precessing at a uniform rate due to perturbations from Neptune.

In reality, Saturn’s inclination varies, its precession is non-uniform, and the instantaneous

perturbations from Jupiter are larger than those from Neptune. In order to determine if our

assumption is valid for the real Solar System, we have developed a numerical model which

includes the effects of all of the giant planets. And to facilitate a comparison between the

output of our numerical model, our analytical results, and the real Solar System, we have

developed a useful analogy with orbital resonances.

2. CASSINI STATES

Torques imparted by the Sun on the oblate figure of Saturn cause slow uniform precession

of the planet’s spin axis around its orbit normal. In the absence of planetary perturbations,

all values of Saturn’s obliquity would be stable solutions, each with its own precession

rate. In reality, however, the gravitational perturbation of the other planets force Saturn’s
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orbit to precess about the total angular momentum vector of the Solar System. Orbital

precession modulates the solar torque in time, and rules out uniform spin axis precession at

most values of the obliquity. But if the planet’s orbital precession is uniform, as would be

the case with a single perturbing planet, there are several solutions which lead to uniform

polar precession at constant obliquity. These are Cassini States, formal obliquity equilibria

in which the precession rate of the planet’s spin axis exactly matches that of its orbital

plane (Columbo 1966, see also Fig. 1 paper I).

In the real Solar System, however, Saturn’s orbital precession rate is not uniform, but

is rather composed of multiple frequencies induced primarily by the other giant planets.

Jupiter’s perturbations dominate and, accordingly, it is not immediately obvious that the

evolution of Saturn’s spin axis due to Neptune can be treated with the Cassini State

formalism, especially since Neptune’s effects are an order of magnitude weaker than

Jupiter’s.

With orbital mean motion and secular resonances, however, it is often an excellent

approximation to ignore all rapidly-varying terms in the perturbation potential while

retaining only the slowly varying near-resonant ones (see e.g. Murray and Dermott 1999, pg.

332). The rational for this approximation is that the rapidly-varying terms tend to average

out over time, while the slowly-varying terms can build up large amplitude changes to an

orbit. We proceed in a similar manner here, neglecting all terms that affect Saturn’s orbit

but the one due to the g18 fundamental frequency of the Solar System which is dominated by

Neptune’s nodal precession. This term has a period of Tg = 1.87 million years (Applegate et

al. 1986, Bretagnon 1974) a close match to the theoretical precession period of Saturn’s pole

at Tα ≈ 1.8 million years (Tremaine 1991, French et al. 1993). While the uncertainty in Tg

is only a few tenths of a percent (Laskar 1988), Tα is known only to within several percent,

with the greatest uncertainty coming from Saturn’s moment of inertia (paper I). French

et al. (1993) combined Voyager measurements and the July 1989 occultation of the star

28Sag to actually measure Saturn’s slow polar precession rate. Their results are consistent
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with the theoretical expectation with estimated errors of approximately 35% dominated by

uncertainties in the trajectories of the Voyager spacecraft. The poorly constrained value of

Tα allows the possibility Tg = Tα required by the Cassini State.

How close is Saturn’s pole to a Cassini State if all orbital perturbations but those due to

Neptune’s g18 term are ignored? In addition to identical precession periods, in a Cassini

State the vectors ŝ (Saturn’s north pole), n̂ (Saturn’s orbit normal), and k̂ (the unit vector

along the total angular momentum of the Solar System about which both ŝ and n̂ precess)

must all be coplanar (Colombo 1966). Saturn’s pole direction ŝ is given by RA=40.5954 and

DEC= 83.538 in the Earth equatorial coordinate system (Epoch J2000) and, in the same

system, the normal to the invariable plane of the Solar System k̂ is given by RA=273.8657

and DEC= 66.9723 (Yoder 1995). In addition, Neptune’s perturbation on Saturn’s orbital

plane has an amplitude of I = 0.0644 degrees and a phase of Ω = 23.52 degrees relative

to the invariable plane according to fits to 100 million year numerical simulations of the

outer Solar System by Applegate et al. (1986). These values agree to better than a percent

with the analytic theories of Bretagnon (1974), Laskar (1988), and Bretagnon and Francou

(1992).

We now rotate ŝ into invariable coordinates so that all three poles are defined in the same

system. The resulting configuration of poles is close to Cassini State 2 depicted in Fig. 1

of paper I. In Cassini State 2, n̂, k̂, and ŝ all lie in a single plane with k̂ between n̂ and ŝ.

We project k̂ and ŝ into the plane perpendicular to n̂ and determine the angle between the

projections as follows:

sin(Ψsaturn) =
(k̂ × n̂) × (ŝ × n̂)

|k̂ × n̂||ŝ × n̂|
(1)

With the pole directions given above, we find ΨSaturn = −31◦. Thus Saturn’s pole, while not

precisely in Cassini State 2, is close enough that it could be undergoing stable librations.
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3. NUMERICAL MODEL

In this section, we describe the development of a self-consistent numerical model of the

dynamics of Saturn’s spin axis that includes two primary components: a detailed synthetic

model for the varying orbits of the outer planets due to Bretagnon (see e.g. Bretagnon

and Francou 1992) and equations accurate to fourth order in the orbital elements for the

evolution of the Saturnian spin axis from Ward (1979).

The outer planet model of Bretagnon can be understood as large Fourier series fits to the

time variations of each of the six orbital elements of each of the four giant planets. The

actual variations of the orbital elements were obtained from a 1 million year full numerical

integration of the motions of the giant planets done in ecliptic coordinates. The allowed

frequencies of the Fourier series were chosen to be all possible linear combinations of the 12

fundamental frequencies of the four giant planets. Four of these frequencies are simply the

planetary mean motions which dominate changes in the mean longitudes. The other eight

are longer period secular frequencies that primarily affect orbital nodes and pericenters. The

full outer planet model includes 1300 frequencies that determine the motions of Saturn’s

pericenter and 127 that affect its node. Of these 143 (pericenter) and 64 (node) are fully

secular terms that do not involve planetary orbital frequencies. Inclusion of all terms in

Bretagnon’s full model ensures an accuracy of a few parts in 105 for the time variations of

the planetary semimajor axes, eccentricities, and inclinations over a million years.

To obtain the ecliptic orbital elements of Saturn at any given time, we simply determine

the instantaneous phases of all of the relevant Fourier terms in Bretagnon’s theory, compute

the instantaneous contributions of these terms to each of Saturn’s orbital elements, and

sum over all of the contributions. These orbital elements are then used to determine the

right hand side of the vector equation of motion that govern the evolution of the unit

spin vector as given by Ward (1979), Eq. 6. This equation is accurate to fourth order in

the planetary eccentricity and inclination, which is sufficient since these quantities remain
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small throughout Saturn’s orbital evolution. The dominant contribution to changes in

Saturn’s spin vector are first order in the planet’s inclination. This follows from the fact

that Saturn’s inclination determines the normal to its orbit from which the obliquity is

measured. By contrast, changes in Saturn’s eccentricity affect the spin axis evolution more

weakly by altering the average Saturn-Sun distance, which in turn slightly affects the spin

axis precession rate.

The equation of motion for Saturn’s spin vector depends on its instantaneous value, which

we transform into ecliptic coordinates. We then integrate the equation using one of two

fourth order adaptive stepsize integration methods: Bulirisch-Stoer or Runge-Kutta. We

have run these integration schemes against one another as a basic test of the validity of

our code. The output from our integration scheme is the spin axis pointing in ecliptic

coordinates as a function of time. Finally, we convert the spin axis pointing into a

coordinate system with Saturn’s instantaneous orbit as the reference plane.

The speed of the numerical integrations is strongly affected by the large number of terms

needed to calculate the instantaneous orbital elements and especially by the frequencies of

the strongest rapidly-varying terms. To maintain a given accuracy, the integration stepsize

is automatically chosen to resolve these terms. A significant speedup in integration time

is realized by working with only secular terms with characteristic timescales of tens of

thousands of years as opposed to terms involving mean motions which vary on the orbital

timescales of decades. Our neglect of these rapidly-varying terms is justified by the long

timescales Tα ≈ 1.8 million years that we are primarily interested in. Furthermore, we find

that we still obtain inclinations accurate to a few parts in 103 and eccentricities accurate to

a few percent by summing over only the secular terms. In fact, even limiting the frequencies

to the ten dominant ones that comprise the secular theory of Brouwer and van Woerkom

(1950) does not degrade the solution significantly.

Brouwer and van Woerkom’s secular model is reprinted on page 303 of Murray and Dermott
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(1999). There are three periodic terms that affect planetary nodes: g16 arising primarily

from the mutual Jupiter-Saturn perturbation, g17 due mainly to Uranus, and g18 dominated

by Neptune. An additional term with zero frequency accounts for the tilt of the ecliptic

relative to the invariable plane of the Solar System. The Brouwer and van Woerkom model

also includes six frequencies that affect orbital pericenters, a fundamental mode dominated

by each of the giant planets and two long-period terms whose amplitudes are enhanced by

the near 5:2 resonances between Jupiter and Saturn.

In each of the simulations presented in section 5, we use just the ten Brouwer and van

Woerkom frequencies to compute Saturn’s orbital elements, although we have also run each

of them with all of the 207 secular frequencies with no differences that are discernible on a

plot. In most tests, final obliquities and resonant angles differ by less than one part in 104.

4. RESONANCES

In this section we derive some basic analytic results that will provide a straightforward way

of interpreting our numerical simulations.

4.1. Equations of Motion

The vector equation of motion that governs the evolution of the spin axis direction in a

reference frame that precesses uniformly about k̂ is given by Colombo (1966, Eq. 12) and

also by paper I. We resolve this equation into spherical coordinates in a reference frame

with ẑ along n̂ as in section 2. We define the resonance angle by:

Ψ = φα − φg, (2)
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where φα and φg are angles measured positively from a reference direction to the projections

of ŝ and k̂ into the xy plane, respectively. We define cos I = n̂ · k̂ and cos θ = ŝ · n̂ where

I is the strength of Neptune’s perturbation on Saturn’s orbital plane and θ is Saturn’s

obliquity, the instantaneous tilt of Saturn’s pole vector from its orbital pole. Making the

approximation θ >> I, which is satisfied for Cassini States 2 and 4 (but not State 1),

we find the following simple expressions for the time evolution of the resonant angle and

obliquity:

dΨ

dt
= −α cos θ − g cos I (3)

and

dθ

dt
= g sin I sin Ψ (4)

(compare with the more general expressions in Ward 1974). Here t is time, α > 0 is the

precessional constant which depends on Saturn’s spin rate and oblate shape, and the Sun’s

mass and distance (see Eq. 1 of paper I), and g = g18 < 0 is the nodal precession rate of

Saturn’s orbit induced by Neptune. To this level of approximation cos I ≈ 1, but we have

retained the cos I term to preserve the symmetric appearance of the two equations. In the

limit g = 0, Neptune’s perturbations vanish, Saturn’s orbit plane becomes fixed in space,

and we recover simple precession of the pole vector at a constant obliquity with period

Tα = 2π/α cos θ. Notice that since α > 0, Saturn’s pole precession rate is negative1.

1There is an interesting parallel between the negative precession rates of planetary pole

vectors (dΨ/dt = −α cos θ) and satellite orbital planes (dΩ/dt = −X cos i), where Ω is the

ascending node, X is a strength constant, and i is the orbital inclination. This parallel arises

because both the planet and the satellite orbit may be treated as oblate objects subject to

external torques.
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A familiar application of Eqs. 3 and 4 is to the tilt of the Earth, with Tg = 2π/|g| equal to

the 18.6 year regression of the lunar orbit due to solar perturbations, and cos I representing

the strength of this perturbation to the motion of the Earth’s spin axis. The lunar torques

affect the Earth’s obliquity through Eq. 4 and induce a rapid 18.6 year nodding of the

Earth’s spin axis (nutation) superimposed on its more stately 25,800 year precession.

For Neptune’s perturbations on Saturn, the two terms on the right hand side of Eq. 3 nearly

cancel (−g ≈ α cos θ) – this can be thought of as a commensurability (or near resonance)

between the precessional and nutational periods. In this case Eq. 3 shows that Ψ will vary

slowly in time which in turn allows large obliquities to build up via Eq. 4. This pair of

equations is strongly reminiscent of the equations governing a first order mean motion

resonance between two planets (e.g. Hamilton 1994, Eq. 29) with the obliquity θ taking

the place of either the orbital eccentricity or inclination. As with orbital mean motion

resonances, here a single forcing frequency (−g) dominates the motion of Saturn’s pole

because of its near match to the system’s natural frequency (α cos θ).

Taking the time derivative of Eq. 3 and using Eq. 4 to eliminate dθ/dt, we find

d2Ψ

dt2
= (αg sin θ sin I) sin Ψ − (α̇ cos θ + ġ cos I) (5)

which is qualitatively similar to a pendulum equation for Ψ. Here we have explicitly left

in α̇ and ġ, the slow tuning of the frequencies α and g that took place during the early

evolution of the Solar System. Although α cos θ ≈ −g today, this was not always the

case. The precession constant α, which parameterizes the strength of the solar torque on

Saturn’s oblate figure and its regular satellites, decreased in the early Solar System (α̇ < 0)

for several reasons: i) the Kelvin-Helmholtz contraction of Saturn as it cooled, ii) the

dissipation of the disk out of which Saturn’s satellites condensed, and iii) the small outward

migration of Saturn that accompanied the clearing of the planetesimal disk. Similarly, the

magnitude of Neptune’s frequency |g| has also diminished in time as many Earth-masses of
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material in the outer Solar System were expelled from the Solar System and the planetary

orbits diverged as a consequence (Hahn and Malhotra 1999). More mass in the early Solar

System, as well as smaller distances between planets results in shorter orbital precession

timescales than prevail today. These slow evolutionary processes, acting in combination,

brought the two precessional periods (Tα and Tg) together from initially disparate values.

Equation 5 supports orbits in which Ψ circulates through a full 2π (these have initial

conditions with large positive or negative dΨ/dt). These regions are divided from librating

orbits in which Ψ oscillates through a more limited range of values, by a separatrix orbit

with an infinite orbital period that traverses an unstable equilibrium point. Crossing the

separatrix – resonance passage – can occur when parameters of the pendulum equation

are changed, either slowly or abruptly; this can lead to trapping of Ψ into libration or a

jump across the libration region with accompanying strong kicks to the obliquity. Similar

behavior is displayed by orbital mean motion resonances which also obey pendulum-like

equations.

Equation 5 admits two equilibrium points, a stable one located at Ψeq and an unstable one

at Ψeq + π where, assuming small α̇ and ġ,

Ψeq =
α̇ cos θ + ġ cos I

αg sin θ sin I
. (6)

When g and α are constant, Ψeq = 0, and the stable and unstable equilibrium points are

identified with Cassini States 2 and 4, respectively. Treating θ, α̇ and ġ as constants and

assuming small amplitude oscillations (sin Ψ ≈ Ψ) the solution to Eq. 5 is

Ψ = A cos(wlibt + θ) + Ψeq (7)

where A is the libration amplitude, θ is a phase, and wlib is the libration frequency given by
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wlib =
√

−αg sin θ sin I (8)

(recall that g < 0). For small angle oscillations, the libration frequency is nearly constant

and its value depends on properties of both the precessing planet and the perturbing term.

In particular, just as for a simple pendulum, the libration frequency scales with the square

root of the amplitude of the applied force, here sin I. Furthermore, the libration frequency

depends on
√

θ for small θ in just the same way that the libration amplitude for firs- order

mean motion resonances depends on
√

e. For current Saturn parameters, the period of

these librations is 2π/wlib = 83 million years, which is much longer than the pole precession

period.

5. NUMERICAL RESULTS

Processes active in the early Solar System caused Saturn’s polar precession rate to slow with

time so that α̇ < 0. If the frequency changed enough so that α ≈ −g at some point, then

a resonance passage should have occurred as discussed above. We simulate this scenario

in Fig. 1 by starting Saturn’s pole precessing faster than Neptune’s orbit (|α/g| > 1) and

allowing the pole precession rate to slow so that the ratio of precessional periods approaches

unity. As |α/g| approaches one, the obliquity oscillations grow and, in a single libration

period, the resonance imparts a 10◦ kick to the obliquity. Although this sharp change in the

obliquity affects the polar precession period somewhat, the period ratio Tg/Tα continues to

decrease after the obliquity kick.

A tilt of ten degrees is significantly smaller than Saturn’s current obliquity and also less

than the maximum possible obliquity kick of 14.5◦ from paper I’s Eq. 16. Notice that the

kick occurs when Ψ ≈ −110◦ (Fig. 1, right panel), a value for which Eq. 4 predicts nearly

the maximum effect on the obliquity. The kick is smaller than the maximum because |α/g|
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changes significantly over the libration period of the resonance, which violates the adiabatic

condition and leads to smaller kick amplitudes as described by paper I’s Eq. 27.

The apparent thickness of the θ vs. time plot is due to rapid variations about an equilibrium

value with an amplitude of around 1◦. The perturbations of Jupiter on Saturn’s orbital

plane with 2π/g16 ≈ 50, 000 years and amplitude 0.9◦ account for almost all of the observed

oscillation. These rapid changes are not retained in our simple analytic model. They affect

the numerical runs by smearing θ by about 2 degrees throughout its evolution (left panel of

Fig. 1); this term also accounts for much of the thickness of the circular ring in the right

panel of Fig. 1. Despite their presence, jovian perturbations do not strongly affect the kick

to the obliquity imparted by the secular resonance with Neptune.

An additional feature of our analytic approximations is apparent in Fig. 1 - notice that the

period of the obliquity oscillation lengthens as the resonance location is approached and

then shortens afterwards in agreement with Eqs. 3. The expression predicts that circulation

of Ψ in Fig. 1b is in the clockwise direction before the resonance obliquity is kicked (large

|α/g|) and counterclockwise afterwards (small |α/g|). This is just like a planar pendulum

circulating in one direction which is slowed continuously until its motion reverses.

We have run a number of simulations, changing |α/g| at different rates and adjusting initial

conditions so that the separatrix is met at different values of the resonance angle Ψ. In all

cases, resonance kicks to the obliquity are limited to less than about 15 degrees. Thus an

obliquity kick from Neptune’s orbit is insufficient to explain the high obliquity of Saturn if

the planet started close to an untilted state. Furthermore, as can be seen in Fig. 1, after

resonance passage the period ratio does not tend toward any particular value, nor is there

a preferred value for the resonant angle. Even if the obliquity could reach 26.7◦, the near

commensurability of the precession frequencies and the proximity of the observed resonant

angle ΨSaturn = −31.0◦ to the stable equilibrium point Ψeq ≈ 0 would have to be attributed

to chance. For all of these reasons a simple kick to the obliquity is unable to explain the
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current state of Saturn’s pole.

We turn now to investigate resonance trapping which was possible during the clearing of

the planetesimals from the outer Solar System. Accordingly we take ġ > 0 so that the

ratio |α/g| increases with time. In Fig. 2 we present a simulation in which we have tuned

Neptune’s precession frequency so that it ends with its current value |α/g| ≈ cos(26.7◦).

The obliquity starts small as in Fig. 1, with the small amplitude oscillations due to Jupiter’s

g16 frequency. As the resonance with Neptune’s orbital precession frequency is approached,

Eq. 3 and 4 dominate the dynamics and resonance trapping occurs. The growth of the

obliquity scales nearly as the square root of time for the portions of the evolution in which

|α/g| is varying linearly. The growth of obliquity after capture is also apparent in the

right panel; the banana-shaped libration region expands outward and shifts slightly in the

counterclockwise direction. The shift is due to the fact that the Ψeq → 0 as θ increases and

ġ → 0 (Eq. 6). Small oscillations in the obliquity occur at the libration period. Near the

final obliquity, θ = 26.7◦, we measure 12.5 oscillation per billion years for a libration period

of 80 million years. This is in good agreement with Eq. 8 which predicts an 83 million year

period.

The small offset of the stable equilibrium point Ψeq from zero when dissipation is present

is the direct cause of the growth of the obliquity during resonance trapping. If Ψeq < 0, as

Eq. 6 and the right panel of Fig. 1 show, then over one libration period, the resonant angle

spends more time at negative values than at positive ones allowing the obliquity to increase

irreversibly via Eq. 4. The characteristic growth timescale can be obtained by averaging

over the libration period and inserting Eq. 6 into Eq. 4. If we assume low obliquity and

slow linear changes of α and g with time, we find that, in resonance, the obliquity varies

with time in the following manner:

θ =

√

θ2

0
+

2(α̇ + ġ)t

α
(9)
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where θ0 is the obliquity at t = 0. This expression is identical in form to Hamilton (1994)’s

Eq. 33 which was derived under similar approximations for orbital mean motion resonances.

Equation 9 predicts the characteristic square root in time growth of the obliquity for

α̇ + ġ > 0. If the current 26.7◦ obliquity of Saturn arose from resonance trapping, then the

required frequency shift is ∆g = (1− cos 26.7◦)g ≈ ġt ≈ 0.11g, a change in the fundamental

frequency of just over 10%.

Although this simulation nicely reproduces Saturn’s current tilt, it is not consistent with

the planet’s current pole vector. The libration of the resonant angle displayed in the right

panel of Fig. 2 is too small to encompass the current pole vector of Saturn; a larger libration

amplitude is needed. We have run many numerical experiments to see how the magnitude

of the libration amplitude depends on various initial conditions. For a slow transition

into resonance, an adiabatic invariant determines the final libration amplitude from the

obliquity immediately prior to resonance capture (paper I). Crudely the area inside the

circular region before trapping is preserved in the area swept out by the banana-shaped

libration after trapping. Thus in the adiabatic limit, small initial obliquities necessitate

small resonance libration amplitudes. There are two ways out of this dilemma. The first

is simply to have the relevant frequency, here g change rapidly enough that it changes its

value significantly in one libration period, the characteristic timescale in resonance. A rapid

change destroys the adiabatic invariant.

Figure 3 is an example of resonance trapping, but this time with a much faster change in

|α/g|. In this case, most of the growth of the obliquity occurs over a single libration period.

Despite starting with a low obliquity of only a few degrees as in Fig. 1, the final libration

amplitude is quite large. The libration amplitude is directly related to the obliquity

oscillations as can be shown by considering the integral of the motion obtained by solving

Eqs. 3 and 4 for dΨ/dθ and integrating. The result is:
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K = g sin I cos Ψ − gθ cos I − α sin θ (10)

where we have assumed that α and g are constants. This expression is valid instantaneously

for small adiabatic changes to g and α. It can be used to relate the maximum excursions in

Ψ and θ over one libration period. For small libration amplitudes, we find

∆Ψ =

√

tan θ

sin I
∆θ, (11)

which, for the current values of θ and I, yields ∆Ψ ≈ 21∆θ. This predicts that the 4◦

obliquity oscillations in the left panel of Fig. 2 should lead to 84◦ oscillations in Ψ in the

right panel - not a bad match given the small libration amplitude approximation make in

deriving Eq. 11. The fact that Saturn’s pole does not lie on the final path of libration is not

a concern - a slight change to the final value of |α/g| (within actual uncertainties), moves

the banana-shaped libration region either inward or outward so that it crosses the current

pole position of Saturn. Thus this simulation is one possible past history of Saturn’s pole -

a fast passage through the resonance. A fast resonances passage can simultaneously account

for the current tilt of Saturn and the ΨSaturn = −31.0 offset of Saturn’s pole vector from

Cassini State 2.

Our numerical experiments show that it requires a fast resonance encounter as well as a

fortuitous phase Ψ at the time of the encounter to induce a large libration amplitude. The

example in Fig. 3 is near the limit of the fastest possible resonance capture. That such

a limit must occur can be seen from Eq. 5 if the second term on the right dominates the

first term for all Ψ. In this case, the equilibrium points given by Eq. 6 no longer exist. For

changes to Neptune’s orbital precession rate, trapping is no longer possible when ġ ≈ w2

lib.

We find that Saturn’s pole can be trapped with a libration amplitude larger than ≈ 30◦ for

all rates from about a factor of two slower than in Fig. 3 to just a slightly faster.
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An alternative path to large libration amplitudes involves slower scanning rate of the

frequencies and a larger initial obliquity. One way that Saturn might have had a larger

obliquity before becoming trapped in the g18 resonance is if it were kicked by other

resonances or by the g18 earlier in its history. In Fig. 4, we impose a model which includes

both Saturn’s contraction on a rapid timescale, and clearing of the planetesimal swarm on

a slower timescale. The frequencies are brought together twice, first in the direction that

leads to an obliquity kick as in Fig. 1 and then in the direction that leads to resonances

capture as in Fig. 2. The planet attains a large obliquity which it maintains until meeting

the resonance for the second time. The adiabatic invariant ensures that this initial obliquity

translates into a large libration amplitude (note that the areas inside the circle and inside

the banana shape are similar).

Several additional features of Fig. 4 warrant discussion. First note that the libration period

near t = 109 years when θ ≈ 12◦ is clearly longer than the libration period at θ ≈ 27◦. More

careful measurements of the libration period shows that it shortens by a factor of about

1.5, in agreement with the θ dependence of the libration amplitude predicted by Eq. 8. The

distribution of points plotted between the circle and banana shapes is offset slightly in the

clockwise direction as required by Eq. 6 during obliquity growth. Finally, the observed

∆θ ≈ 3.5◦ and ∆Ψ ≈ 60◦ are reasonably consistent with the predictions of Eq. 11.

6. CONSTRAINTS ON THE EARLY EVOLUTION OF THE SOLAR

SYSTEM

We have investigated the conditions under which trapping into the g18 secular spin-orbit

resonance is possible and shown that both i) the observed near match between the precession

periods of Saturn’s pole and Neptune’s orbit and ii) the current pointing of Saturn’s pole

vector can be simultaneously explained by this mechanism. We believe that these successes

make resonance capture the most likely explanation of Saturn large obliquity. Trapping can
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be achieved by either i) fast resonance passage or ii) a pre-capture obliquity of at least 4◦

(paper I).

Can the resonance capture model put constraints on the processes active in the early Solar

System? Since Saturn first encountered the secular spin-orbit resonance with Neptune, the

frequency ratio α/g has changed by about 10%, with the exact amount dependent on the

initial obliquity as described by Eq. 9. This sets a lower limit on the amount of material

that was swept from the outer Solar System; paper I estimates that removing about 10

Earth masses of material from the Kuiper belt would change g by about 10%. Less material

is required if the material is located between the planets, and if the changes to the planetary

orbits due to the ejection of this mass is also considered.

The origin of Saturn’s tilt also sets a lower limit on the amount of time required to remove

the planetesimals, as a too rapid change to the g18 precession frequency precludes resonance

trapping. The material must be removed over a time period exceeding about 150 million

years as seen in Fig. 3. When did Saturn gain its large obliquity? First, Solar System

evolution must have slowed to the point where subsequent changes to the g18 frequency

were of order 10%. Processes that affect the Solar System so drastically probably only

occurred in the first billion years or so of its history. So Saturn was probably tilted to near

its current obliquity sometime between 200 million and one billion years after the formation

of the Solar System.

Due to the long libration period of the g18 secular resonance, Saturn has undergone at

most about 50 full librations over the age of the Solar System. Accordingly, it is unlikely

that dissipative processes internal to Saturn have had enough time to significantly damp

the libration amplitude. Furthermore, because there are no strong forcing frequencies with

extremely long periods (10− 100 millions years), the g18 term does not split into a multiplet

of nearby resonances. Hence resonance overlap and the associated chaotic evolution of the

libration amplitude, which plays an important role for the Kirkwood gaps in the asteroid
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belt (Wisdom 1987), is unlikely to be important for Saturn’s pole. Thus the current libration

amplitude could date back billions of years and might be determined by an improved

measurement of Saturn’s pole precession rate or an improved model of the precession rate

whose largest uncertainty is in Saturn’s moment of inertia. An accurately-determined

current libration amplitude would put potentially interesting additional constraints on the

early history of the Solar System.
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Fig. 1.— Resonant Kick. In the left panel, we show the obliquity θ, the ratio of Neptune’s

orbital precession period Tg to Saturn’s spin precession period Tα, and the absolute value

of α/g versus time. The right panel plots the evolution of resonant angle Ψ (angle from

the x-axis) and the obliquity θ (distance from the origin). Saturn’s current pole position

(ΨSaturn = −31.0◦ and θSaturn = 26.7◦ – see section 2.1) is indicated with a large dot. In

these simulations, we impose the time history of |α/g| and study the response of the other

variables. Here, we have set g constant, α = −0.64g(1 + e−t/τ ) with τ = 5 × 108 years, and

the initial condition θ0 = 2.5◦.
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Fig. 2.— Trapping into Resonance. Plotted quantities are as in Fig. 1. Here we have imposed

g = −α(0.89+0.23e−t/τ ). Trapping into resonance occurs when the resonance angle librates

through a limited range rather than circulating through a full 2π. The ratio of precession

periods pins to one.
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Fig. 3.— Rapid Trapping into Resonance. Plotted quantities are as in Fig. 1. The libration

period is measured to be 83.3 million years. Large libration amplitudes like this are possible

when the timescale for a characteristic change to the system is comparable to the libration

period. Such rapid changes violate the adiabatic condition.
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Fig. 4.— Kick followed by Trapping into Resonance. Plotted quantities are as in Fig. 1.

Another way to achieve large libration amplitudes is start with a large obliquity. Here we first

impose of Saturn to bring |α/g| across the resonance in the direction that yields obliquity

kicks. When the resonance is approached from the opposite direction with a larger obliquity,

trapping with large libration amplitude ensues.


