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ABSTRACT

We study the stability of charged dust grains orbiting a planet and subject to gravity and the
electromagnetic force. Our numerical models cover a broad range of launch distances from the
planetary surface to beyond synchronous orbit, and the full range of charge-to-mass ratios from
ions to rocks. Treating the spinning planetary magnetic field as an aligned dipole, we map regions
of radial and vertical instability where dust grains are driven to escape or crash into the planet.
We derive the boundaries between stable and unstable trajectories analytically, and apply our
models to Jupiter, Saturn and the Earth, whose magnetic fields are reasonably well represented
by aligned dipoles.

1. Introduction

The discoveries of the faint dusty ring systems
of the giant planets beginning in the late 1970s
greatly changed our understanding of planetary
rings. Unlike Saturn’s classical rings, which are
most likely primordial (Canup 2010), dusty rings
are young and are continually replenished from
source satellites. Individual ring particles have
short lifetimes against drag forces and other loss
mechanisms, and because dusty rings are so dif-
fuse, they are essentially collisionless. Further-
more, dusty rings are affected by a host of non-
gravitational forces including solar radiation pres-
sure and electromagnetism, which can sculpt them
in interesting ways.

Since the giant planets are far from the Sun
and dusty rings are normally near their primary,
radiation pressure is usually a weak perturbation
to the planet’s gravity. The electromagnetic force
arising from the motion of charged dust grains rel-
ative to the planetary magnetic field, however, can
be quite strong. In particular, with nominal elec-
tric charges, dust grains smaller than a fraction of
a micron in radius are more strongly affected by
electromagnetism than gravity.

Dust in space acquires electric charges in sev-
eral ways. Moving through the plasma environ-
ment produces a negative charge on a grain, since
the plasma electrons are much lighter and swifter

than ions and hence are captured more frequently
by orbiting dust grains (Goertz 1989). On the
other hand, sunlight ejects photo-electrons from
the surface of a grain, causing a positive charge
(Horányi et al. 1988). Electron or ion impacts can
also produce secondary electron emission, which
also favors a net positive equilibrium charge on
the grain (Whipple 1981). These currents interact
in complicated ways; the charging of a dust grain
depends on the physical properties of the grain it-
self and also on its charge history (Meyer-Vernet
1982). Graps et al. (2008) provide an excellent
review of these processes.

Many authors have investigated detailed as-
pects of the motion of charged grains in planetary
magnetic fields, but no study has yet determined
the orbital stability of grains for all charge-to-mass
ratios launched at all distances in a systematic
way. In this paper we explore the stability of both
positive and negative dust grains launched from
ring particle parent bodies which themselves orbit
at the local Kepler speed.

1.1. Motion in the Kepler and Lorentz
Limits

As grains with radii several microns and larger
have small charge-to-mass ratios, electromagnetic
effects are weak, and the grains orbit the planet
along nearly Keplerian ellipses. In the frame ro-
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tating with the mean motion of the dust particle,
the orbits appear as retrograde elliptical epicy-
cles with a 2:1 aspect ratio (Mendis et al. 1982).
When gravity acts alone, the vertical, radial and
azimuthal motions all have precisely the same fre-
quency. Equations governing the slow changes to
the ellipse’s orbital elements due to electromag-
netic perturbations from a rotating aligned dipole
magnetic field are given by Hamilton (1993b).
These equations show that the three frequencies
diverge slightly and are function of the sign and
magnitude of the charge as well as the distance
from synchronous orbit.

Conversely, the very smallest dust grains ap-
proach the Lorentz limit, where the electromag-
netic force dominates over gravity. In this regime,
the frequencies of radial, vertical and azimuthal
motion differ significantly. The radial oscillation
is fastest and, as the electromagnetic force is per-
pendicular to the rotating magnetic field, particles
gyrate about local field lines on typical timescales
of seconds for dust, and microseconds for ions.

Dust grains typically oscillate vertically on a
timescale of hours to days. Since this timescale
is far slower than gyration, an adiabatic invari-
ant exists and can easily be found. In the ab-
sence of forces other than electromagnetism act-
ing on a dust grain, its speed through a magnetic
field remains constant: v2 = v2

⊥ + v2

‖, where v⊥
and v‖ are the speeds perpendicular and parallel
to the magnetic field lines, respectively. The v⊥
component determines the radius of the gyrocycle,
while the v‖ component moves the center of gyra-
tion to regions of differing magnetic field strength.
If changes to a non-rotating magnetic field ~B are
small over the size and time scales of gyromotion,
the ratio v2

⊥/B, where B is the local strength of
the field, is an adiabatic invariant (de Pater and
Lissauer 2006) and hence is nearly constant. These
two conditions provide an important constraint on
the grain’s motion parallel to the field lines. As a
grain with a vertical velocity component climbs
up a magnetic field line away from the equato-
rial plane, the field strength B increases, v⊥ also
increases, and hence v‖ must decrease. There is
thus a restoring force towards the equatorial plane
where the magnetic field strength is a local min-
imum, and the motion parallel to the field lines
takes the form of bounce oscillations between mir-
ror points north and south of the equator (Störmer

1955). Thomsen and van Allen (1980) studied the
bounce motion of particles in the Lorentz limit at
Saturn. Their results neglected the effects of plan-
etary rotation, and hence are most applicable to
slow rotators like Mercury and potentially some
planetary satellites.

Finally, on the longest timescales (days), parti-
cles drift longitudinally with respect to the rotat-
ing magnetic field (de Pater and Lissauer 2006),
forced by a number of effects including gravity,
the curvature of the magnetic field, and ∇B. Be-
cause these motions are usually slow compared to
the gyration and bounce frequencies, it is often
useful to assume that in the Lorentz limit, grains
are tied to the local field lines.

1.2. Dust Affected by both Gravity and
Electromagnetism

For a broad range of grain sizes from nanome-
ters to microns, both gravity and the Lorentz force
are significant, and their combined effect causes
a number of dynamical phenomena that are dis-
tinct from either limiting case. As dust in this
size range predominates in many planetary rings
(Burns et al. 1999; de Pater et al. 1999; Showal-
ter et al. 2008; Krüger et al. 2009), their dynamics
have attracted much attention.

Schaffer and Burns (1994) provide a general
framework for the motion of dust started on ini-
tially Keplerian orbits. Since the radial forces
on a dust grain at launch are not balanced as
they are for a large parent body on a circular
orbit, these dust grains necessarily have non-
zero amplitude epicyclic motion. For the mag-
netic field configurations of the giant planets,
a negatively-charged dust grain gyrates towards
synchronous orbit while positively-charged dust
initially moves away from this location. In fact,
some positively-charged grains are radially unsta-
ble and either crash into the planet if launched
inside synchronous orbit, or are expelled outwards
if launched from beyond this distance. The lat-
ter have been detected as high-speed dust streams
near Jupiter (Grün et al. 1993, 1998) and Sat-
urn (Kempf et al. 2005). Theoretical explanations
for the electromagnetic acceleration process have
been given by Horányi et al. (1993b,a), Hamilton
and Burns (1993b) and Graps et al. (2000).
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Mendis et al. (1982) explored the shape and
frequency of epicycles in the transitional regime
for negatively-charged grains. The epicycles make
a smooth transition from perfectly circular clock-
wise (retrograde) gyromotion in the Lorentz limit,
to 2:1 retrograde elliptical epicycles in the Kepler
limit. Mitchell et al. (2003) studied the shapes of
epicyclic motion for positive grains and found that
there is not a similarly smooth transition from pro-
grade gyromotion to retrograde Kepler epicycles,
and that the epicyclic motions of intermediately-
sized grains cannot be represented as ellipses. The
effects of gravity and electromagnetism compete
for intermediate charge-to-mass values and motion
can be primarily radial, leading to escape or col-
lision (Horányi et al. 1993b; Hamilton and Burns
1993b).

Northrop and Hill (1982) studied the vertical
motion of negatively-charged dust grains on cir-
cular uninclined orbits in a centered and aligned
dipole field, a configuration most closely realized
by Saturn. They found that some small grains
on initially centrifugally balanced circular trajec-
tories inside the synchronous orbit are locally un-
stable to vertical perturbations, climbing magnetic
field lines to crash into the planet at high latitudes.
Some motions at high latitude, however, are sta-
ble: Howard et al. (1999, 2000) identified non-
equatorial stability points for charged dust grains,
whereby grain orbits that are locally unstable in
the ring plane may nevertheless remain bound
globally. They characterized these “halo” orbits
for positive and negative charged grains on both
prograde and retrograde trajectories. Howard and
Horányi (2001) used these analytical results to ar-
gue for a stable population of positively-charged
grains in retrograde orbits and developed numer-
ical models of such halo dust populations at Sat-
urn.

If one of the dust grain’s natural frequencies
matches a characteristic spatial frequency of the
rotating multipolar magnetic field, the particle ex-
periences a Lorentz resonance (Burns et al. 1985;
Schaffer and Burns 1987, 1992; Hamilton and
Burns 1993a; Hamilton 1994). Lorentz resonances
behave similarly to their gravitational counter-
parts and can have a dramatic effect on a dust
grain’s orbit, exciting large radial and/or verti-
cal motions. These resonances have been primar-
ily studied in the Kepler limit appropriate for the

micron-sized particles seen in the dusty rings of
Jupiter. In our idealized problem, with an axisym-
metric magnetic dipole, Lorentz resonances cannot
occur.

Variations in a dust grain’s charge can also alter
its trajectory over surprisingly rapid timescales.
Gradients in the plasma properties, including den-
sity, temperature and even composition affect the
equilibrium potential of a grain by altering the
direct electron and ion currents. This can re-
sult in resonant charge variation with gyrophase,
causing radial drift. Working in the Lorentz
limit, Northrop and Hill (1983) noted that with
large radial excursions, the grain’s speed through
the plasma can vary significantly with gyrophase,
leading to enhanced charging at one extremity. A
similar effect occurs in the Kepler limit where res-
onant charge variation can cause a dramatic evolu-
tion in the orbital elements of a dust grain (Burns
and Schaffer 1989). Northrop et al. (1989) found
that the varying charge has a time lag that de-
pends on the plasma density and grain capaci-
tance. These time lags can cause grains to drift
towards or away from synchronous orbit depend-
ing on the grain speed, and on any radial temper-
ature or density gradients in the plasma. Schaffer
and Burns (1995) explored the effects of stochas-
tic charging on extremely small grains, where the
discrete nature of charge cannot be ignored. They
found that Lorentz resonances are robust enough
to survive even for small dust grains with only a
few electric charges.

The dynamics of time-variable charging may
play an important role in determining the struc-
ture of Saturn’s E ring (Juhász and Horányi 2004)
and Jupiter’s main ring and halo (Horányi and
Juhász 2010). Another example of charge vari-
ation occurs when the insolation of a dust grain
is interrupted during transit through the plane-
tary shadow. This induces a variation in charge
that resonates with the grain’s orbital frequency
(Horányi and Burns 1991). Hamilton and Krüger
(2008) found that this shadow resonance excites
radial motions while leaving vertical structure un-
altered. This effect can explain the appearance
of the faint outward extension of Jupiter’s Thebe
ring, and the properties of its dust population
sampled by the Galileo dust detector (Krüger et al.
2009).
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1.3. Research Goals

In this study, we consider the orbits of charged
grains launched in planetary ring systems. Our
aim is to explore the boundaries between stable
and unstable orbits in aligned and centered dipolar
magnetic fields. Dipolar fields have the advantage
of being analytically tractable while still captur-
ing most of the important physics. Under what
conditions are grains unstable to vertical pertur-
bations? Which grains escape the planet as high
speed dust streams? And which grains will strike
the planet after launch? All of these instabilities
depend on the launch distance of the grain and
its charge-to-mass ratio. We first explore grain
trajectories numerically and then derive analyti-
cal solutions for the stability boundaries that we
find.

There are several standard choices for express-
ing the ratio of the Lorentz and gravitational
forces. The charge-to-mass ratio q/m in C/kg
(Northrop and Hill 1982) or in statCoulomb/g
(Mitchell et al. 2003) may be the most straightfor-
ward, but it is cumbersome. For this reason, con-
verting to the grain potential measured in V olts,
which is constant for different-sized dust grains,
is a common choice (Mendis et al. 1982; Schaf-
fer and Burns 1994; Howard et al. 2000; Mitchell
et al. 2003). Yet another option is to express the
charge-to-mass ratio in terms of frequencies as-
sociated with the primary motions of the grain,
such as the gyrofrequency, orbital frequency and
the spin frequency of the planet (eg. Mendis et al.
1982; Mitchell et al. 2003).

We choose a related path, namely to fold q/m
and key planetary parameters into a single dimen-
sionless parameter L∗ following Hamilton (1993b).
Consider the Lorentz force in a rotating magnetic
field:

~FB =
q

c
(~v − ~Ω × ~r) × ~B, (1)

where c is the speed of light, ~r and ~v are the grain’s
position and velocity in the inertial frame, ~Ω is
the spin vector of the planet, and ~B is the mag-
netic field. We use CGS units here and throughout
to simplify the appearance of the electromagnetic
equations. The second component of Eq. 1, ~E =
− 1

c (~Ω × ~r) × ~B is the so-called co-rotational elec-
tric field which acts to accelerate charged grains
across field lines. Since a dipolar magnetic field
obeys B = g10R

3

p/r3 in the midplane (with g10

the magnetic field strength at thenplanet’s equa-
tor), ~E, like gravity, is proportional to 1/r2 there.
Thus the ratio of the electric force qE, to gravity
is both independent of distance and dimensionless:

L∗ =
qg10R

3

pΩ

GMpmc
. (2)

Here, Rp and Mp are the planetary radius and
mass, G is the gravitational constant, and the sign
of L∗ depends on the product qg10. We have made
a slight notational change L → L∗ from Hamilton
(1993b,a), to avoid confusion with the L-shell of
magnetospheric physics. Choosing L∗ as an in-
dependent variable takes the place of assuming a
particular electric potential, grain size and grain
density. We focus our study primarily on Jupiter,
the planet with by far the strongest magnetic field,
but also apply our results to Saturn and the Earth.

2. Numerical Simulations

Approximating Jupiter’s magnetic field as an
aligned dipole by including just its g10 term; g10 =
4.218 Gauss (Dessler 1983), we tested the stabil-
ity of dust grain orbits over a range of grain sizes
and launch distances both inside and outside syn-
chronous orbit. We used a Runge-Kutta fourth-
order integrator and launched grains at the local
Kepler speed with a small initial latitude of 0.01◦.
Our models treat the grain charge as constant and
neglect J2, other higher-order components of the
gravitational field, and radiation pressure.

For both negative and positive grains, we ran
simulations for a grid of 80 values of L∗ and 100
launch distances (rL). The charge-to-mass ratio
spans four decades from the Lorentz regime where
EM dominates (|L∗| >> 1) to the Kepler regime,
where gravity reigns (|L∗| << 1). The range of
launch distances extends from the planetary sur-
face to well beyond the synchronous orbital dis-
tance (Rsyn).

In Fig. 1 we plot the fate of 8000 negative and
8000 positive dust grains and find complex regions
of instability. The negatively-charged dust grains
in Fig. 1a display only vertical instability at mod-
erate to high L∗ and inside Rsyn. Some are bound
by high latitude restoring forces (locally unstable,
light grey) whilst others crash into the planet at
high latitude (both locally and globally unstable,
darker grey). Northrop and Hill (1982) derived a
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Fig. 1.— Stability of Kepler launched a) (neg-
ative) and b) (positive) dust grains at Jupiter.
We model the planet with a spherically-symmetric
gravitational field, and a centered and aligned
dipolar magnetic field. All grains were launched
with an initial latitude of λ = 0.01◦ and followed
for 0.1 years. The horizontal dashed line in both
panels denotes the synchronous orbital distance at
Rsyn = 2.24Rp. The grain radii (ad) in microns
along the upper axis are calculated assuming a
density of 1g/cm3 and an electric potential of ±5V
so that |L∗| = 0.0284/a2

d. Dust grains in the white
regions and lightest grey areas survive the full 0.1
years, with the latter reaching latitudes λ in excess
of 5◦. Grains in the moderately-grey areas are ver-
tically unstable and strike the planet, also at high
latitudes (λ > 5◦). The darkest regions, seen only
in panel b, are radially unstable grains that crash
into the planet (those with rL < Rsyn), or escape
to beyond 30Rp (from rL > Rsyn) at latitudes less
than 5◦. We overplot three analytically-derived
stability boundaries, obtained by Northrop and
Hill (1982) for negative grains, by Horányi et al.
(1993b) for small positive grains, and by Hamilton
and Burns (1993b) for large positive grains. Each
point on the plot is a trajectory, some of which
(marked by filled squares), are illustrated in detail
in Figs. 2 to 5.

boundary for the threshold between stable and un-
stable trajectories for negatively-charged dust and
found that grains launched within a certain dis-
tance should leave the equatorial plane (Fig. 1a).
In the Lorentz limit, the vertical instability al-
lows grains to climb up local magnetic field lines
into regions of stronger magnetic field, while for
smaller L∗ the path taken by these grains follows
the lines of a pseudo-magnetic field which includes
the effects of planetary rotation (Northrop and
Hill 1982). The Northrop curve however, is not
a good match to our data which reveal additional
stable orbits immediately inside this boundary and
also close to the planetary surface. These differ-
ences arise from the fact that Northrop and Hill
(1982) assumed that grains are launched at their
equilibrium circular speeds, which differ from the
circular speeds of parent bodies when L∗ 6= 0.
Conversely, we launch our grains at v =

√

GMp/r,
the circular speed of the parent body, which is ap-
propriate for debris produced by cratering impacts
into these objects. In section 5, we develop a ver-
tical stability criterion appropriate for our launch
conditions.

The situation for positive grains is quite differ-
ent. Figure 1b shows a less extensive region of ver-
tical instability than Fig. 1a, and one that is not
active close to Jupiter. More dramatic, however,
are two regions of radial instability, separated by
the synchronous orbital distance. Grains inside
Rsyn are driven to strike Jupiter, while those out-
side escape the planet.

To characterize the individual trajectories that
make up Fig. 1, we explore a few examples in de-
tail, focusing on the positively-charged dust grains
and proceeding from small to large grains. Fig-
ure 2 shows the trajectory of a dust grain that
becomes vertically unstable and crashes into the
planet at high latitude. These smallest grains spi-
ral up magnetic field lines such that the quan-
tity r/ cos2 λ is nearly constant. By contrast,
Fig. 3 shows an electromagnetically-dominated
grain that remains stable at low latitude. A more
subtle interplay between radial and vertical mo-
tions is illustrated in Fig. 4. This grain is out-
side the radial instability region in which grains
collide with the planet at low latitude. Instead,
large radial motions lead to instability in the ver-
tical direction. Ultimately, the grain strikes the
planet at high latitude. Finally, Fig. 5 shows a
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dust grain just inside the Hamilton and Burns
(1993b) L∗ = 1

2
stability limit. Although the dust

grain does not escape, the non-linearity of its ra-
dial oscillation is large enough to excite substantial
vertical motions.
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Fig. 2.— The trajectory of a positively-charged
grain orbiting Jupiter after launch at rL = 1.74Rp,
with L∗ = 31.31 (ad = 0.03µm). We plot the
scaled distance and latitude of the dust grain
against time. The small, rapid radial gyration is
just visible in the upper plot. The dust grain is
vertically unstable on a much longer timescale and
ultimately crashes into the planet. This trajectory
is the left-most filled square in Fig. 1b.

A glance at Fig. 1 shows that most stabil-
ity boundaries are unexplained. The Northrop
and Hill (1982) vertical stability boundary does
not match the numerical data especially well, and
only applies to negative grains. For the positive
grains, Horányi et al. (1993a) provided an approx-
imate criterion for radial escape, which they ap-
plied far from synchronous orbit near Io. Their
criterion is based on a comparison between the ra-
dius of gyromotion rg, and the length scale over
which the magnetic field changes substantially,
namely where |B/(rg∇B)| ≈ 10, with the gyro-
radius calculated in the Lorentz limit. Although
not intended for use near synchronous orbit where
rg → 0, we nevertheless plot it on the left side of
Fig. 1b. Finally, the Hamilton and Burns (1993b)
L∗ = 1

2
limit, derived from an energy argument, is

a good match to the largest escaping grains. There
is however, no analytical model for the broad class
of grains that strike the planet. Accordingly, we
seek to develop a unified theory that can cleanly
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Fig. 3.— The trajectory of a stable positively-
charged grain orbiting Jupiter after launch at rL =
1.74Rp, with L∗ = 3.04 (ad = 0.097µm). The
grain undergoes radial oscillations much larger
than in Fig. 2 but its latitude remains low. Here
the bounce period is ∼ 7 times longer than the
gyroperiod.
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Fig. 4.— The trajectory of a positive grain inside
Rsyn (rL = 2.0Rp, L∗ = 1.908, ad = 0.122µm).
Here, unlike Fig. 3, large radial motions ultimately
excite vertical motions, allowing the trajectory to
end with a collision at the planetary surface after
just a few orbits.
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Fig. 5.— The trajectory of a positive grain outside
Rsyn (rL = 2.7Rp, L∗ = 0.419, ad = 0.26µm).
As in Fig. 4, large radial oscillations eventually
excite large vertical oscillations. Since the dust
grain has L∗ < 1

2
, it is energetically required to

remain bound (Hamilton and Burns 1993b).

determine all of these boundaries. We take up this
task first for radial and then for vertical motions.

3. Local Radial Stability Analysis

Consider a centered magnetic dipole field that
rotates with frequency Ω around a vertical axis
aligned in the z-direction. Northrop and Hill
(1982) derived the Hamiltonian for an orbiting
dust grain in a rotating frame in cylindrical co-
ordinates:

H = U(ρ, z) +
ρ̇2 + ż2

2
(3)

where ρ̇ and ż are the radial and vertical velocity
components. The potential is given by

U(ρ, z) =
1

2ρ2

(

pφ

m
− GMpρ

2L∗

Ωr3

)2

+

GMp

r

(

L∗ρ
2

r2
− 1

)

(4)

where the spherical radius r satisfies r2 = ρ2 + z2

(Northrop and Hill 1982; Schaffer and Burns 1994;
Howard et al. 2000; Mitchell et al. 2003). Equa-
tion 4 is the sum of two energetic components: first
the azimuthal specific kinetic energy, which can be
expressed as a function of r using the conservation
of angular momentum, and then the potential as-
sociated with both the corotational electric field

and gravity. Note that we have chosen the zero
of our potential to be approached as ρ → ∞. Be-
cause U(ρ, z) is independent of φ, the azimuthal
coordinate, the canonical conjugate momentum pφ

is a constant of the motion. For our launch condi-
tion from a large parent body on a circular orbit
at r = rL:

pφ

m
= r2

L(nL + ΩgL) (5)

(Schaffer and Burns 1994), where nL and ΩgL are
the Kepler frequency and gyrofrequency evaluated
at rL:

nL =

√

GM

r3

L

, (6)

and

ΩgL =
qB

mc
=

n2

LL∗

Ω
. (7)

Notice that in the gravity limit (L∗ → 0), Eq. 5
reduces to r2

LnL, the specific angular momentum
about the planet, while in the Lorentz limit (L∗ →
∞), it is r2

LΩgL, the specific angular momentum
about the center of gyromotion that moves with
the magnetic field.

If the motion of the particle is radially sta-
ble, it exhibits epicyclic motion about an equi-
librium point determined from Eq. 4. The exis-
tence of equilibrium points requires that ∂U

∂ρ =
∂U
∂z = 0, both in the equatorial plane (Northrop
and Hill 1982) and at high latitudes (Howard et al.
1999, 2000). The local stability of the equilibrium
points, defined as whether small oscillations about
these points remain small, is then determined by
considering the second derivatives of the poten-
tial. Given our launch condition, we focus on the
equatorial equilibrium points which are of greatest

interest. For these, ∂2U
∂ρ∂z = 0, r → ρ, and radial

and vertical motions are initially decoupled and
may be considered separately (Northrop and Hill
1982; Mitchell et al. 2003).

The equilibrium point is the guiding center of
epicyclic motion. Grains launched at the guiding
center have canonical conjugate momenta that
are different from our Kepler-launched grains:
namely,

pφ

m = r2

c (ωc + Ωgc), where ωc is the or-
bital frequency of a grain at the guiding center,
and Ωgc is the gyrofrequency at the guiding center.
A local radial stability analysis is most relevant
for our Kepler-launched grains if an equilibrium
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point is not too distant. Accordingly, it is impor-
tant to distinguish between quantities evaluated at
the Kepler launch position and those determined
at the guiding center. Here and throughout, we
use the subscript c for the guiding center and the
subscript L for the launch position. At the equi-
librium, ∂U

∂ρ = 0, which evaluates to:

ω2

cρc +
GMpL∗

ρ2
c

(

1 − ωc

Ω

)

− GMp

ρ2
c

= 0. (8)

Physically, Eq. 8 just implies a balance of forces in
the rotating frame, whereby the centrifugal force,
the Lorentz force and gravity sum to zero. We
solve Eq. 8 for the angular speed of the guiding
center ωc, and find two real roots for L∗ < 1,
which includes all negative charges. For L∗ > 1
conversely, two equilibrium points exist only if

ρ3

c

R3
syn

≤ L2

∗

4(L∗ − 1)
. (9)

Two equilibria always exist inside Rsyn and every-
where for L∗ >> 1 and L∗ << 1. There are no
equilibrium points in a region starting at L∗ = 2,
ρc = Rsyn and widening to include a range of L∗

values for increasing distance ρc. In this region,
no equilibrium point exists, and grains are guar-
anteed to be locally unstable. Not surprisingly,
this region is fully contained within the unstable
portion of Fig. 1b. The existence of an equilib-
rium point, therefore, is a necessary prerequisite
for stability.

Additional instability in Fig. 1b comes from two
sources: i) the intrinsic instability of the equilib-
rium point, if it exists, and ii) large amplitude
motions about a locally stable equilibrium point.
Large oscillations are beyond the scope of a local
stability analysis and so we focus on small am-
plitude radial motion near an equilibrium point,
which takes the form

ρ̈ +
∂2U

∂ρ2
ρ = 0. (10)

Small radial motions are stable when ∂2U
∂ρ2 = κ2

c >
0, which, using Eq. 4 can be written as:

κ2

c = ω2

c − 4ωcΩgc + Ω2

gc (11)

(Mendis et al. 1982; Northrop and Hill 1982;
Mitchell et al. 2003). Note here that the gyrofre-
quency Ωgc is evaluated at the guiding center,

and is given by Eq. 7 with the subscript change:
L → c. The epicyclic frequency κc reduces to the
Kepler orbital frequency nc at the guiding center
rc in the gravity limit, and to the gyrofrequency
Ωgc in the Lorentz limit. Radial excursions in
both of these cases are small and since κ2

c > 0, are
guaranteed to be stable.

Radial motions are initially small near syn-
chronous orbit where electromagnetic forces are
very weak (Eq. 1). At synchronous orbit, ωc =
nc = Ω and Eq. 11 reduces to κ2

c = Ω2(1 − 4L∗ +
L2

∗), which is positive for small or large L∗. For
2 −

√
3 < L∗ < 2 +

√
3, however, radial motions

near synchronous orbit are locally unstable.

Comparing this with Fig. 1b, we see that all
orbits with rL ∼ Rsyn that are locally stable are
also globally stable. Although most of the locally
unstable orbits are also globally unstable, some
are in fact globally stable (eg. L∗ < 1

2
just outside

Rsyn in Fig. 1b). In conclusion the local analysis
is consistent with our numerical experiments but
cannot fully account for our stability boundaries.
Accordingly, we turn to a global analysis, pausing
first to put the potential of Eq. 4 into a more useful
form and derive the radius of gyration, rg.

3.1. Radius of Gyration

With our launch condition, grains are often far
enough from an equilibrium point that the small
oscillation approximation of Eq. 10 is invalid. This
is particularly true for L∗ ≈ 1. Returning to the
effective potential of Eq. 4 with the canonical con-
jugate momentum determined by launching the
grain at the Kepler speed (Eq. 5), and limiting
our attention to planar orbits for which r → ρ,
we express the potential as a quartic polynomial
function of distance and a quadratic function of
L∗:

U(r, L∗) =
GMp

rL

(

A
r4

L

r4
+ B

r3

L

r3
+ C

r2

L

r2
+ D

rL

r

)

, (12)

with coefficients

A =
n2

LL2

∗

2Ω2

B = −nLL∗

Ω

(

nLL∗

Ω
+ 1

)

C =
1

2

(

nLL∗

Ω
+ 1

)2

D = L∗ − 1.
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To determine the radius of the epicycles rg induced
by a Kepler launch, we follow the procedure of
Schaffer and Burns (1994), and solve for the dis-
tance to the potential minimum where ∂U/∂r = 0.
Note that this is only valid to first order in small
quantities, since we are effectively assuming that
the potential is symmetric about the equilibrium
point. Evaluating the derivative, multiplying by
r5, setting r = rL + rg, and assuming rg << rL,
we obtain the epicycle radius for a grain launched
at rL in terms of parameters known at launch:

rg =
rL(Ω − nL)ΩgL

Ω2

gL − ΩgL(3Ω + nL) + n2

L

. (13)

In this limit, the radial range of motion of a dust
grain is simply 2|rg|, and the grain reaches a turn-
ing point at rt = rL + 2rg. Note the sign conven-
tions used here; rg and ΩgL may be either posi-
tive or negative; thus negative grains always gy-
rate towards Rsyn. Eq. 13 corrects a sign error in
Schaffer and Burns (1994) which led to an artificial
disagreement between the numerical and analyti-
cal model in their Fig. 6. Equation 13, by con-
trast, shows excellent agreement with our numeri-
cal data for negative grains (Fig. 6a). The peak in
Fig. 6a, for oscillations towards synchronous orbit
occurs at

rg =
rL

3

(

nL − Ω

nL + Ω

)

, L∗ = − Ω

nL
; (14)

grains launched near Rsyn reach about halfway to
the synchronous orbital distance as in the figure.

For the positive grains, Eq. 13 gives the proper
the radial range about stable local minima in both
the Lorentz limit and in the Kepler limit. At crit-
ical values of L∗, however, |rg| → ∞ and the as-
sumptions under which Eq. 13 was derived are vi-
olated. This is readily apparent in the decreas-
ing quality of the match between the theory and
the data in Fig. 6b for intermediate-sized grains.
Note that this is the same region where Mitchell
et al. (2003) find large non-elliptical gyrations.
Nevertheless, the relatively close agreement be-
tween theory and numerical data in Fig. 6 con-
firms that the epicyclic model is usually a good
assumption in planetary magnetospheres.

4. Global Radial Stability Analysis

Our local radial stability makes a number of
successful predictions, but cannot fully account

 1.9
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Fig. 6.— The radial range of (a) negative and (b)
positive grains launched azimuthally with the Ke-
pler speed v =

√

GM/rL at 2.0Rp. Both numeri-
cal data (points) and the analytical results (curves
from Eq. 13) are included. The total radial excur-
sion is twice the epicyclic radius rg.
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for the boundaries in Fig. 1b, primarily because
of the large radial excursions experienced by the
positive grains. The quartic potential within the
equatorial plane given by Eq. 12 contains all the
information necessary to determine which grains
strike the planet and which escape into interplan-
etary space.

4.1. Escaping Grains

Close to the planet, the A/r4 term of Eq. 12
dominates, and U(r → 0, L∗) → +∞, while for
the distant particles we have U(r → ∞, L∗) → 0.
Accordingly, as r increases, the quartic potential
can have at most three stationary points (one local
maximum and two local minima). Setting r = rL

gives a simple form for the launch potential

U(rL, L∗) =
GMp

rL

(

L∗ −
1

2

)

. (15)

Energetically, a particle is able to escape if
U(rL, L∗) > U(r → ∞, L∗) = 0 and we imme-
diately recover the L∗ < 1/2 stability criterion of
Hamilton and Burns (1993b). Note that only pos-
itive grains can escape from a dipolar magnetic
field and that, in principle, grains at all launch
distances, both inside and outside Rsyn are ener-
getically able to escape. Whether or not they do
so depends on the form of U(r, L∗), in particular,
on the possible existence of an exterior potential
maximum with U(rpeak, L∗) > U(rL, L∗).

Analysis of Eq. 12 shows that the potential pre-
vents all grains launched with Kepler initial con-
ditions from crossing Rsyn. Positive grains gy-
rate away from Rsyn, while negative grains cannot
reach Rsyn (Eq. 13, Fig. 6).

Outside Rsyn, U(r, L∗) monotonically decreases
for L∗ & 1

2
. Thus L∗ = 1

2
is a global stability

boundary and it matches Fig. 1b very well. For
larger L∗ (smaller grains), the topography is illus-
trated in Fig. 7. Stability is determined by the
height of the distant peak in the potential. For
L∗ ∼ 1 no such peak exists. For larger L∗, how-
ever, the radial potential decreases with distance
from rL, then increases to the distant peak, and
finally declines to zero as r → ∞.

Consider the quartic equation U(r, L∗) −
U(rL, L∗) = 0, which by construction, has one
root at r = rL, and one root at a more distant
turning point r = rt. The critical quartic, where

 0.998

 1

 1.002

 2.3  2.4  2.5  2.6  2.7  2.8  2.9

U
(r

,L
*)

/|U
(r

L
,L

*)
|

r/Rp

bound

escapes
L*=7.72

L*=8.00

Fig. 7.— Potential wells for grains positive grains
launched just outside Jupiter’s synchronous orbit,
at rL = 2.4Rp. For L∗ = 8.00 (ad = 0.0596µm),
a distant local maximum bounds the motions. If
L∗ = 7.72 (ad = 0.0607µm) the distant peak in
the potential is at the radial turning point, and
the potential is equal to the launch potential; this
is the stability threshold. For smaller L∗, the peak
is lower and escape occurs.

the turning point is also a local maximum (as in
Fig. 7) has a double root at r = rt. By factor-
ing out (r − rL), and then differentiating with
respect to r, we find a quadratic equation for the
location of the turning point; rt varies smoothly
from rt = rL at synchronous orbit to rt = 3

2
rL

for rL >> Rsyn. The stability boundary, rL(L∗)
starts at (r = Rsyn, L∗ = 2 +

√
3) and asymptotes

to
rL

Rsyn
=

(

2L∗

27

)
1

3

(16)

Eq. 16 for r >> Rsyn is a useful approximation for
the boundary far from Rsyn, which nicely compli-
ments the exact value we have found at the syn-
chronous orbital distance. The full solution for the
boundary rL(L∗) is given by a rather messy cubic
equation and so we resort to numerical methods
for its solution, which we plot on Fig. 9b.

4.2. Grains that strike the planet

Inside Rsyn, the surface of the planet presents
a physical boundary to radial motion. The po-
tential at the planet’s surface varies with latitude,
and so for simplicity, we restrict our attention to
planar motions where Eq. 12 applies. Since, for
positive grains in the equatorial plane, the po-

10



tential declines as the grain moves inwards from
its launch distance rL, it can have at most one
local maximum within rL. There are thus two
ways in which a grain can be prevented from strik-
ing the planet: i) the potential at the surface
is greater than the launch potential, or ii) a po-
tential peak exists between the surface and the
launch position and its value is greater than the
launch potential. These two scenarios are illus-
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-1.005

-1

-0.995

-0.99

 0.8  1  1.2  1.4  1.6  1.8

U
(r

,L
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/|U
(r

L
,L

*)
|

r/Rp

(i)

(ii)

Fig. 8.— Potential wells for two planar trajec-
tories launched from the solid points which are
inside Jupiter’s synchronous orbit. Distances are
in planetary radii, and the potential is scaled to
the launch value. Curve (i) (rL = 1.6Rp, L∗ =
0.0991, ad = 0.53µm) has a potential peak higher
than the launch potential inside the planetary sur-
face. Equating U(rL) = U(Rp) gives an analytic
solution (Eq. 17) for the stability boundary in
Fig. 9b. Curve (ii) (rL = 1.8Rp, L∗ = 0.1277,
ad = 0.48µm) has a potential peak outside the
planetary surface. This stability boundary must
be obtained numerically. Both grains depicted
here are poised on the stability threshold.

trated in Fig. 8. For case i), the stability criterion
is where U(Rp, L∗) = U(rL, L∗). Using Eq. 12 we
find a quadratic expression in L∗ that implies two
boundaries:

n2

Lr2

L

2Ω2R2
p

(

rL

Rp
− 1

)

L2

∗ +

(

1 − nLr2

L

ΩR2
p

)

L∗

+
1

2

(

rL

Rp
− 1

)

= 0. (17)

The two quadratic roots of Eq. 17, L1 and L2,
may be obtained analytically and are plotted on

Fig. 9b. The roots obey the simple expression

L1L2 =
rLR2

p

R3
syn

< 1. (18)

Eq. 18 conveniently highlights several features of
the lower curves in Fig. 9b: The curves marking
the grains on the threshold of collision with the
planet are centered on L∗ < 1, as required by
Eq. 18. In addition, for smaller rL, the center
of the instability shifts to smaller L∗, hence the
left-most curve is steeper than the right-most. Fi-
nally, a planet with a larger Rsyn (eg. the Earth)
will have roots that shift to very low L∗ near the
planet.

The curves determined by Eq. 17 match our
numerical data cleanly with two important excep-
tions. Firstly, because our method is only valid for
grains that collide with the planet in the equatorial
plane (recall our assumption ρ → r), it misses the
high latitude collisions near (rL = 2Rp, L∗ = 2)
in Fig. 9b. All collisions exterior to the bound-
aries given by Eq. 17 necessarily involve substan-
tial vertical motions, and the greyscale shading
of Fig 9b shows that they do. Secondly, our cri-
terion predicts instability for a small region near
(rL = Rsyn, L∗ = 0.2) that our numerical data
show in fact are stable. These grains encounter a
high peak that prevents them from reaching the
planetary surface (like curve ii) in Fig 8). Thus
U(rL, L∗) > U(Rp, L∗) is a necessary condition
for radial instability in the equator plane, but it is
not sufficient.

The additional requirement for instability is
that U(rL, L∗) > U(rpeak, L∗), where rpeak is the
location of an interior maximum. Just as for the
escaping grains exterior to synchronous orbit, eval-
uation of this condition involves necessarily in-
volves a cubic and a semi-analytic method. We
find that no corrections to Eq. 18 are necessary
for the high L∗ radial boundary and for all grains
near the planet. Only for the right most curve near
Rsyn is there a discrepancy. Our new curve is plot-
ted in Fig 9b and it perfectly matches the numer-
ical instability boundary. Although the stability
curve in this region can only be obtained semi-
analytically, the point at which it becomes nec-
essary occurs when the potential maximum is lo-
cated at the planetary surface; ∂U/∂r(RP , L∗) =
0 and U(rL, L∗) = U(Rp, L∗). Evaluating these
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conditions, we find

L∗ =
( rL

Rp
− 1)2

R
3/2

synr
3/2

L

R3
p

+ 2 − 3rL

Rp

. (19)

For Jupiter, the critical point that satisifes both
Eqs. 17 and 19 is at (L∗ = 0.112, rL = 1.694Rp

-solid point in Fig 9b). The stability curve meets
rL = Rsyn at L∗ = 2 −

√
3, a result suggested by

our local stability analysis of section 3. Note that
our energy arguments yield analytic expressions
both inside and outside Rsyn. Arguments involv-
ing the location of potential maxima, conversely,
require semi-analytic methods.

5. Local Vertical Stability Analysis

The stability of grains against vertical pertur-
bations was first explored by Northrop and Hill
(1982). In their model, a grain is launched on a
circular orbit at the equilibrium orbital frequency
ωc in the potential of Eq. 4. If the grain orbit at
the equilibrium point is stable to vertical pertur-
bations, the square of the bounce frequency Ωb

∂2U

∂z2
= Ω2

b = n2

c

(

3φ̇cL∗

Ω
+ 1

)

= 3ω2

c − 2n2

c (20)

(Northrop and Hill 1982) is positive. Here φ̇c =
ωc − Ω is the dust grain’s azimuthal frequency in
the frame rotating with the magnetic field.

For Ωb ≤ 0, the vertical motion becomes un-
stable. The Northrop and Hill (1982) solution
for the boundary where Ωb = 0 is plotted in
Fig. 1a. These grains leave the equatorial plane
if ρc ≤ ρcrit, which from Eq. 20 in the Lorentz
limit is given by:

ρcrit

Rsyn
= (2/3)

1

3 ≈ 0.87. (21)

The effect of our initial condition, launching grains
at the Kepler speed, however, necessarily causes
epicyclic gyromotion as the grain orbits the planet.
This leads to a stabilizing magnetic mirror force,
in which the grain resists moving out of the equa-
torial plane to regions of higher magnetic field
strength as discussed in section 1.1. We treat this
effect to first order in rg/rL by averaging Eq. 20
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Fig. 9.— Our new analytic results are plotted over
the numerical data from Fig. 1. a) Northrop’s so-
lution (dotted line) is superseded by our two semi-

analytic boundaries where 〈∂2U
∂z2 〉 = Ω2

b = 0 from
Eq. 25 (heavy solid lines). The new boundaries
are a significantly better fit to the data and indi-
cate an inner stability zone. The κc = 2Ωb curve
indicates the 2:1 resonance between the epicyclic
and the vertical bounce frequencies; it matches the
data points well. b) We extend our vertical sta-
bility boundary to positive grains. The radial sta-
bility boundaries for grains that escape or crash
into the planet are discussed in the text (section
4). Between the open circles along Rsyn, orbits
are locally, radially unstable. The solid circle is
the critical point defined by Eqs. 17 and 19.

12



over one gyrocycle:

〈

∂2U

∂z2

〉

=
1

2π

∫

2π

0

∂2U

∂z2
dθ. (22)

where θ is the epicyclic phase. To first order in
rg, the epicycles are circles in the guiding center
frame, and therefore have

ρ(θ) = ρc

(

1 − rg

ρc
cos θ

)

, (23)

and
φ̇(θ) = φ̇c + κc

rg

ρc
cos θ, (24)

Using Eqs. 23 and 24 to eliminate nc and φ̇c in
Eq. 20, expanding to O(r2

g), and integrating yields:

Ω2

b =

〈

∂2U

∂z2

〉

= 3ω2

c − 2n2

c

+
r2

g

ρ2
c

(

9Ωgcκc

2
+ 9Ωgcφ̇c + 3n2

c

)

. (25)

The frequencies here: ωc (Eq. 8), nc (Eq. 6), Ωgc

(Eq. 7), κc (Eq. 11) and φ̇c = ωc − Ω in Eq. 25
are all evaluated at the guiding center of motion
rc = rL + rg.

Fig. 10 compares the Northrop and Hill (1982)
bounce period (Eq. 20) with ours (Eq. 25) which
accounts for epicyclic motion for small dust grains
at Jupiter, and numerical results. The Northrop
formalism erroneously predicts bounce periods
that are too long both inside and outside syn-
chronous orbit and, more seriously, misses the
solution near the planet.

The new term in Eq. 25 is proportional to r2

g ; it
is positive everywhere inside the Northrop bound-
ary and thus leads to enhanced vertical stability.
In the high |L∗| limit, κc → Ωgc the first of the
new terms dominates, and rgΩgc = ρc(Ω − nc)
from Eq. 13. Setting Ωb = 0 in Eq. 25, we find
two thresholds for stability:

rL

Rsyn
=

(

5

9 ±
√

6

)2/3

≈ 0.58, 0.84. (26)

These limits are valid for both positive and neg-
ative grains with |L∗| → ∞. Between these lim-

its, 〈∂2U
∂z2 〉 < 0 and grain orbits are locally un-

stable; the enhanced stability from the mirror-
ing force moves the vertical stability boundary
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Fig. 10.— The bounce period for L∗ = −104

grains at Jupiter over a range of launch distances.
Northrop’s solution (Eq. 20, dotted line) and our
solution (Eq. 25, solid lines) with Tb = 2π/Ωb,
are plotted alongside numerical data (points).
Note that in our solution Tb is smaller than in
Northrop’s solution. In the high L∗ Lorentz limit,

distant grains obey Ωb →
√

15

2
Ω (Tb = 3.62 hours)

and nearby grains satisfy Ωb →
√

5

2
nc.

inwards from Northrop’s 0.87Rsyn to 0.84Rsyn.
A more important change, regained stability in-
side 0.58 Rsyn, is due to the higher launch speeds
relative to the field lines, larger gyroradii, and a
stronger magnetic mirror force. For Jupiter these
distances are at 1.29Rp and 1.87Rp respectively
(see Fig. 9).

Our solution for the stability boundary for all
charge-to-mass ratios is plotted alongside the nu-
merical data for both negative and positive grains
launched at the Kepler rate in an aligned dipole
field for Jupiter in Fig. 9. We find the curves trac-
ing the unstable zone semi-analytically by setting
Ωb = 0 in Eq. 25. Within the regions bordered
by the curves, trajectories are locally unstable but
may remain bound due to high-latitude restoring
forces.

The model closely matches the stability bound-
aries for both positive and negative grains in the
Lorentz regime but its accuracy declines for |L∗| ∼
1. Our assumption of circular epicycles is very
accurate in the Lorentz limit where grains expe-
rience tight gyrocycles about local field lines, but
near |L∗| = 1 epicycles become large and distorted
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(Mendis et al. 1982; Mitchell et al. 2003), introduc-
ing deviations between the theory and the numer-
ical data.

Notice that, with decreasing |L∗|, the insta-
bility region curves towards the planet for nega-
tive grains, and away from it for positive grains
(Fig. 9). These trends can be understood by con-
sidering the epicyclic motion for charged dust,
which is in opposite directions for positive and
negatively charged grains (Fig. 6 and Eq. 13). As
positive grains gyrate away from Rsyn, the guiding
center of motion is offset closer to the planet where
the conditions for stability differ. As L∗ decreases,
rg increases, the grain behaves as if it is closer
to the planet, and hence the stability boundaries
curve away from the planet. A similar argument
shows that the vertically unstable zone for neg-
ative grains should curve towards the planet for
decreasing |L∗|.

Finally, notice the band of locally unstable but
globally stable points that stretches from |L∗| ≈
0.1 at the surface of the planet to |L∗| ≈ 1 at large
distances in Fig. 9a. These grains are affected by
a κc = 2Ωb resonance that couples their radial and
vertical motions. Energy is transferred from the
radial oscillation to a vertical oscillation and back
again. Near the synchronous orbit, gyroradii are
initially small and therefore there is not as much
radial motion to transform into vertical motion;
these grains do not reach our λ = 5◦ threshold
and appear as white space in Fig. 9a.

The existence of stable trajectories within the
Northrop boundary is an important possibility,
particularly for slowly-rotating planets with dis-
tant synchronous orbits like Earth. Small dust
grains generated by the collisional grinding of par-
ent bodies on Keplerian orbits can remain in orbits
near the planetary surface. High energy plasma,
like that found in Earth’s van Allen radiation
belts, is more stable than we have calculated here
by virtue of more rapid gyrations and a greatly
enhanced mirroring force.

Our analysis to this point is completely general
and, although we have focused on Jupiter, can be
easily applied to other planets. Saturn and Earth
are logical choices, as their magnetic fields are also
dominated by the g10 aligned dipolar component.
The appearance of the stability map for any planet
depends on only the parameters Rsyn and Rp, and
not on the substantially different magnetic field

strengths; due to our use of L∗, the field strength
only affects the conversion to grain radius ad. The
synchronous orbital distance is somewhat closer to
the planetary surface at Saturn (Rsyn = 1.86Rp)
than at Jupiter (Rsyn = 2.24Rp), while at Earth
(Rsyn = 6.61Rp) it is much further away.

6. Saturn and Earth

A centered and aligned dipole is an excellent ap-
proximation for Saturn’s magnetic field. We take
g10 = 0.2154 Gauss from Connerney et al. (1984)
and plot both our numerical data and analytical
stability boundaries in Fig. 11. The Cassini mea-
surement of g10 does not vary significantly from
the older value that we use (Burton et al. 2009).
A lower synchronous orbit at Saturn pushes the
local vertical instability inward, as expected from
Eq. 26. Comparing Fig. 11 to Fig. 9, we see that
the proximity of the surface at Saturn causes all
the locally vertically unstable grains to physically
collide with the planet. This is true for both neg-
ative and positive grains.

Outside synchronous orbit in Fig. 11b, the
solutions derived for positive escaping grains at
Jupiter apply at Saturn to very high accuracy,
for both the low L∗ and high L∗ boundaries. As
in Fig. 9b, grains with L∗ . 1

2
, do not have

enough energy to escape despite achieving large
radial excursions (light grey region outside Rsyn

in Fig. 11b). For these grains, vertical motions
are excited over several orbits, as in Fig. 5.

Within synchronous orbit, the condition U(Rp) =
U(rL) (solved in Eq. 17) bounds most of the un-
stable grains. As at Jupiter, a small set of large
grains require the semi-analytical analysis of the
potential between the launch position and the sur-
face to determine global stability. This analysis
yields the curve connecting the filled black circle
at (rL = 1.568Rp, L∗ = 0.14) and the open circle
(rL = Rsyn, L∗ = 2 −

√
3) in Fig. 11b.

Compared to Jupiter and Saturn, Earth’s mag-
netic field is “inverted” at the current epoch, with
magnetic north near the geographic south pole
(g10 = −0.3339 Gauss taken from Roberts and
Soward 1972). Thus at Earth, L∗ > 0 for negative
grains. This causes positive grains to be radially
stable, gyrating between the launch position and
synchronous orbit, and negatively-charged grains
to be radially unstable. The Earth is also far
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Fig. 11.— Stability of charged grains at Saturn
modeled with a centered and aligned dipole field.
All initial conditions and theoretical curves are as
in Fig. 9. Also as in Fig. 9, the darkest shade of
grey signifies low latitude collision or escape, the
middle shade indicates high latitude collisions, and
the lightest grey signifies large vertical excursions.
For negative charges (panel a) the stable region
is significantly closer to the planet than at Jupiter
due to Saturn’s smaller Rsyn. Furthermore, due to
the proximity to Saturn, nearly all grains that are
locally vertically unstable do in fact hit the planet,
unlike their counterparts at Jupiter. b) positive
charges. As with the negative grains, nearly all
the vertically unstable grains hit Saturn. Saturn’s
radial instability region looks much like Jupiter’s.

smaller on the scale of its own synchronous or-
bit than the gas giants, and so serves an excel-
lent test of the accuracy of our analytical solu-
tions far from Rsyn. For the Earth, Fig. 12a shows
the radial global instabilities. Outside Rsyn, the
boundaries are in excellent agreement with our
analytical results for large and small grains. In-
side Rsyn, grains are globally radially unstable and
all the grains collide that with the planet at low
latitudes are launched between our two solutions
given by Eq. 17. The set of grains for which Eq. 17
is an insufficient criterion for collision with the
planet, however, is much larger at the Earth than
at Jupiter or Saturn. For Earth, just like for the
gas giants, the global solution for radial stability
inside synchronous orbit meets Rsyn at the local
stability solution (rL = Rsyn, L∗ = 2−

√
3). How-

ever the solutions of Eq. 17 have shifted to much
lower L∗, reducing the total range in L∗ for grains
which collide with the planet at low latitude.

The local vertical stability boundary matches
the numerical data well, although in the Lorentz
limit, all grains are globally stable since the high
latitude restoring forces become much stronger
close to the planet (Howard et al. 2000). Only
at |L∗| ≤ 1 do the positive grains collide with the
planet. As in Figs. 9 and 11 the vertical stability
curves match very well for large L∗ and deviate
from the data for L∗ ≈ 1. The κc = 2Ωb reso-
nance matches the data well.

Earth has a much larger class of grains that ex-
perience large radial excursions, which excite ver-
tical motions. Most of these grains, which on the
stability map of Fig. 12a link the two separated
regions of global radial instability, collide with the
planet at high latitudes. An example of a trajec-
tory in this class is shown in Fig. 13. At Saturn
all of the grains in this region collided with the
planet, but at the Earth we see three white tracks
of orbits that never leave the equatorial plane, and
hence are energetically prevented from striking the
planet. We plot an example in Fig. 14.

7. Conclusion

For Kepler-launched grains in centered and
aligned dipole planetary fields, we have employed
both local and global stability analyses to provide
solutions for stability boundaries that match nu-
merical simulations for Jupiter, Saturn and the
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Fig. 12.— Stability of charged grains at Earth,
modelled with a centered and anti-aligned dipole
field. Theoretical curves and initial conditions
are the same as in Figs. 9 and 11. Since Rsyn

is much larger than for Jupiter and Saturn, we
extend the radial range of the integrations to
rL = 10Rp and the distant threshold signify-
ing escape to r = 100Rp. The open circles at
(rL = Rsyn, L∗ = 2 +

√
3) and (rL = Rsyn,

L∗ = 2 −
√

3) are as in Fig. 9, and the solid cir-
cle, marking the transition from the analytical to
semi-analytical boundary for the larger grains is at
L∗ = 0.0248, rL = 2.074Rp. The two solid squares
in a) are individual grain trajectories illustrated
in Figs. 13 and 14.
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Earth. Figure 15 provides a summary of the var-
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Fig. 15.— Local and global stability boundaries
for positive grains at Jupiter. The dashed line is
Rsyn, and the shaded region highlights local radial
instability near Rsyn. The white circles bounding
this region on Rsyn (L∗ = 2 ±

√
3 for all plan-

ets) also show where our semi-analytical curves
for grains that escape or collide with the planet
meet Rsyn. The solid circle is where the potential
at the planet’s surface equals the launch potential
and is also a local maximum.

ious analytical results discussed in this work for
positive grains at Jupiter.

We find that local radial stability is very use-
ful in the immediate vicinity of synchronous orbit,
since rg → 0 there (Eq. 13). More importantly,
our restriction of the global radial analysis to equa-
torial orbits is justified by the excellent agreement
between analytics and numerics. Radial instabil-
ity has important implications for depleting par-
ticles near the surface of a planet but beyond the
reach of atmospheric drag forces. At Earth, for ex-
ample, the radial instability eliminates negatively-
charged particles with rg < 0.2µm from Low
Earth orbit, and ∼ 0.1µm from within 2000 km.
For Jupiter, this instability sweeps positive grains
with rg < 1µm from the region within 10,000 km
from Jupiter’s cloud-tops.

Our local vertical analysis of grains launched on
Kepler circles in the equatorial plane adds the ef-
fect of the magnetic mirror force and is a major im-
provement to the equilibrium model of Northrop
and Hill (1982). We do not undertake a global
analysis which would seek to distinguish grains
that strike the planet from those that simply sus-

tain large amplitude oscillations in latitude.

Although the magnetospheres of Jupiter, Sat-
urn and the Earth are all nearly dipolar, each
planet has additional components that make the
field more complicated. Saturn has the simplest
field and is well represented by a dipole offset
northward by a few thousand km. Jupiter and
the Earth have non-zero dipole tilts that cause the
magnetic field seen by an orbiting grain to fluctu-
ate. Nevertheless, since tilts and offsets are gen-
erally small, we expect that the radial forces will
be only slightly affected, and the instability region
will remain nearly the same. Vertical motions, by
contrast, should be strongly affected since a circu-
lar orbit in the the equatorial plane is no longer
an equilibrium point. The global radial analysis,
which included the effects of oscillations, led to
a much larger instability region than from local
analysis (Fig. 15); in exactly the same way, we
expect the region of vertical instability to expand
when dipole tilts or offsets are included. We will
take up the study of more complicated magnetic
field configurations in a forthcoming paper.
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Horányi, M., and J. A. Burns 1991. Charged dust
dynamics - Orbital resonance due to planetary
shadows. J. Geophys. Res. 96, 19283–19289.
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Howard, J. E., M. Horányi, and G. R. Stewart
1999. Global Dynamics of Charged Dust Par-
ticles in Planetary Magnetospheres. Physical
Review Letters 83, 3993–3996.
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