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ABSTRACT

In the high density cores of globular clusters, multibody interactions are expected to be common, with the
result that black holes in binaries are hardened by interactions. It was shown by Sigurdsson & Hernquist (1993)
and others that 10M� black holes interacting exclusively by three-body encounters do not merge in the clusters
themselves, because recoil kicks the binaries out of the clusters before the binaries are tight enough to merge. Here
we consider a new mechanism, involving four-body encounters. Numerical simulations by a number of authors
suggest that roughly 20-50% of binary-binary encounters will eject one star but leave behind a stable hierarchical
triple. If the orbital plane of the inner binary is strongly tilted with respect to the orbital plane of the outer
object, a secular Kozai resonance, first investigated in the context of asteroids in the Solar System, can increase
the eccentricity of the inner body significantly. We show that in a substantial fraction of cases the eccentricity
is driven to a high enough value that the inner binary will merge by gravitational radiation, without a strong
accompanying kick. Thus the merged object remains in the cluster; depending on the binary fraction of black
holes and the inclination distribution of newly-formed hierarchical triples, this mechanism may allow massive
black holes to accumulate through successive mergers in the cores of globular clusters. It may also increase the
likelihood that stellar-mass black holes in globular clusters will be detectable by their gravitational radiation.

Subject headings: black hole physics — (Galaxy:) globular clusters: general — gravitational waves — stellar
dynamics

1. INTRODUCTION

Globular clusters are outstanding testbeds for dynamics. As
dense systems with ages many times their core relaxation time,
they display such features as core collapse and mass segrega-
tion, and they are almost certainly affected strongly by the pres-
ence of even a small number of binaries. It has long been spec-
ulated that various processes might produce relatively massive
black holes in their cores (e.g., Wyller 1970; Bahcall & Os-
triker 1975; Frank & Rees 1976; Lightman & Shapiro 1977;
Marchant & Shapiro 1980; Quinlan & Shapiro 1987; Porte-
gies Zwart et al. 1999; Ebisuzaki et al. 2001). Recent obser-
vations of some dense clusters provide tentative evidence for
black holes as massive as 2500M� at their centers (Gebhardt
et al. 2000).

Qualitatively, it seems entirely reasonable that large black
holes should grow in the cores of many clusters. Even at birth,
black holes are much more massive than the average star in a
cluster, and hence they sink rapidly towards the core. When in
the core, they tend to exchange into binaries. If the binary is
hard (i.e., if its binding energy exceeds the average kinetic en-
ergy of a field star), then a subsequent interaction with a field
star tends to harden the binary (e.g., Heggie 1975). If this pro-
cess is repeated often enough, the binary becomes tight enough
that it can merge by gravitational radiation, and the black hole
becomes larger. If these binaries merge while still in the cluster,
sources in globulars could be excellent prospects for detection
by the upcoming generation of gravitational wave instruments.

However, it has been shown (e.g., Sigurdsson & Hernquist
1993; Portegies Zwart & McMillan 2000) that if all black holes
have initial masses of 10M�, three-body encounters alone do
not lead to the formation of a large black hole at the center.
The reason is that hardening in a binary-single interaction is

accompanied by recoil, which kicks the binary out of the clus-
ter before it can merge. Without additional effects, this means
that the mergers occur well away from their host globulars. If
the initial mass of a black hole is >∼ 50M�, as may result from
a high-mass low-metallicity star or rapid merger of main se-
quence stars, it has enough inertia to remain in the core and
grow by coalescence (Miller & Hamilton 2002). But what if
only low-mass black holes are produced?

Here we propose a new mechanism for the coalescence of
low-mass black holes in globular clusters, involving binary-
binary interactions. Studies of such four-body encounters have
been comparatively rare, but have shown that in roughly 20-
50% of the interactions the final state is an unbound single star
plus a stable hierarchical triple system (Mikkola 1984; McMil-
lan, Hut, & Makino 1991; Rasio, McMillan, & Hut 1995). This
allows an important new effect: studies of planetary and stel-
lar systems have shown that if there is a large relative incli-
nation between the orbital planes of the inner binary and the
outer object of the triple, then over many orbital periods the rel-
ative inclination periodically trades off with the eccentricity of
the inner binary, sometimes leading to very high eccentricities
(Kozai 1962; Harrington 1968, 1974; Lidov & Ziglin 1976).
In turn, this can enhance the gravitational radiation rate enor-
mously, leading to merger without a strong kick and allowing
even low-mass binary black holes in globulars to be potential
gravitational wave sources.

In § 2 we discuss the principles of this resonance, as de-
rived in the case of three objects of arbitrary mass by Lidov
& Ziglin (1976). To their treatment we add, in § 3, a simple
term that accounts for general relativistic pericenter precession.
We show that although, as expected, this precession decreases
the maximum attainable eccentricity for a given set of initial
conditions, the decrease is typically minor and thus there is sig-
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nificant phase space in which the eccentricity resonance leads
to rapid merger. In § 4 we use these results in a simple model
for the mergers of black holes, and show that, depending on the
fraction of black holes in binaries, this effect can lead to a dra-
matic increase in the retention of black holes in globulars, and
to the growth of ∼ 102−3M� black holes in their cores.

2. PRINCIPLES OF THE KOZAI RESONANCE

When looking for changes in the orbital properties of a three-
body system that extend over many orbital periods of both the
inner binary and the outer tertiary, it is convenient to average the
motion over both these periods, a procedure called double av-
eraging. A general analysis of the double-averaged three-body
problem has been performed to quadrupolar order for Newto-
nian gravity by Lidov & Ziglin (1976) in Hill’s case, in which
the distance of the outer object (of mass m2) from the inner
binary (with component masses m0 and m1 ≤ m0) is much
greater than the semimajor axis of the inner binary. They find
that for any set of three masses there is always a relative incli-
nation of orbits such that an inner binary with arbitrarily small
initial eccentricity will evolve to e = 1. For example, in the
restricted three-body problem in whichm0 � m2 � m1 (e.g.,
the Sun, Jupiter, and an asteroid interior to Jupiter’s orbit; see
Kozai 1962), a relative orbital inclination of 90◦ will cause the
asteroid to evolve to e = 1 in a finite time.

However, the growth to such high eccentricity depends on
a long series of perturbations from the tertiary that add co-
herently, and hence requires certain phase relations. An extra
source of precession of the pericenter can interfere with this.
For example, the orbits of the moons of Uranus are tipped by
97◦ with respect to Uranus’ orbit around the Sun, but their ec-
centricities stay relatively low due to precession introduced by
the quadrupole moment of Uranus. In the case of black holes
or other close massive objects, a similar role may be played by
the effects of general relativity, which to lowest order includes
precession of the pericenter. How does this affect the maximum
eccentricity for a given set of initial conditions?

Hill’s approximation allows us to treat the system as two
nested binaries: the inner pair composed of m0 and m1, and
a second pair consisting of i) an object of mass m0 + m1 lo-
cated at their center of mass and ii) m2. Defining variables
as in Lidov & Ziglin (1976), we let M1 = m0 + m1 and
M2 = m0 + m1 + m2 be the total masses of the two binaries,
and µ1 = m0m1/M1, and µ2 = m2M1/M2 be their reduced
masses. Let the semimajor axes and eccentricities of the two
binaries be a1, e1 and a2, e2, and define i1 and i2 to be the in-
clinations of the binaries relative to the invariant plane of angu-
lar momentum of the system. Finally, let µ = Gm0m1m2/M1

and ε = 1− e2
1.

The double-averaged Hamiltonian H̄ admits several integrals
each of which yields a constant of the motion. First, the double-
averaging procedure guarantees that a1 and a2 are constant. We
keep terms in the Hamiltonian up to linear order in a1/a2; these
quadrupolar terms dominate the evolution of the system for the
high relative inclinations of interest here (see Ford, Kozinsky,
& Rasio 2000). To this order, e2 is also constant. The prob-
lem has two constants of the motion that are related to angular
momentum:

α = ε1/2 cos i1 + β cos i2 , β =
µ2

√
M2

µ1

√
M1

√
a2

a1
(1− e2

2) .

(1)
The constant β (a combination of the constants a1, a2, and

e2) represents the total angular momentum of the outer binary
while α is the total system angular momentum (with contribu-
tions from both the inner and outer binaries). Both α and β are
made dimensionless by dividing by L1 = µ1

√
GM1a1, the an-

gular momentum that the inner binary would have if it were on
a circular orbit.

The Hamiltonian, H̄, itself is constant. For convenience, we
define H̄ = −k(W + 5

3 ), with k = 3µa2
1/
[
8a3

2(1 − e2
2)3/2

]
and obtain:

W = −2ε + ε cos2 I + 5(1− ε) sin2 ω
(
cos2 I − 1

)
, (2)

which is equation (30) from Lidov & Ziglin (1976). Here ω is
the argument of pericenter of the inner binary and the scaled
angular momenta α, β, and

√
ε form a triangle from which the

relative inclination I = i1 + i2 can be obtained using the law
of cosines:

cos I =
α2 − β2 − ε

2β
√
ε

. (3)

The maximum ε (and hence minimum e1) occurs forω = 0, and
the minimum ε (and hence maximum e1) occurs for ω = π/2;
see Lidov & Ziglin (1976). Therefore, given initial values for ε0
and ω0, the maximum eccentricity may be derived from conser-
vation of W at ω = π/2. The time required to push the system
from its minimum to maximum eccentricity, is of order

τevol ≈ f
(
M1

m2

b32
a3

1

)1/2(
b32
Gm2

)1/2

(4)

(e.g., Innanen et al. 1997), where b2 = a2

√
1− e2

2 is the
semiminor axis of the tertiary and typically f ∼ few for I near
90◦, which is the case of interest here.

3. THE KOZAI RESONANCE WITH GR PRECESSION

Post-Newtonian precession may be included in a couple of
equivalent ways. One is to modify the Hamiltonian directly,
by changing the gravitational potential to simulate some of the
effects of general relativity. The modification of the potential
is not unique, and depends on which aspect of general relativ-
ity is to be reproduced (see Artemova, Bjornsson, & Novikov
1996). For our purposes it is the precession of pericenter that
is important (as opposed to, e.g., the location of the innermost
stable circular orbit), and hence the correct lowest-order modi-
fication is −GM/r → (−GM/r)(1 + 3GM/rc2) (Artemova
et al. 1996). Averaging the correction term over the orbits of the
tertiary and inner binary, we obtain a correction to the double-
averaged Hamiltonian of

H̄PN = −3(Gm0)2m1

a2
1c

2ε1/2
= −kWPN . (5)

This result may also be obtained from the first-order general
relativistic precession rate of dω = (6πGM1/

[
a1(1− e2

1)c2
]

over one binary period (see Misner, Thorne, & Wheeler
1973, p. 1110) using the equation of motion dω/dt =
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−(2k
√
ε/L1)(∂W/∂ε) derived by Lidov & Ziglin (1976). Sub-

stituting and integrating, we find that the first-order post-
Newtonian contribution toW is

WPN =
8√
ε

M1

m2

(
b2
a1

)3
GM1

a1c2
≡ θPNε

−1/2 . (6)

in agreement with equation (5). We have also checked our ex-
pressions with direct numerical three-body integrations; note
that equation (5) corrects a factor of two error in equation (19)
of Lin et al. (2000).

Adding the new term WPN to equation (2) and making use
of equation (3), we find

W = −2ε+ε cos2 I+5(1−ε) sin2 ω(cos2 I−1)+θPN/ε
1/2 .

(7)
As in the previous section, for a given set of initial conditions,
one can therefore solve for the minimum ε (maximum e), by
setting ω = π/2 and using the conservation of W . In general
we expect that initially the inner binary will have significant
eccentricity caused by perturbations during the four-body en-
counter, but for simplicity we will assume that the initial ec-
centricity is small enough that ε0 ≈ 1. In the restricted three-
body problem in which m0 � m2 � m1 and the initial rel-
ative inclination is I0, the approximate solution for εmin when
5 cos2 I0 � 3 (high inclination) and θPN � 3 (weak preces-
sion) is

ε
1/2
min ≈

1

6

[
θPN +

√
θ2

PN + 60 cos2 I0

]
. (8)

When 60 cos2 I0 � θPN this reduces to the Newtonian
solution, in which the maximum eccentricity is emax =√

1− (5/3) cos2 I0 (Innanen et al. 1997). If instead I0 ≈ π/2
so that 60 cos2 I0 � θPN, then emax ≈ 1− θ2

PN/9. More gen-
erally, for any set of masses, if e → 1 is allowed in the New-
tonian problem then emax = 1 − O(θ2

PN) when general rela-
tivistic precession is included. Numerically, forM1 = M� and
a1 =1 AU, θPN = 8 × 10−8(M1/m2)(b2/a1)3. Equation (8)
shows that in the restricted three-body problem the maximum
possible eccentricity (minimum εmin) is attained for the initial
condition I0 = π/2 (initially perpendicular circular orbits). If
m1 has non-negligible mass, so that m2 dominates the total
angular momentum less, then the critical I0 increases (Lidov
& Ziglin 1976). Figure 1 shows the critical inclination in the
Newtonian case (θPN = 0) for several mass ratios and semima-
jor axes.

We want to know whether this process can cause the inner
binary to reach a high enough eccentricity that it merges by
gravitational radiation before the next encounter with a star in
the globular cluster (which will typically alter the eccentricities
and inclinations significantly). Encounters with black holes in
globular clusters are usually dominated by gravitational focus-
ing instead of the pure geometrical cross section; this is true
within ∼ 100AU of a 10 M� black hole, where we have as-
sumed a velocity dispersion of 10 km s−1 for the interlopers
(see Miller & Hamilton 2002). In this limit the encounter time
is

τenc ≈ 6× 105n−1
6 (1 AU/a2)(10M�/M2) yr , (9)

where the number density of stars in the core of the globular is
106n6 pc−3. Note that it is the semimajor axis of the outermost
object, m2, that sets the encounter time scale, because in a sta-
ble hierarchical triple a2 must be a factor of several greater than
a1.

The timescale for merger by gravitational radiation for a high
eccentricity orbit is (Peter 1964)

τGR ≈ 5× 1017

(
M3
�

M2
1µ1

)( a1

1 AU

)4

ε7/2 yr . (10)

The steep dependence on eccentricity means that shrinkage of
the orbit is dominated by the time spent near maximum eccen-
tricity. Assuming that τGR � τevol so that orbital decay occurs
over many Kozai oscillation cycles, one finds that the fraction
of time spent near emax is of order ε1/2min (Innanen et al. 1997,

equation [5]), so that τGR ≈ 5×1017
(

M3
�

M2
1µ1

) (
a1

1 AU

)4
ε3min yr.

The condition for merger before an encounter is then simply
τGR < τenc.

FIG. 1.— Critical relative inclinations for evolution from e ≈ 0 to e = 1
in the Newtonian case; attaining e = 1 requires α = β in equation (3). Here
the inner binary is composed of equal mass stars, m0 = m1 , and the labels on
the curves indicate the mass ratio m2/m1. As the fraction of the total angu-
lar momentum supplied by the tertiary increases (larger β and therefore larger
m2/m1 or a2/a1), the critical inclination trends toward 90◦.

Note that in the Newtonian case θPN ≡ 0, all systems
with the same masses, b2/a1, and I0 are dynamically iden-
tical, in that the maximum eccentricity does not depend on
the individual values of b2 and a1. The introduction of post-
Newtonian precession breaks this scaling. If b2/a1 is fixed,
then θPN ∝ a−1

1 and therefore the maximum eccentricity at-
tained is given by εmin ∝ a−2

1 (cf. equation [8] for the restricted
problem). The merger time is τGR ∝ a4

1ε
3
min ∝ a−2

1 . That is,
a wider binary can be pushed to higher eccentricities, and actu-
ally merge faster, than a closer binary. Note, however, that the
solid angle for this orientation is proportional to θPN ∝ a−1

1 ,
because the optimum angle is usually close to π/2, so the solid
angle is proportional to the cosine of the inclination. There-
fore, if binary-binary interactions leave the binary and tertiary
inclinations randomly oriented with respect to each other then
a smaller fraction of wide binaries will fall into the optimal ori-
entation. Qualitatively this means that as the binary is hard-
ened by various interactions, every time a triple is formed it has
a chance to push the eccentricity high enough that the binary



4

merges before the next encounter. The smaller the system, the
larger the probability of such an orientation, because both the
solid angle and the encounter time are larger.

One way to quantify the probability of merger through the
increase of eccentricity is to plot, as a function of the semima-
jor axis of the inner binary, the range of relative inclinations
such that merger occurs before the next encounter of a field
black hole with the tertiary (which, being on a wide orbit, will
interact before the inner binary will on average). In Figure 2,
we assume three 10M� black holes, with a given a1 and a2.
From a2 and an assumed number density of stars in the cluster
(n = 106 pc−3), we compute the average time τenc to the next
encounter within a distance a2 of the system. We then deter-
mine the range of initial inclinations I such that τGR < τenc,
by solving for εmin using equation (7) with the initial conditions
e1 = e2 = 0.01 and ω = 0. Note that for wider tertiary orbits,
the total angular momentum of the system is dominated more
by the tertiary (larger β), and hence the relative inclination that
gives the smallest possible εmin is closer to 90◦ (see Figure 1).
If a single Kozai oscillation cycle is longer than τenc the system
never attains the required high eccentricity. This causes the cut-
off in the a2 = 10a1 and a2 = 20a1 curves in Figure 2; similar
cutoffs exist at a1 > 10 AU for the remaining two curves.

FIG. 2.— Inclination ranges for merger by gravitational radiation. For this
graph, we assume that all three black holes have mass M = 10M�, and we
assume a globular core number density n = 106 pc−3 for calculating τenc.
The shaded regions indicate ranges of the relative inclination for which merg-
ers will occur for each of four value of the semimajor axis ratio a2/a1: 3, 5, 10,
and 20. The peaks, which occur at the locations predicted by the bottom curve
in Fig. 1, are truncated where the time to increase the eccentricity of the inner
binary is greater than the mean time to an encounter (τevol < τenc). For com-
parison, the dotted lines are the boundaries of the regions if general relativistic
precession is suppressed; only for a2 = 20a1 is there a noticeable difference.

4. CONCLUSIONS

The level of importance of the Kozai mechanism depends on
several factors including: i) details of the interactions between
two binaries, ii) details of the interactions between a triple, and
either a binary or a single star, and iii) the fraction of black
holes in binaries, which in turn relies on the iv) dynamics of the
cluster itself. Understanding these interactions statistically will
require extensive long-term simulations. However, the Kozai
mechanism has the potential to be the dominant process in the
interactions of stellar-mass black holes in globulars, if most
such black holes are in binaries. When only three-body inter-
actions are considered, very few black holes are retained by
the clusters (only 8% in the simulations of Portegies Zwart &
McMillan 2000). This occurs because the same processes that
harden a binary toward an eventual merger also impart velocity
kicks on the binary that ultimately eject it from the globular be-
fore it can merge. In contrast, the majority of black holes can
be retained if binary-binary interactions dominate.

For example, suppose that a third of those interactions pro-
duce stable triples. Subsequent interactions of the tertiary with
field stars will change its eccentricity and semimajor axis. If
the pericenter distance of the tertiary is less than a few times
a1, then the triple system becomes unstable, normally by eject-
ing its least massive member. Suppose that there are typically
∼2 encounters before the triple is disrupted in this way, and
that each encounter of the tertiary that does not create an un-
stable triple produces a new relative inclination I that is drawn
from a uniform distribution in cos I . Suppose also that every
time the inner binary interacts strongly its semimajor axis is
decreased by ∼ 20% (typical for strong interactions of three
equal-mass objects; see, e.g., Heggie 1975; Sigurdsson & Phin-
ney 1993). Then, in an n = 106 pc −3 cluster there is a ≈ 50%
chance that the inner binary will merge before it hardens to
a1 ≈ 0.2 AU, at which point the binary recoil velocity vrecoil

exceeds the ∼50 km s−1 escape speed typical of the cores of
globulars (Webbink 1985). In an n = 105 pc −3 cluster, en-
counters are less frequent and the fraction rises to ≈ 70%.

Thus, depending on the binary fraction and other properties
of black holes in globulars, the majority of black holes could
merge before being ejected, and growth of intermediate-mass
black holes in globulars may proceed naturally even if no black
hole is formed with M > 10M�. This could influence stellar
dynamics in the core, and the gravitational wave signals from
globulars, and should be included in future simulations.

This work was supported in part by NASA grant NAG 5-
9756 and by NSF grant 5-23467.
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