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In the giant-impact hypothesis for lunar origin, the Moon accreted 
from an equatorial circum-terrestrial disk; however, the current 
lunar orbital inclination of five degrees requires a subsequent 
dynamical process that is still unclear1–3. In addition, the giant-
impact theory has been challenged by the Moon’s unexpectedly 
Earth-like isotopic composition4,5. Here we show that tidal 
dissipation due to lunar obliquity was an important effect during 
the Moon’s tidal evolution, and the lunar inclination in the past must 
have been very large, defying theoretical explanations. We present a 
tidal evolution model starting with the Moon in an equatorial orbit 
around an initially fast-spinning, high-obliquity Earth, which is a 
probable outcome of giant impacts. Using numerical modelling, 
we show that the solar perturbations on the Moon’s orbit naturally 
induce a large lunar inclination and remove angular momentum 
from the Earth–Moon system. Our tidal evolution model supports 
recent high-angular-momentum, giant-impact scenarios to explain 
the Moon’s isotopic composition6–8 and provides a new pathway to 
reach Earth’s climatically favourable low obliquity.

The leading theory for lunar origin is the giant impact9,10, which 
explains the Moon’s large relative size and small iron core. Here we 
refer to the giant-impact theory in which the Earth–Moon post-impact 
angular momentum (AM) was the same as it is now (in agreement with 
classic lunar tidal evolution studies11,12) as the ‘canonical’ theory. In the 
canonical giant-impact model13, a Mars-mass body obliquely impacts 
the proto-Earth near the escape velocity to generate a circum-terrestrial 
debris disk. The AM of the system is set by the impact, and the Moon 
accretes from the disk, which is predominantly (> 60 wt%) composed of 
impactor material. However, Earth and the Moon share nearly identical 
isotope ratios for a wide range of elements, and this isotopic signature 
is distinct from all other extraterrestrial materials4,5. Because isotopic 
variations arise from multiple processes4, the Moon must have formed 
from, or equilibrated with, Earth’s mantle5,14. Earth–Moon isotopic 
equilibration in the canonical model has been proposed by ref. 15, but 
has been questioned by other researchers16, who suggest that the large 
amount of mass exchange required to homogenize isotopes could lead 
to the collapse of the proto-lunar disk.
Ćuk and Stewart6 proposed a new variant of the giant-impact 

model that is based on an initially high-AM Earth–Moon system. 
In this model, a late erosive impact onto a fast-spinning proto-Earth 
 produced a disk that was massive enough to form the Moon, and was 
composed primarily of material from Earth, potentially satisfying the 
isotopic observations. Canup7 presented a variation of a high-AM 
 origin in which a slow collision between two similar-mass bodies 
 produces a fast-spinning Earth and a disk with Earth-like composition 
that becomes the Moon. Subsequently, Lock et al.8 have argued that 
a range of high-energy, high-AM giant impacts generate a particular 
post-impact state where the Earth’s mantle, atmosphere and disk are  
not dynamically isolated from each other, enabling widespread mixing 
and equilibration between the accreting Moon and Earth. After the 

impact, these high-AM models require a plausible mechanism with 
which to remove AM to be consistent with the current Earth–Moon 
system.
Ćuk and Stewart6 originally proposed that the excess AM was lost 

during tidal evolution of the Moon via the evection resonance between 
Earth’s orbital period and precession of the Moon’s perigee6. More 
recently, Wisdom and Tian17 found that the evection near resonance 
can reduce the system’s AM to the present value for a wider range of 
tidal parameters than explored by ref. 6. However, AM loss through 
the evection resonance is still confined to a subset of possible tidal 
parameters for Earth and the Moon, and the high-AM giant-impact 
scenario requires a robust mechanism for reproducing the present-day 
system. In this work, we propose a more plausible model of lunar tidal 
evolution that removes AM, but also may solve another major problem 
for lunar origin: the Moon’s orbital inclination.

The Moon’s orbit is currently inclined by about 5°, but studies of its 
tidal evolution11,12 have found that the inclination would have to have 
been at least 12° at formation, if the inclination was primordial. This is 
at odds with lunar formation from a flat disk in Earth’s equatorial plane, 
which should produce a Moon with no inclination. Hypotheses that 
have been proposed to explain the lunar inclination include a sequence 
of Moon–Sun resonances1, resonant interaction with the protolunar 
disk2, and encounters with large planetesimals after the formation of 
the Moon3. However, past studies of lunar tidal history6,11,12 ignored 
the obliquity tides within the Moon, despite the Moon having very  
large ‘forced’ obliquity when it was between 30 and 40 Earth radii  
(RE) away from Earth owing to the lunar spin axis undergoing the 
Cassini state transition18,19. Chen and Nimmo20 found that the lunar 
obliquity tides (driven by Earth’s apparent north–south motion  
relative to the lunar figure (body)) greatly decrease the Moon’s orbital 
inclination.

To quantify the effect of obliquity tides, we used a semi-analytical 
tidal model (see Methods subsection ‘Damping of lunar inclination 
by obliquity tides’). Chen and Nimmo20 considered tides within the 
lunar magma ocean that rely on excitation of Rossby waves21, but  
here we considered only the tidal response of the current, ‘cold’ Moon. If 
we additionally assume long-term average tidal dissipation within Earth 
and current lunar tidal properties, we find that the orbital  inclination of 
the Moon must have been substantially higher before the Cassini state 
transition, possibly as high as 30° (Methods  subsection ‘Damping of 
lunar inclination by obliquity tides’ and Extended Data Fig. 1). If we 
were to extrapolate this inclination back to the time of lunar  formation 
close to Earth, the Moon must have formed with an orbit inclined at 
over 50° to the equator, which is clearly  inconsistent with a giant- 
impact origin and suggests that the inclination was acquired after the 
Moon formed. In addition, the planetesimal encounter hypothesis3 has 
 difficulty producing both the correct lunar eccentricity and inclination 
simultaneously when lunar inclination damping by lunar obliquity tides 
and lunar eccentricity excitation by Earth tides are taken into account 
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(Methods subsection ‘Excitation of lunar inclination by encounters with 
planetesimals’ and Extended Data Fig. 2).

We show that the tidal evolution of the Moon starting with a 
high-obliquity, high-AM Earth can reproduce the current lunar orbit, 
including the lunar inclination and the Earth–Moon system AM. For 
any perturbed orbit, there exists a Laplace plane around which the 
orbital plane of the perturbed orbit precesses. For close-in moons of 
oblate planets like Jupiter and Saturn, the Laplace plane is the  equatorial 
plane of the planet, whereas for outer irregular satellites of these  planets 
that are strongly perturbed by the Sun, the Laplace plane is their  
planet’s heliocentric orbital plane. For the Moon, the Laplace plane under-
goes a transition during lunar tidal evolution when the Moon recedes  
from the inner region dominated by perturbations from Earth’s  
equatorial bulge to the outer region dominated by solar perturbations. 
In the inner region, the Laplace plane is close to Earth’s equator, and 
in the outer region, the Laplace plane is close to the plane of Earth’s 
heliocentric orbit (the ecliptic). At the transition between these two 
regimes, the Laplace plane is intermediate between the equator and 
the ecliptic. The distance at which the Laplace plane transition occurs 
is approximately22
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where J2 is the oblateness moment of Earth, ME and MS are the mass 
of Earth and the mass of the Sun, and aE is Earth’s semimajor axis. 
For a planet like Earth that is in hydrostatic equilibrium, J2 depends 
on the rotation rate. Therefore, the critical distance for the Laplace 
plane  transition has been moving inward over the course of lunar tidal 
 evolution as Earth’s rotation slows down and Earth becomes more 
spherical. For an Earth–Moon system with 100%–180% of the present 
AM, the Laplace plane transition happens at 16–22RE.

For small and moderate obliquities of Earth (that is, angles between 
the Equator and the ecliptic), the Laplace plane transition is smooth 
and does not produce any excitation of lunar eccentricity or  inclination. 
However, the Laplace plane transition causes orbital instabilities for 
obliquities above 68.9° (ref. 23). Satellites on circular orbits around 
high-obliquity planets migrating through the Laplace plane transition 
can acquire substantial eccentricities and inclinations. This excitation 
is driven by solar secular perturbations that operate at high inclinations 
(“Kozai resonance”24). For high planetary obliquities, satellites close 
to the Laplace plane transition with low ‘free’ inclinations (to the local 
Laplace plane) still experience solar Kozai perturbations, because their 
orbits have large instantaneous inclinations relative to the ecliptic25.  
A related mechanism produces complex dynamics previously found by 
ref. 26 for the tidal evolution of hypothetical high-obliquity Earth-like 
planets with large moons. Atobe and Ida26 also found that the mass of 
a Moon-sized satellite has a large effect on the dynamics of the system, 
enabling stagnation or even reversal of tidal evolution and large-scale 
AM loss from the system; however, they used an averaged model that 
did not track eccentricity and could not capture the full dynamics of 
the Laplace plane transition.

To study the tidal evolution of the Moon from a high-obliquity 
Earth followed by inclination damping at the Cassini state transition, 
we wrote a specialized numerical integrator, R-SISTEM, which resolves 
lunar rotation and therefore fully models lunar obliquity tides (Methods 
subsection ‘Numerical methods’). Figure 1 (see also Supplementary 
Video 1) shows the early tidal evolution for two simulations that assume 
that the Earth–Moon system initially had 1.8 times its current AM, 
as proposed by ref. 6, but with an initial obliquity to the ecliptic of 
70°. Solar perturbations induce sizeable lunar eccentricity when the 
Moon reaches the Laplace plane transition at about 17RE, triggering 
strong eccentricity-damping satellite tides that shrink the  semimajor 
axis and approximately balance the outward push of Earth tides  
(see the first 16 Myr of Fig. 1). Because eccentric orbits have less AM 
than circular ones, AM is removed from the lunar orbit and transferred 

to Earth’s heliocentric orbit; Earth tides in turn transfer AM from 
Earth’s spin to the lunar orbit, whereas satellite tides do not change the 
AM of the Earth–Moon system. During this prolonged stalling of lunar 
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Figure 1 | Numerical simulation of the Moon’s early tidal evolution 
from Earth with initial obliquity of 70° and spin period of 2.5 h.  
a, Semimajor axis. c, Eccentricity. d, Inclination to the ecliptic of the lunar 
orbit. e, Earth’s obliquity to the ecliptic and the AM of the system (b) in 
units of α GM RE E

3
E , where ME, RE and αE =  0.33 are the mass, radius  

and the scaled moment of inertia of Earth, respectively, and G is the 
gravitational constant. In these units, the present AM is 0.35. The grey lines 
plot a simulation in which tidal properties of Earth and the Moon were 
k2,E/QE =  k2,M/QM =  0.01 throughout (see Methods subsection ‘Damping of 
lunar inclination by obliquity tides’ for definitions). The black line shows a 
simulation branching at 20 million years (Myr) after the giant impact by 
changing k2,E/QE to 0.005. In the AM plot (b), the thin lines plot a scalar sum 
of spin and orbital AM, while the lower (thick) band includes only the 
component of the lunar orbital AM vector that is perpendicular to the ecliptic. 
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tidal evolution, the Moon acquires large inclination (over 30°), while 
the obliquity of Earth decreases.

In the later part of this complex period of the lunar orbital history, 
lunar eccentricity is excited by secular near-resonances between lunar 
inclination and eccentricity and Earth’s oblateness (see Methods 
 subsection ‘Laplace plane transition’, and Extended Data Figs 3 and 4). 
Depending on the exact tidal parameters used for Earth and the Moon, 
Earth’s obliquity can reach that required to match the present value  
(< 20°)27, while the AM of the system also matches the present  
value (0.35 in units of α GM RE E

3
E ; see Fig. 1 legend for definitions). 

Figure 2 presents the results of the Laplace plane transition simulations 
using different tidal parameters for Earth and the Moon and a different 
initial AM of Earth (Extended Data Figs 5 and 6). Large AM loss,  
high lunar inclination and low terrestrial obliquity is a frequent 
outcome.

In Fig. 3, we explore the early part of the Laplace plane transition for 
different initial obliquities of Earth (with the same total AM). Cases 
with initial obliquities of 65° and 75° are similar to Fig. 1, with larger 
obliquity leading to larger AM loss in the early stages of the Laplace 
plane transition. The simulation with an initial obliquity of 80° experi-
ences stalling and reversal of tidal evolution, with the Moon eventually 
falling back onto Earth. This evolution agrees with prior results26, and 
we expect this outcome for all obliquities larger than 80°. We also found 
that the Moon evolving from Earth with an initial obliquity of 60° does 
not experience any instability at the Laplace plane transition. As the 
orientation of terrestrial planets’ spin axes is probably determined by 

giant impacts, their poles should be randomly distributed on a sphere. 
About a third of all Earth-like planets should have obliquities within 
60°–80° or 100°–120°, and, if they have large moons, would lose AM 
and obliquity (without losing the moon) at the Laplace plane transition. 
Furthermore, Kokubo and Genda28 found that planets with large AM 
are a frequent model outcome of terrestrial planet formation.

Once the Moon has passed through the Laplace plane transition, 
it continues to recede from Earth and lunar rotation passes through 
the Cassini state transition18. Using R-SISTEM, we find that the Moon 
probably spent some time in a non-synchronous rotation state when 
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Figure 2 | Lunar inclination and Earth’s obliquity for various 
simulations. The initial and final lunar inclination (a) and Earth’s 
obliquity (b) are plotted against corresponding values of the Earth– 
Moon system AM in different simulations. AM is plotted in units of 
α GM RE E

3
E , and all simulations of the Laplace plane transition included 

here started with Earth’s obliquity of 70°. The squares correspond to 
simulations plotted in Fig. 1: the open square plots a simulation with 
QE/k2,E =  QM/k2,M =  100 and the filled square plots the branch for which 
QE/k2,E =  200 after 20 Myr. Circles plot simulations with QE/k2,E =  200 
throughout (shown in Extended Data Fig. 5), with white, grey and black 
circles corresponding to cases with QM/k2,M =  200, 100 and 50, respectively. 
Simulations with higher initial AM (2.25 h initial spin) (Extended Data 
Fig. 6) are plotted with triangles: the open triangle plots a simulation with 
QE/k2,E =  QM/k2,M =  100 and the filled triangle plots the branch for which 
QE/k2,E =  200 after 30 Myr. All simulations saw a substantial loss of AM, 
excitation of lunar inclination to large values, and a large reduction of 
Earth’s obliquity. We conclude that a smaller QE leads to a larger AM loss, 
while a greater QE later in the Laplace plane transition leads to smaller 
final obliquity for Earth.
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Figure 3 | Similar to Fig. 1, but with different initial obliquities for 
Earth. Obliquities are 80° (black line), 75° (red line) and 65° (blue 
line). QE/k2,E =  QM/k2,M =  100 throughout the simulations. Unlike the 
simulations shown in Fig. 1, these simulations were followed for only 
20 Myr. The 80° simulation leads to the Moon falling back on Earth.  
We note a trend that the AM loss (b) is larger for higher initial obliquities 
of Earth.
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close to the Cassini state transition (Fig. 4, Extended Data Figs 7 and 
8) and that transitions between the rotation states can be triggered 
by various resonances or impacts (Methods subsection ‘Cassini state 
transition’, Extended Data Figs 9 and 10, and Supplementary Video 2).  
Regardless of the nature of the lunar rotation state, the Moon’s  obliquity 
is very high during the Cassini state transition and immediately 
 following it, leading to damping of lunar inclination. Although the 
implementation of high-obliquity satellite tides in a fully numerical 
integrator is challenging (Methods subsection ‘Numerical methods’), 
we find that the lunar inclination damps from 30° (obtained during the 
Laplace plane transition) to its present value if we assume the long-term 
average tidal properties for Earth and a relatively non-dissipative, solid 
Moon (Fig. 4).

The rotational dynamics of the Moon is strongly dependent on the 
Moon’s global shape. The early Moon probably had little strength, and 
its shape was in equilibrium with tidal forces29. In Fig. 1, we modelled 
the Moon as a rigid body for numerical tractability, but we periodi-
cally reset its figure to match an equilibrium shape for that distance 
from Earth, assuming synchronous rotation30. This assumption of a 
hydrostatic-like shape results in low obliquities in Cassini state 1 when 
the Moon is close to Earth18. Since the current triaxial shape of the 

Moon matches the order of magnitude of tidal deformation expected 
at 23–26RE (ref. 29), we assumed that the Moon is rigid and has the 
present-day principal moments beyond 25RE. Our orbital history, 
shown in Fig. 1, may be consistent with the proposal that the current 
lunar shape froze at a distance of 15–17RE from Earth on an orbit with 
e ≈  0.2 (ref. 30).

Our high-obliquity model is at present the only model we are 
aware of to explain the origin of large past lunar inclination, which 
was subsequently reduced by strong obliquity tides at the Cassini state 
 transition20. A high-obliquity early Earth offers an AM loss  mechanism 
more robust than the evection resonance6,17. Therefore, our results 
 support high-AM giant-impact scenarios for lunar origin6–8. An initially  
high-obliquity Earth is consistent with the expectation of random 
spin-axis orientations for terrestrial planets after giant impacts, and the 
dynamics discussed here naturally reduces Earth’s obliquity to values 
that are low to moderate. This mechanism also provides a novel way 
in which initially highly tilted terrestrial exoplanets can acquire low 
obliquities and potentially stable climates.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 4 | Numerical integration of the later phase of lunar tidal 
evolution, assuming a lunar inclination of 30° at 25RE and the current 
shape of the Moon. The panels plot lunar inclination to the ecliptic (a), 
lunar obliquity with respect to its orbit (b) and lunar spin rate (c) against 
the Moon’s semimajor axis. The red points plot the segments of the tidal 
evolution that were artificially accelerated, while the blue points plot 
the intervals integrated with nominal parameters. We used k2,E =  0.3, 
QE =  35, k2,M =  0.024 and QM,0 =  60 (for the numerical implementation of 
lunar tides, see Methods subsection ‘Numerical methods’), with the Love 
numbers enhanced by 100 times before the event at 29.7RE and by 10 times 
after that event. Black lines plot the Cassini state obliquity (b) and the 
synchronous rotation rate (c) expected for each instantaneous semimajor 
axis and inclination. The Moon is in non-synchronous rotation from 
29.7RE to 35RE.
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METHODS
Damping of lunar inclination by obliquity tides. To quantify the effect of 
 obliquity tides on the lunar orbit, we constructed a semi-analytical method for 
modelling the evolution of lunar orbit under the influence of Earth and Moon tides. 
This model assumes that the Moon is in synchronous rotation and the relevant 
Cassini state, unlike the fully numerical integrator R-SISTEM that we use elsewhere 
in this work, which fully resolves lunar rotation. The goal of this model is (1) simply 
to demonstrate the importance of lunar obliquity tides during the Cassini state 
transition, and (2) to allow for more efficient integration of the lunar orbit beyond 
40RE, when the Moon was probably in Cassini state 2, and its obliquity, inclination 
and eccentricity were moderate or small.

The semi-analytical model is described by a system of equations19,31,32:
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where a, e, i and n are the semimajor axis, eccentricity, inclination and mean 
motion of the lunar orbit, respectively; t is time; M, R, k2 and Q are mass, radius, 
Love number and tidal quality factor, while the subscripts E and M refer to Earth 
and Moon, respectively (subscripts after derivatives indicate whether the effect 
is due to Earth or lunar tides). Lunar obliquity to the orbit, θ, is calculated as the 
solution to the equation18,33
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where A, B and C are the Moon’s principal moments of inertia, and Ω is the rate of 
precession of the lunar node, which we estimate as34
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n
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where nE is Earth’s heliocentric mean motion. This expression for Ω  assumes 
 precession dominated by solar perturbations and is invalid close to Earth, where 
the influence of its equatorial bulge is important. Our numerical implementation 
is a simple mapping that solves for lunar obliquity, calculates tidal derivatives and 
then advances the orbital elements (we used a 1-Myr timestep, appropriate for 
distances beyond approximately 25RE).

Extended Data Figure 1 plots three orbital histories calculated using the above 
approach that result in the Moon moving from 25RE to 60RE over 4.5 billion years, 
and having a final inclination of about 5° (the Moon’s eccentricity was about 0.01 
in these calculations). Extended Data Figure 1 clearly shows that the past  studies 
of lunar tidal evolution that neglected lunar tides11,12 greatly underestimate the 
past inclination of the Moon. Even assuming a tidal quality factor of Q =  100 
(which is larger than the present value of 38) for the Moon during the Cassini state 
 transition, the inclination had to be over 17° at 25RE, which would in turn require 
an  inclination of approximately 30° when the Moon was close to Earth, much 
greater than the often-cited 12° (ref. 12). If we adopt the current tidal parameters 
of the Moon (Q =  38), the inclination at 25RE was over 30°, seemingly at odds with 
the formation of the Moon in an equatorial disk.

Although our simplified model uses several approximations, we can argue that 
the values for the past lunar inclination that we calculate are underestimates, for 
at least three reasons. First, equation (5) assumes low obliquities, and at  obliquities 
close to 90°, the leading coefficient is 15/8 rather than 3/2 (ref. 19), leading to 
a more rapid damping of inclination. Second, we assumed the current Love 

 number for the Moon (k2,M =  0.024), which implies that the Moon was as rigid 
at the Cassini state transition as it is now; however, because the Moon was only a 
few hundred million years old and much warmer in the interior at the time of the 
transition, its Love number would be higher than it is now, again leading to more 
rapid  inclination damping. Third, we assumed constant tidal properties for Earth 
throughout the calculation, which is in conflict with the fact that the current rate of 
the Moon’s tidal recession is about three times higher than the long-term average35. 
An increase in the tidal dissipation within Earth’s oceans over time, as suggested 
by modelling36,37 would mean that the Moon spent more time at the Cassini state 
transition than we calculated, allowing more damping of inclination. These factors 
are all independent of the fact that the Moon may not have been in synchronous 
rotation during the Cassini state transition, as discussed in this work.
Excitation of inclination by planetesimal fly-bys. Recently, Pahlevan and 
Morbidelli3 proposed that the lunar inclination was produced by encounters 
between the Earth–Moon system and leftover planetesimals. While innovative, 
this model has several outstanding issues which caused the authors substan-
tially to overestimate the effectiveness of planetesimal encounters in raising the 
lunar inclination. They3 do not include lunar obliquity tides explicitly in their 
model, but assume that very high tidal dissipation rates within Earth moved 
the Moon to 40RE within a few tens of millions of years, allowing most of the 
planetesimal encounters to occur after the Cassini state transition, keeping the 
newly acquired inclination safe from further damping. This timeline works if 
k2,E/QE =  0.1 for the early Earth (which we find surprisingly high for a planetary 
body), but not for Earth’s long-term average k2,E/QE =  0.01, which would put the 
Moon at the Cassini state transition during the epoch of planetesimal encounters. 
However, given the uncertainties in the tidal properties of early Earth, here we 
will concentrate instead on the orbital mechanics aspects of the Pahlevan and 
Morbidelli3 model.

Extended Data Figure 2 shows the tidal evolution of the Moon using our 
semi-analytical model (Methods subsection ‘Damping of lunar inclination by 
obliquity tides’), starting with the end-state of the simulation featured in figure 1 
of ref. 3 (a =  47RE, i =  5.8°). Eccentricity was not specified in ref. 3, but it was stated 
that the encounter simulations typically result in e =  2sini, so we have used e =  0.2. 
We find that there is, starting from these initial conditions, no combination of tidal 
parameters for Earth and the Moon that can result in the correct eccentricity and 
inclination for the Moon at the present epoch. If we assume a larger excitation of 
lunar inclination, the correspondingly larger lunar eccentricity (given the e =  2sini 
condition) counteracts Earth tides and slow down lunar recession. Stronger Earth 
tides lead to faster outward evolution but also produce a net increase of lunar 
eccentricity (owing to equation (2)), potentially leading to a reversal of the Moon’s 
orbital evolution through lunar eccentricity tides. A slowdown or reversal in lunar 
tidal recession would preclude the Moon from reaching its present distance in 
4.5 billion years. Therefore we conclude that for planetesimal encounters to be able 
to explain the lunar inclination, the encounters must excite inclination without 
substantially exciting eccentricity (that is, leave the Moon with a lower eccentricity 
than that reported by ref. 3). Given the stochastic nature of the process, a small 
number of encounter outcomes will have a low eccentricity and high inclination. 
However, while possible, such scenarios are statistically unlikely and therefore 
not compelling.

Mechanisms other than tides have the potential to alter lunar eccentricity. It 
has been suggested that the current lunar eccentricity of 0.055 is the product of 
a resonance between the Moon and Jupiter that happens when the Moon is at 
about 53RE (ref. 38). This resonance arises because the rate of precession of the 
lunar longitude of pericentre is commensurate with the mean motion of Jupiter 
(‘jovian evection’). The rate of precession is (ignoring lunar inclination, which is 
not affected by the resonance)34:
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where eE is the eccentricity of Earth’s orbit. Because eE varies rapidly on 105-year 
timescales owing to Milanković cycles39, capture is impossible and the Moon 
crosses the resonance many times in both directions. These numerous crossings 
result in a random walk in lunar eccentricity, within a band in a and e associated 
with the resonance38. Since this band moves to higher e for higher a, it is possible 
to reach arbitrary large eccentricities through this random walk; however, it is 
likely that the Moon will sooner or later reach the outer boundary of the resonant 
band (defined by the resonance location for eE =  0), and exit this chaotic region 
with finite eccentricity, as shown in ref. 38.

However, it is also possible that through the random walk the lunar orbit will 
evolve to lower eccentricities. This reduction of eccentricity cannot be arbitrarily 
effective: it must be smaller than the thickness of the band in e for the semimajor 
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axis at which the Moon enters the resonant band. Keeping ϖ and a constant, the 
thickness of the band in e is determined by the variation in eE:
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where eE,max is the maximum eccentricity of Earth during Milanković cycles (the 
minimum is zero) and emax and emin are the boundaries of the band at the 
 semimajor axis at which the Moon encounters the resonant band. Entering  
the band with emax, the Moon cannot acquire an eccentricity lower than emin. So if 
we square equation (10) and keep only the quadratic terms in eccentricities, we get 
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Therefore, for eE,max =  0.06 (ref. 39), a starting eccentricity of e =  0.2 cannot be 
reduced by the jovian evection by more than about 0.03, so the jovian evection 
does not substantially change the implications of Extended Data Fig. 2, namely 
that the lunar eccentricity will probably remain high if it was substantially excited 
by planetesimal encounters when the Moon was already beyond 40RE.
Numerical methods. Our dynamics code R-SISTEM (Rotation-Symplectic 
Integrator with Solar Tides in the Earth–Moon system) directly integrates both 
the orbital and rotational motion of the Moon. The Moon is treated as rigid and tri- 
axial, and experiences tidal accelerations, the effects of Earth’s equatorial bulge and 
solar perturbations. The orbital part of the integrator is a symplectic mixed-variable 
integrator based on the principles of ref. 40, with the specific implementation taken 
from ref. 41. The integrator assumes the Moon is on a Keplerian orbit, with all 
other forces (including solar perturbations) inserted as periodic ‘kicks’ in Cartesian 
coordinates. The orbital part of R-SISTEM overlaps substantially with the more 
general-purpose satellite dynamics code SIMPL42, which has been extensively 
tested. Like SIMPL, R-SISTEM can include other planets (or other satellites of 
Earth) as perturbers, but neither were present in any of the integrations included 
in this paper. With no other planets, Earth’s orbit was essentially Keplerian, as 
R-SISTEM ignores back reaction from tides and Moon–Sun interactions on Earth’s 
heliocentric orbit.

Integration of the Moon’s rotation was based on the Lie–Poisson approach of 
ref. 43, with the Moon treated as a tri-axial rigid body torqued by Earth and the 
Sun. This enables direct modelling of the Moon’s axial precession and Cassini 
states, and allows for capture of lunar rotation into spin–orbit resonances, such as 
synchronous rotation. One issue we had to deal with is suppression of tumbling 
(that is, Chandler wobble), which can be triggered by some spin–orbit interactions. 
We adopted an approach similar to that of ref. 44, where a torque perpendicular to 
the AM vector acts on the AM vector (in the rotating reference frame) to push the 
AM vector towards the z-axis (the axis of the largest principal moment of inertia). 
The intensity of this torque is adjusted to match the wobble damping timescales 
predicted by ref. 45. If the AM vector is closer to the long axis of the body (that is, 
that associated with the minimum moment of inertia), a similar torque pushes the 
AM vector away from the long axis. These torques have reversed signs in opposite 
hemispheres, so that the wobble damping is the same regardless of the sense or 
rotation (in the body-fixed reference frame).

Although the rotation of Earth is not resolved in our model, it tracks the 
changes in Earth’s rotation period caused by the tides. The oblateness of Earth 
is adjusted at the end of each timestep, depending on the new value of the spin 
rate. We assumed that ω≈J2 E

2 holds for all spin periods (where J2 is the standard 
oblateness moment and ωE is Earth’s spin rate), which may be inaccurate if  
Earth was very non-spherical owing to fast spin. Earth’s axis is made to precess 
as a result of  instantaneous torques by the Moon and the Sun on the equatorial 
bulge (that is, we assume that Earth is purely oblate and in principal axis  
rotation).

The most important part of the numerical approach is the tides. Ćuk and 
Stewart6 approximated lunar tides as a radial force counteracting the radial motion 
of the Moon. Although this implementation could match eccentricity damping 
(assuming that the Moon is in synchronous rotation), it is not useful in modelling 
obliquity tides (because a radial force is always in the plane of the orbit). We still 
include a radial lunar tide, but it accounts only for the damping expected from 
the actual, physical radial tide (as opposed to libration and obliquity tides). The 
expression for the radial force used in the integrator is:
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where r and r are the Moon’s geocentric distance and radial velocity. Using the 
expression for r (ref. 39)
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where f is the Moon’s true anomaly, and the expression for the eccentricity damping 
by generalized accelerations is39,46
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To the lowest order in eccentricity, this expression averages over an orbital period to
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This is the analytical expression for the eccentricity damping expected from radial 
tides for a moon in synchronous rotation39. Although our radial force approximates 
the predicted damping of eccentricity to the lowest order, our approach is funda-
mentally different from that taken in analytical derivation. Although ref. 39 shows 
that energy loss is expected during a monthly cycle of tidal stresses, our integrator 
‘does not know’ that the cycle repeats monthly. All of the forces acting in our code 
are based only on the current positions and velocities (linear or angular) of the Sun, 
Earth and Moon. Despite these differences in approach, our force form has a clear 
physical meaning: energy is lost when a somewhat inelastic Moon moves radially 
in Earth’s tidal field, as the mechanical energy going into elastic deformation turns 
into heat. Our force is strictly radial, so it does not affect the AM of the lunar orbit, 
in agreement with previous treatments of satellite tides39.

We have also applied the principle that only the instantaneous quantities can 
be used to calculate tidal forces due to librational and obliquity tides. They are not 
treated differently, but are combined in the same ‘kick’, as they both arise from the 
Moon’s orientation moving relative to the Earth–Moon line. An equal and opposite 
torque is applied to the Moon’s spin, enabling despinning and damping into the 
synchronous rotation. Our approach is based on analogy with the general case of 
tides on a non-synchronous body; if we assume that the Moon is rotating much 
faster than it orbits the Earth, the acceleration experienced by the Moon from tides 
raised by Earth on the Moon would be39
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where φ is the lunar spin rate. We may be tempted to apply this equation to the 
synchronous case, and assume that the lag angle is independent of synodic 
 frequency (equivalent to having constant Q) so that the angular acceleration  simply 
changes sign when the rotation is slower than orbital motion39. We can estimate 
the effect of such tidal acceleration on eccentricity (with obliquity set to zero), using 
equation (14):
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For small eccentricities and synchronous rotation, we can assume that 
φ− =−f en M2 cos ,  (M being the mean anomaly) so we need to integrate the 
above expression over M =  [− π/2, π/2] with a negative sign, and over 
M =  [π/2, 3π/2] with a positive sign. That would give us an expression for 
 eccentricity damping that does not depend on eccentricity, which is certainly 
 nonphysical. This is because strict constant-Q tides behave like a step function at 
the exact synchronous motion, without any sensitivity to the amount of deviation 
from synchronicity.

However, if we assume that the tidal Q does depend on frequency, according to 
φ= − /− −Q Q f n2( )1

0
1 , and keep only the lowest terms in eccentricity, we get
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which is the correct form for the eccentricity damping by the libration tide within 
a synchronous satellite39. Therefore, in order to have a unified treatment of tides 
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in synchronous (or near-synchronous) and non-synchronous cases, we need to 
assume that the lag angle is proportional to the angular velocity of libration φ− f 
when the deviation of the rotation rate from orbital motion is smaller than the 
orbital motion, and to assume that the lag angle is constant when the rotation is 
much faster than orbital motion. An alternative of constant time-lag tides (for all 
frequencies) is possible but leads to very large lag angles and very fast tidal 
 accelerations when early Earth had a fast spin47; our even higher AM initial 
 conditions would make this problem worse.

In order to treat tides on the Moon and Earth uniformly, including the  obliquity- 
related terms, we implemented the following relationship between the tidal Q 
(inverse of the lag angle) and frequency

δ δ
= + −Q Q 1 1 1 (20)0 2

with the parameter δ defined as:

δ= − /w v v (21)t t

where vt is the tangential component of the perturber’s apparent velocity relative 
to the perturbee’s (that is, the deformed body’s) centre of mass, and the vector w is 
defined as w =  s ×  r, with s being the angular velocity vector of the perturbee, and 
r the radius-vector of the perturber relative to the perturbee. This gives us Q =  Q0/δ 
for small librations, and Q =  Q0 for a fast-rotating body, and a reasonable transition 
when δ ≈  1. The way this lag angle is implemented in the integrator is to place a 
prolate quadrupole moment on the perturbee, with the axis of symmetry defined 
by the vector ˆ δ̂+r (2Q)−1 (where hats denote unit vectors). This quadrupole 
moment (described by equation 4.145 of ref. 39) then torques (and is torqued by) 
the perturber, producing tidal accelerations. On the Moon we have only the tidal 
bulge raised by Earth but on Earth we have both lunar and solar tidal bulges, each 
of which torques both the Sun and the Moon; Moon–Sun tidal cross-terms have 
been found to be important12,48.

Since we treated all orientations of relative motions between the orbital motion 
and the perturbee’s velocity equally, this formulation does not discriminate between 
(eccentric) libration tides and obliquity tides. Our tests show that the integrator 
correctly reproduces the expected relationship19
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Our ‘levelling off ’ of the tidal phase lag for libration rates equal to about half 
of the orbital motion has little bearing on eccentricity evolution, given that lunar 
eccentricities in our scenario are rarely above 0.2. However, we do encounter 
large obliquities around the Cassini state transition, which means that we may 
be underestimating inclination damping at high obliquities when compared to 
 analytical calculations19,31. We think that our approach is justified, because stronger 
 dissipation at large obliquities would require tidal lag angles much larger than 
that corresponding to the tidal Q in the fast-rotation case, which we treat as the 
upper limit on the lag angle. Further work may be needed to reconcile different 
 definitions of tidal Qs in different treatments of high-obliquity tides.
Laplace plane transition. In Fig. 1, where a fast-spinning Earth’s obliquity was set 
to 70°, we observe the instability associated with the Laplace plane transition when 
the Moon is at 17–18RE. During this transition the Moon acquires large inclination, 
which is similar to the findings of ref. 26. We find that the behaviour of lunar eccen-
tricity is rather complex, exhibiting spikes and crashes, separated by relatively stable 
periods of moderately excited eccentricity. To understand these quasi-stable states, 
we looked in detail at the results of the simulation at 12.8 Myr (Extended Data  
Fig. 3). It is clear that the eccentricity is excited by Kozai-type perturbations24,49, 
which are secular and involve interaction between an outer perturber (the Sun 
in this case) and an inclined perturbee (the Moon). Unlike in standard Kozai 
 dynamics of planetary satellites50,51, Earth’s obliquity has an important role, and 
the inclination oscillates owing to mutual precession of the lunar orbit and Earth’s 
spin axis, so that the inclination and eccentricity are not simply anti-correlated. 
Extended Data Figure 3 shows that this dynamical state is periodic in its  secular 
behaviour, with exactly three inclination cycles for every eccentricity cycle.  
We hypothesize that each of the stable intervals in eccentricity (Figs 1 and 3, 
and Extended Data Figs 5 and 6) represent a periodic secular state where certain 
 precession periods are locked in resonance.

Extended Data Figure 4 shows a different ‘slice’ of the simulation from Fig. 1  
for the QE/k2,E =  200 branch of the simulation (black line) at 34.6 Myr. At this 
time, inclination is about 30° and the Laplace plane is dominated by the Sun. The 
eccentricity is still excited, but not by Kozai-type perturbations. The source of 
eccentricity excitation is near-resonant perturbations stemming from the slow- 
varying argument Ψ =  3Ω +  2ω −  3γ, where Ω and γ are the longitudes of the 

lunar  ascending node and Earth’s vernal equinox, respectively, and ω is the Moon’s 
argument of perigee. This interaction term combines solar perturbations and the 
precession of Earth’s spin axis, so it is capable of changing the obliquity of Earth. 
Since this interaction does not require capture into resonance, it is probably less 
sensitive to random perturbations such as planetesimal encounters3 than a narrow 
resonance would be. We hope to study the dynamics of this and similar near- 
resonant terms in future work.

Extended Data 5 shows the evolution of the Earth–Moon system with the 
same initial conditions as in Fig. 1, but with QE/k2,E =  200 from the beginning 
of the simulation. The black line plots the case with QM/k2,M =  200, and the grey  
line  represents QM/k2,M =  50. We also ran a simulation with QM/k2,M =  100, and it 
was in all ways intermediate between these two. Overall, the simulations shown in 
Extended Data Fig. 5 have low final obliquities, but have an excess of AM compared 
with the real Earth–Moon system. We conclude that higher QE during the early 
part of the Laplace plane transition leads to less AM loss than in the case shown in 
Fig. 1, but that it leads to larger reduction in obliquity during the later part of the 
simulation. Lunar tidal properties appear to be less important, with a more dissi-
pative moon leading to slightly more AM loss and lower final obliquities for Earth.

In Extended Data Fig. 6 we started Earth with a spin period of only 2 h (as 
opposed to 2.5 h in Fig. 1). Just like in Fig. 1, we changed the tidal properties 
of Earth halfway through the simulation, leading to two different outcomes  
(see legend to Extended Data Fig. 6). While the qualitative evolution of the system 
is similar to that shown in Fig. 1, there are some qualitative differences. The final 
obliquity is lower than in Fig. 1 (in excellent agreement with ref. 27), while the final 
AM is about 15% too large. Given that the trend in outcome we see with increasing 
initial AM (lower final obliquity and higher final AM) is in the opposite direction 
from the trend we see with increasing initial obliquity (higher final obliquity and 
lower final AM), it is likely that a more complete exploration of initial conditions 
will find higher-AM cases where both the final AM and obliquity are satisfactory.

The apparent threshold obliquity for the instability that we find (between 60° 
and 65°) is below the critical obliquity of about 69° found by ref. 23; we understand 
that this is because of non-zero initial inclination of the Moon when encountering 
the Laplace plane transition. In all of our simulations, the Moon acquires a few 
degrees of inclination when crossing the inclination resonance just interior to the 
evection6; this early resonance is weak at low obliquities but strong when Earth’s 
spin axis is tilted. As long as we assume a hydrostatic shape for the Moon, the 
Moon’s obliquity is low and obliquity tides are weak, so this inclination largely 
survives until the Laplace plane transition.

During the Laplace plane transition a large amount of energy is dissipated in 
the Moon. For example, during the evolution shown in Fig. 1, tidal heating in 
the Moon reaches 1014–1015 W for several tens of millions of years. Owing to the 
 prolonged nature of both the transition and subsequent cooling of the lunar mantle, 
the lunar crust would contain the signal of major thermal events that occurred tens 
of millions of years after lunar accretion; thus, the Laplace plane transition should 
be considered when interpreting the geochronology of lunar samples.
Cassini state transition. The rotation states of most large planetary satellites are 
highly evolved through tidal forces raised by their parent planet. The spin periods 
of satellites are typically synchronized with the orbital period, and this is true for 
Earth’s Moon. Apart from spin period synchronization, tidal forces also damp any 
initial, so-called ‘free’, obliquities of the moons. The most energetically stable final 
state for satellite obliquities is one where the spin axis maintains a constant angle to 
the moon’s orbital plane. Since both the satellite’s spin axis and the orbital plane are 
precessing (the spin axis precesses around the orbital plane, which precesses around 
the Laplace plane), the most stable final obliquity is one matched to inclination 
and the precession rates in such a way that the spin axis, orbit normal and Laplace 
plane normal all stay in the same plane during their precession. This arrangement is 
called a Cassini state, and Cassini states can be calculated using equation (7)33. The 
two solutions relevant here are Cassini state 1, which the Moon will occupy when 
its spin precession rate is faster than the orbital precession, and Cassini state 2,  
which is the only possible solution when the spin precession is slower than orbital 
precession (as is the case at the present day). The Moon is thought to have crossed 
the Cassini state transition at about 33RE when Cassini state 1 ceased to exist and 
the Moon had to shift to Cassini state 2 (ref. 18).

The largest discrepancy between our R-SISTEM integration of the Cassini state 
transition (Fig. 4) and the semi-analytical solutions (Extended Data Fig. 1) is the 
fact that the Moon is in non-synchronous rotation from 29.7RE to about 35RE in 
the numerical simulation. To explore this phenomenon in more detail, we ran 516 
short simulations with initial conditions on a grid in a and i  covering the Cassini 
state transition (Extended Data Fig. 7). We found that the Moon settles into a stable 
sub-synchronous rotation for a wide range of initial conditions with a =  27–37RE. 
In all of the grid simulations, the Moon was initially non- synchronous, so our 
results show when the synchronous rotation will not be re-established after 
being broken, rather than that the synchronous rotation is unstable, in the 
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regions  covered with orange crosses in Extended Data Fig. 7. When it comes to 
intrinsic stability of continued synchronous rotation, we find major differences 
between Cassini states 1 and 2. Cassini state 1 is by itself stable all the way until its 
 disappearance at a =  31–34RE (the exact distance depends on inclination), unless 
disturbed by an outside influence (for example, a wobble  resonance or an impact). 
On the other hand, we find that Cassini state 2 is intrinsically unstable if its equilib-
rium obliquity is above 58.15 (Extended Data Fig. 8), a result well established in the 
literature52,53, but not previously relevant for the Moon in the low-inclination case. 
We also find that once Cassini state 2 becomes stable, the Moon may still occupy 
a sub-synchronous rotation state just short of synchronous until it is disturbed by 
a resonance or an impact.

We also find a number of resonances that excite the Moon’s rotation and can 
lead to long-term chaos (red crosses in Extended Data Fig. 7). Some of these are 
 probably associated with secondary resonances found by ref. 54. Here we will 
 concentrate on three features seen in Fig. 4: the wobble resonance at 29.7°, the 
1:2 spin–orbit resonance at 31° and several resonances at 34–35°. The wobble 
 resonance at 29.7° breaks the synchronous rotation by inducing large non- principal 
axis rotation within the Moon. Extended Data Fig. 9 shows how the wobble 
 amplitude grows as the Moon approaches the resonance (at a tidal evolution rate 
accelerated 100 times), and Extended Data Fig. 10 shows the resonance crossing 
itself, integrated at the nominal tidal evolution rate. This resonance is caused by 
the commensurability between Earth’s heliocentric motion and the lunar libration 
in longitude, the frequency of which is given by ref. 55

λ= −B A
C

n3( ) (23)

Currently, the period of the libration in longitude is 1,056.1 days (ref. 55). As long 
as the Moon’s shape is constant, this period is proportional to the orbital period, 
so the semimajor axis at which this period is one year is

=
⎛

⎝
⎜⎜⎜
.
.

⎞

⎠
⎟⎟⎟⎟

. = .
/

a R R365 25 days
1056 1 days

60 3 29 7 (24)r

2 3

E E

which is exactly where it occurs in our numerical simulation. After the  wobble 
 disrupts synchronous rotation, the Moon settles into a sub-synchronous 
high-obliquity state, consistent with Extended Data Figs 7 and 8.

At about 31RE, the Moon is briefly captured into a 1:2 spin–orbit resonance. 
This resonance can be stable at high eccentricities56, but we never observed long 
periods of capture in our high-obliquity, low-eccentricity cases. At 34–35RE the 
Moon encounters several resonances which disrupt sub-synchronous rotation 
and the Moon settles into (the by now stable) Cassini state 2. We think that these 
resonances are related to the 1:3 secondary secular resonance, which was found 
to intersect with Cassini state 2 at about this geocentric distance54. Clearly more 
work is needed to identify these resonant features and explore the full diversity 
of the Moon’s past spin–orbit dynamics. Here we assumed that the Moon already 
had its present shape at the time of Cassini state transition, which is a reasonable 
assumption30, but other shape histories are possible. Also, beyond 30RE in Fig. 4, 
lunar tidal evolution is accelerated 10 times over nominal, and the Moon would 
probably be affected by some of the later resonances more strongly if the evolution 
was integrated at the nominal rate. Additional factors that we ignored are impacts 
that can disrupt the Moon’s rotational state56 and the core–mantle interaction, 
which may have been important in generating the ancient lunar magnetic field57.

Once the Cassini state is re-established in Fig. 4, we can compare our  numerical 
results with analytical estimates (see equations (1)–(6)). Our numerical code 
R-SISTEM damps lunar inclination from 16° at 35RE to 9.2° at 40RE. This is 
slightly below our nominal target of 10° at 40RE (based on Extended Data Fig. 1), 
obtained by assuming a long-term-average Earth and the present Moon beyond 
40RE (Extended Data Fig. 1). Also, R-SISTEM damps inclination slightly faster 

for QM,0 =  60 than does the analytical model (switching to the analytical approach 
at 35RE would give us 10.9° at 40RE). This is an inevitable consequence of the 
differences between the two approaches, but we are encouraged by the over-
all convergence of the results. In the absence of any strong constraints on the  
timeline of the Moon’s tidal evolution, we think that the history shown in Figs 1 
and 4 represents the best currently available explanation for the otherwise puzzling 
lunar orbital inclination.
Code Availability. Computer programs used in this paper are available on request.
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38. Ćuk, M. Excitation of lunar eccentricity by planetary resonances. Science 318, 

244 (2007).
39. Murray, C. D. & Dermott, S. F. Solar System Dynamics (Cambridge Univ. Press, 

1999).
40. Wisdom, J. & Holman, M. Symplectic maps for the N-body problem. Astron. J. 

102, 1528–1538 (1991).
41. Chambers, J. E., Quintana, E. V., Duncan, M. J. & Lissauer, J. J. Symplectic 

integrator algorithms for modeling planetary accretion in binary star systems. 
Astron. J. 123, 2884–2894 (2002).
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Extended Data Figure 1 | Semi-analytical model of the lunar tidal 
evolution. Evolution of lunar inclination (a) and obliquity (b) as the  
Moon evolves from 25RE to 60RE using our semi-analytical model 
(Methods subsection ‘Damping of lunar inclination by obliquity tides’). 
Initial inclinations were chosen so that the final lunar inclination was the 
current value of about 5°, while the obliquity was calculated assuming  
the Moon was in a Cassini state (jumps between 30RE and 35RE are due to 
the transitions between Cassini states 1 and 2)18. Love numbers were set at 
their current values (k2,E =  0.3, k2,M =  0.024)35, and the current lunar shape 
was assumed. The black and red lines plot the solutions for QM =  10,000 
and QM =  38 (current value), respectively, while QE was in the range 33–35 
range (it was adjusted so that a semimajor axis of 60RE was reached after 
4,500 Myr). The blue line plots a history assuming QM =  100 interior to 
40RE, and QM =  38 after the Moon passes that distance. The black line 
closely resembles the results of studies11,12 that neglected lunar obliquity 
tides, while the other two curves indicate that the past lunar inclination 
must have been much larger owing to lunar obliquity tides.
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Extended Data Figure 2 | Lunar tidal evolution following planetesimal 
encounters. Evolution of lunar inclination (a) and eccentricity (b) 
following the excitation of the lunar inclination by encounters with 
planetesimals as proposed by ref. 3, using our semi-analytical model.  
The two sets of initial conditions are for the state a =  47RE, i =  5.8° featured 
in ref. 3 (Fig. 1), and a possible outcome with a more excited inclination 
i =  10° (also at a =  47RE). The initial eccentricities were estimated as 
e =  2sini. The black lines show the evolution assuming QM =  38 and 
QE =  34, with the current Love numbers. The red line plots the evolution 
for QM =  100 and the blue line the evolution for QE =  20. The circle 
symbol plots the current inclination and eccentricity of the lunar orbit. 
No combination of tidal parameters can simultaneously match both the 
current lunar inclination and eccentricity at the same time. A small  
QM combined with high e also keeps the Moon from reaching 60RE  
(top two lines). Decreasing QE also does not help, as stronger Earth tides 
further increase the lunar eccentricity (blue line).
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Extended Data Figure 3 | A snapshot of the simulation shown in  
Fig. 1 taken at 12.8 Myr. The left-hand panels show eccentricity (a), lunar 
inclination and Earth’s obliquity with respect to the ecliptic (b), and the 
argument of perigee of lunar orbit, with the ecliptic as fundamental plane 
(c) versus time over a 500-year period, while the right-hand panels plot 
lunar eccentricity (d) and inclination (e) against the Moon’s argument of 
perigee (over the whole period of 30,000 yr). The eccentricity is clearly 

correlated with the argument of perigee, as expected for Kozai-type 
perturbations24,49. Rapid mutual precession of Earth’s spin axis and the 
plane of the Moon’s orbit, which are substantially inclined to one another 
(and to the ecliptic plane), clearly affects both the eccentricity and the 
perigee precession. This secular behaviour is periodic, with exactly three 
inclination cycles per one eccentricity cycle, which corresponds to half of 
the period of precession of the argument of perigee.
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Extended Data Figure 4 | A snapshot of QE/k2,E =  200 simulation shown 
in Fig. 1 (black line) at 34.6 Myr. At this time, eccentricity excitation (a)  
and the associated variation of Earth’s obliquity (b) are not due to Kozai 
perturbations, but owing to the slow-varying near-resonant argument 
Ψ =  3Ω +  2ω −  3γ (c), where Ω and γ are longitudes of the lunar ascending 
node and Earth’s vernal equinox, respectively, and ω is the Moon’s 
argument of perigee. This near-resonant interaction is responsible for the 
substantial reduction of Earth’s obliquity seen in Fig. 1.
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Extended Data Figure 5 | Early tidal evolution of the Moon with 
QE/k2,E =  200 throughout the simulations. Black lines are for the case 
with QM/k2,M =  200, while grey lines plot the simulation with QE/k2,E =  50. 
The most notable aspects of these simulations are low final obliquities of 
Earth (e) and a final AM of the Earth–Moon system (b) in excess of the 
current value of 0.35α GM RE E

3
E . a, c and d plot the semimajor axis, 

eccentricity and inclination of the Moon.
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Extended Data Figure 6 | Early tidal evolution of the Moon with Earth 
initially having a 2-h spin period. This is equivalent to the system having 
twice the current AM. The grey lines plot a simulation in which the tidal 
properties of Earth and the Moon were QE/k2,E =  QM/k2,M =  100 
throughout. The black line shows a simulation branching at 30 Myr  
by changing QE/k2,E to 200. Although the final obliquity of Earth (e) is 
correct, the final AM of the Earth–Moon system (b) somewhat exceeds  
the current value of 0.35 ×  α GM RE E

3
E . a, c and d plot the semimajor axis, 

eccentricity and inclination of the Moon.
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Extended Data Figure 7 | Map of lunar rotational dynamics close to the 
Cassini state transition. Outcomes of 512 simulations probing the end 
states of initially very fast and very slow lunar rotations for 16 different 
lunar semimajor axes a and 16 different lunar inclinations i. Simulations 
were run for 1 Myr, except for the rightmost three columns, which were 
followed for 3 Myr. Each a− i field is described by two symbols, one each 
for initial rotations of 127 rad yr−1 and 381 rad yr−1. Green and blue 
boxes indicate synchronous rotation in Cassini states 1 and 2, respectively. 
Crosses indicate non-synchronous rotation with stable obliquity, with large 
orange crosses indicating sub-synchronous rotation, and small magenta 
crosses plotting super-synchronous states. Red crosses signify variations 
in obliquity above 1° during the last 50 kyr of the simulation (indicating 
excited or chaotic spin axis precession).
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Extended Data Figure 8 | Lunar obliquity close to the Cassini state 
transition. Obliquities for four ‘slices’ in inclination (at 5°, 10°, 15° and 
20°) from the grid of short simulations shown in Extended Data Fig. 7 
(solid red and magenta lines with points; the obliquities and inclinations 
are in the same order at far left and far right). When two different 
simulations for the same a and i differed in outcome, we chose the solution 
within the Cassini state, if available. The blue dashed lines plot the relevant 
Cassini states calculated using analytical formulae, while the black dashed 
line at 58.15° plots the upper limit for stable obliquities in the relevant 
Cassini state. Although the numerical and analytical results agree at the 
smallest and largest semimajor axes, the large discrepancies in between 
are due to non-synchronous rotations being dominant at the Cassini state 
transition.
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Extended Data Figure 9 | The Moon’s wobble as it approaches the 
annual resonance in Fig. 4. The rotation rate around the longest axis  
of the Moon (a) and the angle between the longest axis and Earth (b) 
during the first phase of lunar tidal evolution (red points in Fig. 4) within  
29.7RE, where we accelerated the tidal evolution by a factor of a hundred.  
The wobble is clearly building up as the Moon is approaching the 
resonance between its free wobble and Earth’s orbital period at about 
29.7RE. The growth in lunar libration angle is more influenced by 
increasing lunar obliquity (Fig. 4b) than the increase in the amplitude  
of the wobble.
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Extended Data Figure 10 | Passage through the annual resonance of the lunar 
free wobble in Fig. 4. Lunar obliquity (a), spin rate (b), rotation rates around the 
longest and shortest principal axes (c), and the angle between the Moon’s longest 
axis and Earth (d) during the first 1 Myr of the ‘blue’ segment of lunar tidal 
evolution in Fig. 4 (which was simulated at the nominal rate for tidal evolution). 
The free wobble (tracked by grey points in c) experiences a resonance at about 
330 kyr, breaking the Moon’s synchronous rotation. Since the Moon is close to the 
Cassini state transition, it cannot evolve back into Cassini state 1 and it settles into 
a non-synchronous high-obliquity state58.
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