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In this paper, we apply orbital perturbation theory to the circum-
planetary motion of micrometer-sized dust grains subject to gravi-
tational, electromagnetic, and radiation forces. We extend the
orbit-averaged radiation pressure equations of Mignard (1982,
Icarus 49, 347-366) to include planetary obliquity. We also derive
new equations for the Lorentz force arising from the aligned dipolar
and quadrupelar components of the planetary magnetic field. Fol-
lowing these derivations, we provide a framework for combining
all perturbations and demonstrate the validity of the resulting
expressions by comparing numerical integrations of them to inte-
grations of the full Newtonian equations; typically the orbit-aver-
aged equations can be inteprated several hundred times faster.
Finally, we analytically and numerically apply the newly derived
equations to particles moving through the Saturnian E ring and
discuss implications for that ring’s azimuthal and vertical struc-
ture. It is argued that the behavior of orbital precession rates at
large eccentricities leads to azimuthal asymmetry in the E ring,
Furthermore, a peculiar locking of orbital pericenters out of the
equatorial plane is shown to have implications for the E ring’s
vertical structure. We show analytically that the locking is caused
by small vertical forces arising from radiation pressure and from
the planet’s aligned quadrupolar field. Because the normal compo-
nient of radiation pressure varies over Saturn’s orbital period, we
suggest that the vertical structure of the E ring varics with

time. © 1993 Academic Press, Inc.

1. GENERAL REMARKS ON DUST AND ORBITAL
PERTURBATION THEORY

Although dust particles contain only a tiny fraction of
the mass in orbit about a planet, they far outnumber their
macroscopic companions. In planetary systems these tiny
motes are ubiquitous, both interspersed with macroscopic
bodies in optically thick rings and organized into tenuous
structures of their own. Sensitive detectors aboard space-
craft have discovered dust strewn throughout planetary
systems it quantities too faint to be visible (Gurnett ef al.
1983, 1986, 1989). Clearly the overall distribution of dust
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in circumplanetary orbits is complex; yet the distribution,
and 1he fact that it can indicate the presence of larger,
perhaps unseen, source bodies are of interest to diverse
groups of researchers. Ring dynamicists hope to under-
stand the dominant procésses operating in faint dust
bands, some of which may be relevant to the optically
thick classical ring systems. Magnetospheric physicists
are interested in the distribution of plasma close to the
planet; in this locale dust grains can be important sources
and sinks for charged particles. Finally, the impact of
numerous grains can damage a spacecraft by scouring its
optical componeants; slightly larger objects can damage
other instruments. These considerations must be weighed
carefully by mission planners and engineers wishing to -
assess risks. Knowledge of the distribution of dust in
circumplanetary orbits is useful to all of these researchers;
a necessary prevequisite for such knowledge is a good
understanding of the orbital dynamics of an individual
dust grain. The first several sections of this paper provide
a framework for studying orbital perturbations on dust
grains located throughout the circumplanetary environ-
ment. In the final sections, we apply these general results
to the specific case of dust in the Saturnian E ring.
Micrometer-sized dust grains moving along circumplan-
etary orbits are subject to sirong nongravitational pertus-
bations due to scattering of solar photons and due to
Loreniz forces arising from the planet’s rotating magnetic
field. The effect of these perturbations on an orbiting dust
particle can be determined by including the perturbation
forces in the left-hand side of Newton's second law F =
ma. In general this equation cannot be solved analytically,
so we are forced to resort to approximate or numerical
methods {see Hamilton and Burns 1992, Horanyi et al.
1992, Schaffer and Burns 1992, among others}. In many
cases, however, we are interested not in detaited informa-
tion on how a particle’s position and velocity change with
time but onty in how the character of its orbit varies. In
these cases, the six osculating orbital elements (a, e, i, {3,
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(a) View of an elliptical orbit in the orbital plane. Three of the orbital elements—the semimajor axis «, eccentricity e. and true anomaly

p—are depicted. Simpte geometry shows that the orbit center is offset from the planet by a distance ae. the semiminor axis is given by & =
a{l — )", and the semi-latus rectum by [ = a(1 — ¢%). {b) Three additional orbital elements that define the orientation of an elliptical orbit retative
to a fixed plane and a reference direction in that plane. The longitude of the ascending node, {}, measures the angle from the reference direction
to the point where the orbit's plane intersects the reference plane; the argument of pericenter, w, defines the angle between that intersection point
and pericenter (the closest approach of the orbit to the central bedy); and the inclination, i, measures the angle between the orbital and reference

planes. Inclination is defined such that 0° = | =< 180°,

w, and ») defined in Figs. 1a and 1b are particularly useful.
Other choices for these elements, especially the sixth, are
also possible (Danby 1988, p. 201). We often use M = nt,
the mean anomaly, where n = (u/a®)'” is the particle’s
mean motion, ¢ is the time measured from the moment of
pericenter passage, and u is the product of the gravita-
tional constant ( and the planetary mass M.

If the perturbation forces are small compared to the
planet’s gravitational attraction, the first five osculating
elements change slowly over timescales much longer
than the particle’s orbital period. Therein lies the pri-
mary advantage of the orbital elements: because they
are connected to the geometry of the orbit and because
they vary slowly with time, the osculating elements
allow a direct visualization of the orbital history of a
perturbed body in a way that far surpasses that possible
with a set of positions and velocities. Take, for example,
the case of an orbit around an oblate planet which we
discuss in Section 2. It is well known that the orbit-
averaged solution to this problem is, to high accuracy,
simply a precessing ellipse (Danby 1988, p. 345). The
orbit retains its size, shape, and inclination off the
equatorial plane while its node regresses and its pericen-
ter precesses, each at a constant rate. By calculating
these rates from equations given below and using Figs.
la and 1b, one can easily picture the resulting orbital
evolution. Attaining the same picture from positions and
velocities as functions of time requires more computa-
tion and considerably greater insight!

We note that, technically, the osculating clements ditfer
slightly from geometric elements which describe the true

shape of the orbit; these derivations are of order of the
dimensionless ratio (g) of the perturbing force to gravity.
For an oblate planet, therefore, the discrepancies are of
order J, (see Greenberg 1981, Borderies and Longaretti
1987). These differences are especially important when
true eccentricities and inclinations are small compared
to & (e.g., a particle on the geometrically circular orbit
discussed by Greenberg (1981) has a small osculating ec-
centricity and appears as if it is always at its osculating
pericenter), and when other perturbations do not strongly
affect an element. Similarly, the rate of change of the
mean anomaly is unequal to the mean motion for per-
turbed orbits; the deviations are of order & and are due
both to real changes in a particle’s speed and to difterences
between the osculating and geometric elements. Because
we are primarily interested in how a particle’s orbit
evolves, we will not use the mean anomaly perturbations
in this paper, but merely include them in the equations to
follow for completeness.

The fact that, for modest perturbations, the osculating
orbital elements vary slowly in time is useful both numeri-
cally and analytically because it allows the effects of a
perturbation to be averaged over a single (assumed con-
stant) Keplerian orbit. The resulting averaged expressions
describe how the osculating orbital elements change in
time and are accurate to first order in &. In the following
sections we treat the strongest perturbation forces act-
ing on close circumplanetary dust graimms—higher-order
gravity, radiation pressure, and the electromagnetic
force—and derive the appropriate orbit-averaged equa-
tions.
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2. HIGHER ORDER GRAVITY

Treatments of the orbital perturbations arising from
nonspherical terms in a planet’s gravitational field can be
found in many texts (e.g., Danby 1988), but we include a
short discussion of them in this section both for complete-
ness and to provide a simple example of the orbit-averag-
ing process that can be compared with the more compli-
cated ones to follow.

Because a planet’s spin is responsible for most of the
distortion of its gravity field, the field can be well repre-
sented by adding an axially symmetric perturbing po-
tential,

J.

MW
xR

J=2

(Br—p) P;(cos 9), )

to the standard point source potential; the perturbing force
is obtained by taking the gradient: Fgp = —m, VVgi.
Throughout this paper the subscripts “*p’” and **g"” stand
for “*planet’” and ‘‘grain,”” respectively; here R, is the
planet’s radius and m, is the mass of the dust grain. The
P,(x) are Legendre polynomials and the J; are dimen-
stonless coefficients that can be evaluated for a particular
planet to describe its gravity field.

To derive the first-order orbit-averaged equations, we
rewrite the potential, Eq. (1), in terms of the orbital ele-
ments and average it over time to obtain the negative of
the disturbing function. Inserting the disturbing function
into the potential form of the planetary equations (Danby
1988, p. 336), we find the equations for the variation of
the elements
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where the angular brackets denote orbit-averaged quanti-
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ties {¢f. Danby 1988, p. 347). Technically, each of the
orbital elements at the right side of Eqs. (2a—f) should be
encased in angled brackets as we ignore their short period
fluctuations, but these brackets will be omitted for clarity
since we refer only to the averaged elements throughout
this paper.

Notice that Eqs. (2a-f) are trivially integrable even
though the full problem is not (Kozai 1959). The first
three expressions imply that the elements a, e, and i are
constant and, consequently, the right-hand sides of the
final three equations are also fixed. Thus the angles  and
o circulate, having values that change linearly in time.
Since the circulation times are ~{a/R,)*/J, times longer
than the orbital period, the solution to Eqs. (2a-e) is
simply a slowly rotating ellipse.

The final equation merely expresses the average rate at
which a particle completes a single osculating orbit from
pericenter to pericenter; the rate differs slightly from the
mean motion both because the particie’s average angular
speed is changed and because the position of pericenter
slowly shifts. For equatorial orbits, the right-hand side of
Eq. (2f) is positive and the particle completes its radial
pericenter-to-pericenter oscillation slightly faster than its
unperturbed Keplerian counterpart. This is an expected
result since planetary oblateness augments the inward pull
of point-source gravity; the increased force effectively
raises the oscillator’s *‘spring constant’ and hence its
frequency.

3. RADIATION PRESSURE

For micron-sized grains in circumplanetary orbit, solar
radiation pressure is a strong perturber. In its simplest
form, radiation pressure imparts a force on a grain given
by

GMg .,
Frp = = ——é?gs,

(3)
where M, is the solar mass, R is the Sun—planet distance,
§ is a unit vector pointing from the planet toward the Sun,

and 8 is the dimensionless ratio of the radiation force to
solar gravity. For our Sun, Burns et af. (1979) express

B=57x 103 2

Pty

CY

which is valid for spherical particles that obey geometrical
optics (r, = 0.5um). Here r, and p, are the particle’s radius
and density, and (,, is a constant near unity whose exact
value depends on the optical properties of the grain. The
simple expressions given above ignore the anisotropy of
reradiated photons (Poynting—Robertson drag), grain ro-
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tation (Yarkovsky effect), the planetary shadow, and
complications arising from the rotation and finite angular
size of the Sun. These effects are quite small compared
to the main force of radiation pressure and can usually
be neglected in a first approximation, Despite the fact
that they are weak, dissipative forces, such as Poynting—
Robertson drag can be important because they affect the
semimajor axis, an element unperturbed by direct radia-
tion pressure. Similarly, effects of the planet’s shadow
make it possible for radiation pressure to alter the semima-
jor axis of an orbit (Mignard (984, Horanvi and Burns
1991). Nevertheless, for the times of a few tens of years
considered here, it is legitimate to ignore these weak
forces.

Orbit-averaged solutions to a particle moving around a
spherical planet subject to that planet’s gravity and solar
radiation pressure have been derived by several authors
including Burns et al. (1979) and Chamberlain (1979), both
of whom used Gauss’ form of Lagrange’s planetary equa-
tions for a force constant in magnitude and direction, and
Mignard (1982), who used a disturbing function approach
and included the effects of solar motion. All of the above
authors did their analysis in the plane defined by the or-
bital motion of the planet around the Sun (hereafter called
the ecliptic plane') and measured their inclinations from
that plane. In the case of motion about an oblate planet,
however, the planet’s equatorial plane is also im-
portant—this is especially true since most sources of cir-
cumplanetary dust {planetary rings and inner satcllites)
reside near this plane. It is natural, therefore, to seek an
orbit-averaged solution to the orbital evotution caused by
radiation pressure that can be expressed in the planet’s
equatorial plane; this is equivalent to adding a nonzero
planetary obliquity, v, to the previously derived solutions.
In this section we discuss two approaches to obtaining
equatarial equations and then we derive analytical expres-
sions valid for all obliquities.

One approach, motivated by the fact that orbit-aver-
aged equations valid in the ecliptic plane are already avail-
able (Mignard 1982), is to simply translate these equations
into the equatorial plane; this task can only be accom-
plished if the orbital elements themselves can be con-
verted. Since the new set of elements describe the same
elliptical orbit from a different reference plane, only the
angles (i, ), and w) that define the orbit’s orientation
relative to the plane will be altered (Fig. 1b)—the other
elements (a, ¢, and v) will be identical in both frames. We
seek, therefore, functions that relate the new orientation
angles to the old. These can be obtained either by simple
rotations or from spherical trigonometry. As seen from

! Here we use the term ecliptic somewhat loosely to avoid confusion
between the planet and particle orbital planes. Strictly speaking, the
ecliptic refers only to Earth’s orbital plane.
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FIG. 2. The planet’s equatorial plane, the ecliptic plane, and the dust
grain's orbital plane, each as projected onto the sky from the planet’s
center. Elements describing the orientation of the grain’s orbitat plane
relative to either of the two reference planes are shown; in each case,
the inertial reference direction is the ascending node of the ecliptic on
the equatorial plane. Primed quantities are elements referenced to the
ecliptic plane, unprimed ones are measured along (or from) the equatoriai
plane, and yis the planet’s obliquity. The spherical triangle formed by the
intersections of these three planes implicitly define one set of elements in
terms of the other [(/,Q}.w) — (i’ ,{} ,w’)].

the planet’s center, the equatorial plane, the ecliptic
plane, and a particle’s orbital path all appear as great
circles on the sky (Fig. 2); for simplicity we have chosen
to measure each orbital node from the ascending node of
the ecliptic on the equatorial plane. The spherical triangle
formed by the intersections of these great circles implicitly
defines the equatorial elements in terms of the ecliptic
elements. Unfortunately, the expressions resulting from
translating to equatorial elements are cumbersome
enough to defeat the main purpose of orbit-averaging,
which is to obtain simple equations for analytic work.
Accordingly, we try a different tack.

Since we hope to combine the effects of radiation pres-
sure with those of other perturbations, we need orbit-
averaged expressions referenced to the equatorial plane
and to an inertial direction. We choose a right-hand coor-
dinate system centered on the planet with % pointing to
the ascending node of the ecliptic on the equatorial plane
(Fig. 2), ¥ in the equatorial plane, and £ along the spin
axis. Since, to a good approximation, the Sun is mo-
tionless during the time it takes the particle to complete a
single orbit (this will only be inaccurate for very distant
orbits), we can average over an orbital period while hold-
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ing the Sun’s position constant. The problem breaks down
into three pieces: (1) determine the response of the orbit
to a constant force along each of the coordinate axes; (2)
solve for the Sun’s motion in the equatorial frame; and (3)
linearly combine these solutions.

Starting the first task, we resolve the solar position in
the equatorial frame into components with magnitudes
5., 8., and s_, the time variable values of which will be
determined shortly. The solar position as seen from this
frame is then simply § = s X + 5§ + s.2. The perturbing
potential Vg, is obtained from Eq. (3) via the relation
Fpp = —VVpyp. Since the magnitude and direction of radia-
tion pressure change only slightly over a single orbit of
the dust grain, we treat the right-hand side of Eq. (3)as a
constant and find Vgp = Fyp(s,x + 5,y + 5.2). To average
the disturbing function, —Vgp, over time, we first need to
express the cartesian coordinates x, y, z in terms of orbital
elements:

x =rsinfcosd = r(cosdcosuy —sinQsinucosi), (5)
v =rsinfsing = r(sin{lcosu + cosdsinucosi}), (6)
Z=rcosf=rsinisinu, )]
where
a(l — ¢?)
= T 8
l+ecosy (®)

and u = w + v is the argument of latitude. Since s, s_,
and s_ are nearly constant during the time it takes a dust
grain to make a single circuit around the planet, only the
following orbital time-averages are needed:

(x) = —3ealcos cosw — sinQsinwcosi), (9a)

(¥v) = —feasinQcosw + cos Qsinwcosi), (9b)
and

{z) = —~3easinisin w. {9¢)

We note that (y) can be obtained from («} by subtracting
90° from the node in Eq. (9a) and that all expressions
reduce appropriately if ¢ or / equals zero. Inserting these
expressions into the potential formulation of the planetary
equations, we obtain (after some algebra) the following
expressions for the variation of the orbital elements:

&) o
! RFP

(10a)
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dt
+ 5,(sin {2 cos m + cos () sin @ cos /) + 5. sin w sin {]
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<dw> = Qﬂee_) [s.(cos (2 cos w — sin ) sin @ cos i)
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— sin Q sin w cos i) + 5,(sin & cos w + cos 0 sin w cos §)
+ s. sin o sin i].  (10f)

Here 2a/(3n) = BMga®/(M,R?) is the ratio of the radiation
force to the planet’s gravity at a given semimajor axis. In
terms of previous expressions a = 3/(2r,) in Chambei-
lain’s (1979) notation and a(l — ¢3)'* = IHF/(2mu) in
Burns er al.’s (1979) notation. Eqgs. (10a-f) are fully three-
dimensional, valid for all eccentricities and inclinations,

It remains only to determine the coetficients s,, s,, and
.. Imagine a rotating ecliptic coordinate system such that
the Sun remains fixed along the xg-axis. In general, at time
t = 0, the Sun is located at an angle & from the inertial
reference direction in Fig. 2. To find the coordinates of a
unit vector pointing toward the Sun in the equatorial
frame, we apply two rotations; first a rotation of —rngt —
& around the normal to the ecliptic back to the mutual
node, then a rotation around the inertial direction by mi-
nus the obliquity to align the reference planes. In matrix
notation, the transformation is

§ = R(~y)R.(—ngt — )i, (11

where R () and R _(f} are rotation matrices around the x
and z axes, respectively (see Danby 1988, p. 425). Per-
forming the multiplication, we find that

{12a}
(12b)

5. = cos(npt + 8},

$, = cosvysin(ngt + &},
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and

s. = siny sin(ngt + &), (12¢)
Note that fory = 0, ny = 0,8 = 0, we have s, = |, 5, =
s. = 0, and Egs. (10a-e) reduce to those of Burns et al.
{1979) or Chamberlain (1979). Mignard’s (1982) equations
are obtained after a little trigonometry, by letting vy = 0,
& = 0, and employing the transformation ) = Qg + ngt.
Here Qp is Mignard’s longitude of the nodes which differs
from (} because the former is measured from a direction
that rotates at an angular speed ng, . With a little trigonom-
etry, we find that Egs. (10a—f and 12a—c) are also in
agreement with expressions derived independently by
Smyth and Marconi (1993).

We have derived Eqs. (12a—c) last to emphasize the
fact that orbit-averaging can be performed for arbitrary
s,, 5,, and s_ as long as their time dependence is slow
compared to the particle’s orbital period. For example,
we could easily treat the problem of motion around a
planet which orbits the Sun on an elliptical path by simply
replacing the argument in the R, rotation matrix in Eq.
(11} by an expression valid for the Sun’s nonuniform rate.
Of course, in such a case it would also be necessary to
add a time dependence to « to allow for the more im-
portant fact that radiation pressure weakens as the planet
moves away from the Sun (¢f. Hamilton and Burns 1992).

4. ELECTROMAGNETIC FORCES
4.1. General Remarks

The rings and small satellites of the outer planets lie
close to their primaries in environments characterized by
swarms of energetic charged particles trapped by strong
magnetic fields. Immersed in this sea of particles, a dust
grain quickly acquires an electric charge by a number of
mechanisms (Goertz 1989), the most important of which
are the electron and ion charging that occur as the grain
sweeps up these gyrating particles. Uncharged dust grains
are impacted by electrons more frequently than by ions
because the thermal speed of the former far exceeds that
of the latter—in essence, the electrons get to the grains
before the ions do. As a grain becomes more negatively
charged, it is able to electrostatically ward off some elec-
trons while simultaneously attracting a comparable num-
ber of ions until a balance is attained (Burns and Schaffer
1989, their Fig. 1). For typical magnetospheric parameters
and micremeter-sized grains, equilibrium is established in
a fraction of an orbital period. The addition of other charg-
ing mechanisms, such as photoelectron currents and sec-
ondary electron emission, usually only perturbs the equi-
librium grain charge, although for high secondary yields
such processes can lead to multiple equilibria (Meyer-
Vernet 1982). Finally, even the equilibrium charge may
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gradually change as the grain’s orbit takes it into regions
where plasma populations differ and as the grain’s veloc-
ity relative to the plasma varies {¢f. Burns and Schaffer
1989). Stochastic variations of the grain’s charge, which
are generally relatively small and occur swiftly, have little
effect on orbital evolution (Schaffer and Burns 1993).

Despite the complexity of these charging mechanisms,
it is often a good approximation to assume that the equilib-
rium charge on a grain is constant. Take, for example, the
orbital elements displayed in Fig. 5 of Horanyi et al. (1992)
which show an eccentric orbit that ranges from | out to 7
Saturnian radii. Although the relative velocity between
the grain and the corotating plasma varies tremendously,
changes in the equilibrium potential are limited to +5%.
This is in agreement with Fig. 1 of Burns and Schaffer
(1989) which shows a weak dependence of the equiltbrium
potential on velocity. Potentially more serious are the
fluctuations in a grain’s charge cavsed by spatial and tem-
poral variation in the density and temperature of the mag-
netospheric plasma. Because the plasma density in the
E ring is relatively large, a grain’s charge adjusts to its
surroundings much more rapidly than the grain orbits the
planet (Horanyi et al. 1992). If we make the reasonable
assumption of cylindrically symmetric spatial variations
in the plasma parameters, it can be shown, with the for-
malism to be introduced below, that the semimajor axis
and eccentricity of the grain’s orbit change in almost the
same way as they do for a constant charge. Since the
purpose of this section is to account for the first-order
effects of the Lorentz force, henceforth we make the
simplifying assumption of constant charge. We will return
to comment further on the validity of this approximation
for the specific case of Saturn’s E ring.

Planetary magnetic fields are responsible not only for
trapping the electrons and ions that charge up a dust grain,
but also for the resulting orbital perturbations suffered
by such grains. In the standard model, these fields are
assumed to arise from two sources, currents interioer to a
given radial distance from the planet and currents exterior
to this distance; connections between the regions are ig-
nored. Because of the assumed lack of currents in the
region of interest (J = V x B = 0), the magnetic field can
be derived from a scalar magnetic poteniial @ in analogy
with the electric potential. The j,k component of the scalar
magnetic potential in the frame rotating with the planet is
given by the usual spherical harmonic expansion

R i+ 1
bjx =R, (ij [« costher)
+ hy, sin(kdp)1Pi(cos 6), (13)

where j is an integer ranging from zero to infinity, k£ is an
integer ranging from zero to/, and ¢y = ¢ — O, with the
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subscript R denoting the rotating coordinate system. Here
¢ and & are the angular spherical coordinates defined in
the nonrotating frame. The g;; and A, are magnetic field
coefficients with units of G which can be evaluated for
each planet (for Saturn see Connerney et al. 1984; Schaf-
fer and Burns 1992 tabulate values for the giant planets
and give additional references). In Eq. (13) we have ig-

~nored the (usually small) contributions from the exterior
currents; their effects can be readily included (Acuna et
al. 1983) when necessary (e.g., beyond a few planctary
radii int the Jovian system). The Schmidt-normalized asso-
ciated Legendre polynomials Pf(x) are defined in terms
of the regular Legendre polynomials; the relevant expres-
sions can be found in Schaffer and Burns (1992). Finally,
the magnetic field contribution from the j,k component of
the potential is

Bj.k = —V(Dj.k’ (14)
while the total field in the rotating frame is obtained by

summing all of the individual components

B= (15)

=

> B
S é=0

Two ways exist to obtain the Lorentz force valid in a
nonrotating frame centered on the planet. Although the
methods give identical results, they are conceptually quite
different and it is instructive to go through each argument.
In the first method, we calculate the force in the rotating
frame as Fpy = g(v.a/c X B) with vy = v — (Q, X 1),
where v, is the orbital velocity of the dust grain relative to
the rotating frame, v is its velocity relative to a nonrotating
planetocentric coordinate system, £ is the spin vector of
the planet, ¢ is the speed of light, and g is the charge on
the grain. Employing special relativity to transform the
force back to the nonrotating frame, we find that it is
unaltered to first-order in v/c and hence

Fpy — g {Iv - (©, x O} x B}, (16)

The preceding discussion makes it quite clear that the
Lorentz force vanishes for an equatorial circular orbit at
the synchronous distance: there the velocity relative to
the magnetic field is zero and thus no force is present.
The second way to treat the problem is to transform the
magnetic field from rotating coordinates to nonrotating
ones before calculating the force. Utilizing special relativ-
ity again, we find that the magnetic field is unchanged
(neglecting terms of order {}r/c <€ 1), and that an electric
field E = —(Q, x r) X B is present in the nonrotating
frame. This is the so-called *‘corotational electric field”’
discussed by Burns and Schaffer (1989) among others.
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The Lorentz force is then calculated from Fgy= ¢g[E +
(v/c x B)Jand Eq. (16} is obtained once more. This discus-
sion highlights the role of the magnetic field; it illustrates
that part of the Lorentz force does no work and, as we
shall see, is less able to influence the orbital elements.

Although the magnetic field can be expressed as a gradi-
ent of a potential, the electromagnetic force, because of
its velocity dependence, cannot. We are therefore unable
to use the disturbing function approach that was applied
to radiation pressure and instead must use Gauss’ form of
the planetary equations. These equations are given in
orbital coordinates where the force at a particular point
on the orbit is resolved into orthogonal components which
are radial (R = #), normal to the orbit (N), and tangential
toa circle in the orbital plane that passes through the point
(C). The Lorentz force, Eq. (16), is written in equatorial
spherical coordinates which are converted into the orbital
coordinates by use of Egs. (3)—(7) and the following ex-
pressions:

5 _ _cpsz _ SII’HICOS ué, (17)
sin # sin f
and
5 sinicos g  COS{
= - ; - . 18
4 sin 8 sin 0 (18)

Carrying out the transformation and keeping track of all
terms, we find that the normal, radial, and tangential com-
ponents of the Lorentz acceleration can be represented

as
N:i( v,Bysinicosu  v,Bycosi
cm, sin 6 sin @
— Buc + B, rcos i), (19a)
R-_4 (_UCB(, cosi  ucBysinicosu
cmy sin @ sin @
+ BG()pr sin 6), (19b)
c-_4 (v,.B,, cos i N v,B, sin i cos u
cmy, sin @ sin @
+ B,(,r sin i cos u), (19¢)

where v, and v, are the radial and circular parts of the
velocity and the B, are the appropriate magnetic field com-
ponents. These three equations are valid for any magnetic
field. Finally we need to express the radial and circular



MOTION OF DUST IN A PLANETARY MAGNETOSPHERE

velocity components of a Keplerian elliptical orbit in
terms of the orbital elements; from conservation of orbital
energy and angular momentum we have

12 -
M esiny
== a5, 2
o (a) {1 —eh'? (202)
and
1
_{my\" 1 +ecosv
Ve (a) (1 - )2 (20b)

4.2, The Aligned Dipole

We begin by discussing the axisymmetric (k = 0) terms
in the magnetic field expansion given by Egs. (13)—(15) as
they have no time dependence and can be readily orbit-
averaged. Of these, the j = 1 term is the strongest so we
focus on it first, The magnetic field produced by this g,
term Is a spin-axis aligned dipole which has the following
components:

R 3
B, =2, (T”) cos 8, (21a)
R 3
By =g, (TE) sin 6, (21b)
B, = 0. 2lc)

For convenience, and in analogy with Eq. (4), we define
a dimensionless parameter, L, as a rough measure of the
strength of the electromagnetic force relative to the plan-
et’s gravity. We take the g, term of the magnetic field
given in Eqs. (21a—c), evaluate Eq. (16) in the equatorial
plane with v = 0, and divide by the planet’s gravitational
force (note this is similar to the parameter ¢ defined by
Schaffer and Burns (1987)). The result is

_ 98105
cum,

L (22)

Inserting the force resulting from Eqgs. (21a—c) into the
planetary perturbation equations and performing the time-
averages we obtain

da\ _
<d1> -0

(23a)
B0
<%> = —nf e(1 — e)"sin? i sin(2w), (23b)
Lo
<j_;> - ﬁcz sinicosisin2w), (23c)
810
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(), = o )
dt 210 (1 - (’:)”2 (l - £’2) Qp ’

(23d)
<@) __ hL [A 14 3cosi (1)]
dr)e, -2 T a-a\e)/

(23e)

<% — n> = —2nl. (23f)

210

These expressions have been simplified from exact formu-
lae by dropping terms of high order in e and i. Neverthe-
less, Egs. (23a—f) are quite accurate even for very large
inclinations and cccentricities as we shall soon see.

The electromagnetic force, like radiation pressure,
makes nonzero contributions to variations in the eccen-
tricity and inclination but these contributions depend on
powers of sin 7 and ¢; they are therefore quite smali unless
the orbit under consideration is both highly eccentric and
significantly inclined. Thus, at least for small inclinations
and eccentricitics, the effect of the planet’s dipolar mag-
netic field is not unlike that of J, (the planet’s quadrupole
gravitational field) since both forces primarily cause pre-
cession. This crude similarity should not be surprising
since, at least near the equator plane, both forces have
strengths that diminish rapidly with distance and direc-
tions that are predominantly radial. For electromagne-
tism, the nodal and apsidal precession rates are dependent
on inclination, eccentricity, and the semimajor axis as
are their J, counterparts. Unlike the gravitational case,
however, the electromagnetic rates vary considerably rel-
ative to one another for circular orbits of different sizes
near the equatorial plane (compare Eqs. [23d,e] with
[2d.e]). Close to synchronous orbit (n = (), for example,
the nodal rate vanishes, while the apsidal rate is zero
further from the planet near the place where 3n = ().
Incidentally, as synchronous orbit is approached in the
limit (n — £,, ¢ = 0, i — 0), the Lorentz force vanishes
as does the nodal rate, but the pericenter rate does not.
How can a force which is zero all along an orbit cause
orbital evolution? The solution to this apparent paradox
is, of course, that it does not; a circular orbit has no unique
pericenter so the fact that the rate of change of an ill-
defined angle fails to vanish is unimportant. For small
eccentricities, pericenter exists, the Lorentz force is non-
zero, and Eq. (23¢) gives the correct precession rate,

4.3. The Aligned Quadrupole

As in the gravitational case, inclusion of the higher-
order axisymmetric (kK = 0} terms in the magnetic field
expansion requires that the lower-order terms be treated
more carefully (i.e., taken out to the next order in L), a
task that rapidly increases in algebraic complexity. For
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gravity, a treatment including just the J, term is a good
approximation because J; and the other odd harmonics
are all exceedingly small for planets, and because the
fields produced by the larger, even harmonics fall off very
quickly with increasing distance. Accordingly, we might
hope that higher-order symmetric terms in the electromag-
netic expansion could be ignored as well. We find, how-
ever, that the axisymmetric quadrupole has a nontrivial
influence on orbital dynamics; its importance can be easily
understood by noting that near the equator, the radial
component of the dipole magnetic field is small (of order
i). In contrast, the quadrupole field is primarily radial and
its magnitude actually exceeds the radial dipolar field for
orbits with small inclinations. When crossed into a trans-
verse velocity, the radial field produces a strong normal
force which perturbs the inclination, node, and pericenter;
hence we expect that quadrupole effects will be important
for these elements. Further expansion to include the sym-
metric octupole and higher & = { terms is often unneces-
sary, as the radial and theta components of the combined
dipole and quadrupole magnetic field usually dominate
contributions from higher-order terms.

Rather than repeating the derivations of Section 4,2 for
the symmetric quadrupole term (an arduous task!), we
treat only the case of small inclinattons, which is of the
most interest for planetary applications. For inclinations
smaller than 30°, the theta component of the magnetic
field is dominated by the dipole term and so we ignore the
small quadrupole contributions to that component. The
radial component of the quadrupole field,

4
B.= 3 820 ({‘,—p) (Geos’ ¢ — 1), (24)
2 r

however, is important. The largest effect of the radial
quadrupole field on a slightly inclined orbit is to produce
a normal force. Consequentiy, we ignore Egs. (19b.c)
and consider only Eq. (19a). This force affects onty the
inclination, node, and pericenter derivatives. The first two
terms of Eq. (19a) are identically zero because we have
ignored the theta component of the quadrupole field and
there is no phi component. Furthermore, it turns out that
the final term also contributes nothing. Performing the
much simplified averaging calculation, we obtain

i\ 3, (8 &)(_fL) ecosw
<dt>g._ 2 nL (31,0)( a Qp (1—e?)¥" (25¢)
2.0
dfd _tanw ﬂ
<_¢1'7)x3_0 Y <d;>g ’ (25d)
pii}
<%> = —COS | <£a’(t_1> : (25¢)
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where approximation signs have been used instead of
equals signs to remind the reader that these equations
represent only part of the quadrupole perturbations, albeit
the most important contributions for low inclination or-
bits. In this limit, additional guadrupole perturbations are
insignificant when compared to the effects of the aligned
dipole.

Note that, with a little manipulation, the form of Eqgs.
{(25c-e) is identical to the s, component of the radiation
pressure equations (Eqgs. 10c—e). This occurs because
both sets of equations arise from smail, nearly constant
vertical forces being applied to an orbit; we take advan-
tage of this similarity in Section 5 to follow. The sin 7 in
the denominators of Eqgs. (10d} and (25d) simply expresses
the fact that, for low inclinations, the orbital node is poorly
defined and small perturbations can force large changes
in that element.

4.4. Asvmmetric Terms

Up to now, we have ignored the nonaxisymmetric (k #
0) terms in the magnetic field expansion; this is a good
approximation for the almost perfectly aligned Saturnian
field (Connerney ef al. 1984), but not for the magnetic
fields of the other giant planets. Although we will apply
our results only to Saturn in this paper, the expressions
devied above are general and are valid for all of the plan-
ets. Thus nonaxisymmetric magnetic field terms merit a
brief discussion, First of all, we note that asymmetric
terms are more difficult to treat than the symmetric ones
since the planet’s rotation causes the field’s orientation
to change rapidly. Typically, a planet’s spin period is
comparable to the orbital period of an inner orbit; for this
type of orbit there is not a unique timespan over which to
average. In contrast, distant orbits have periods that are
so long that we can average the magnetic field first over
a single spin period and then over the orbital motion.
Following this procedure, we find that all of the nonaxi-
symmetric terms in Eq. (13) average to zero (i.e., they
give no contribution to orbital evolution in this limit).

Encouraged by this result, we might be tempted to
ignore the effects of the nonaxisymmetric terms even
close to the planet, arguing that they will only induce
small periodic oscillations. For most orbits this is true,
but at specific locations orbital and spin frequencies are
commensurate and the averaging process is invalid (¢f.
Schaffer and Burns 1992, Burns ef al. 1985). These ‘‘Lo-
reniz’’ resonances can be treated by isolating the com-
mensurate terms in Egs. (19a—c) for use in the planetary
equations, but for now we ignore the nonaxisymmetric
terms and accept the fact that the orbit-averaged equa-
tions derived in this section will not be valid near resonant
locations. We have analyzed these lorentz resonances
and will discuss them in a future publication (Hamilton
and Burns 1993a).
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5. COUPLED PERTURBATIONS

In the circumplanetary environment, all three perturba-
tion forces discussed above (higher-order gravity, the
electromagnetic force, and radiation pressure) conspire
to perturb the orbits of micrometer-sized dust grains.
Since the forces are generally small, the orbit-averaged
equations derived in the previous sections can be simply
summed to account for the cumulative effect of all pertur-

bations,
av dav

total

(26)

where ¥ is any of the six osculating orbital elements.
The resulting expressions are cumbersome, but several
hundred times faster to numerically integrate than their
Newtonian counterparts. In addition, the output of the
Newtonian equations {vector position and velocity) must
be translated into osculating orbital elements. As a dem-
onstration of the validity of our derivations, we compare
numerical integrations of the Newtonian (Fig. 3a) and
orbit-averaged (Fig. 3b) equations for a 1-um grain
charged to —5.6 V, approximately the potential expected
in the Saturnian environment (Horanyi et al. 1992, Fig,
1). The initial conditions in both cases are appropriate for
a grain launched from the moon Enceladus on an initiaily
circular coplanar orbit at 3.95R,, . Plotted are the five oscu-
lating orbital elements and the solar angle ¢ (defined
below). All six panels of the two plots agree quite well
which reassures us that the approximations made n the
previous sections are valid.

The most notable difference between Figs. 3a and b
appears in the semimajor axis traces; in the first figure,
the semimajor axis displays a peculiar **fuzziness,”” while
no evolution whatsoever is apparent in the second. The
discrepancy i1s due to effects that occur during a single
orbital period; in Fig. 3a these effects are clearly visible,
while in Fig. 3b they do not exist because they have been
averaged out. These short period terms arise when the
vector position and velocity are translated into the oscu-
lating orbital elements; in the presence of perturbations,
the values of the elements depend on the point along an
orbit at which they are calculated. The difference in these
values over a single orbit is first-order in the small dimen-
sionless quantities J,, a/n, and L, and the oscillations in
osculating semimajor axis are greater for larger eccentrici-
ties as can be readily seen in the plot. By noting the value
of a in Fig. 3a at points where ¢ = 0, however, we see
that no long term change occurs in the semimajor axis,
in agreement with Fig. 3b. The fact that the rapid and
sometimes discontinucus changes in w and 2 that occur
at low e and i are not perfectly reproduced (see Figs. 3a
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and 3b at r ~ 8 years for example) is unimportant since
these variables become singular as ¢ and i, respectively,
tend toward zero.

The agreement between Figs. 3a and b also encourages
qualitative and quantitative descriptions of evolution
based on the orbit-averaged equations. To assist this en-
deavor, we write out Eq. (26) explicitly. As noted above,
most sources for circumplanetary dust are thought to be
the small moons and rings orbiting close to their planet;
these objects move in nearly circular orbits in the equato-
rial plane. While radiation pressure can cause eccentrici-
ties of some initially circular orbits to grow quite large
{(Horanyi et a!.1992), it is often difficult for grains to attain
orbits significantly inclined to the equatorial plane. This
supposition holds for orbits ¢lose to the planet and away
from the Lorentz resonant locations. A useful limit for
analytic work, therefore, is that of nearly equatorial or-
bits. We keep only the leading terms in sin / for each
element and also take i <y, which is a reasonable assump-
tion in most cases (Jupiter is a possible exception as y ~
3°). Additionally, we assume that v = 30° so that cos y =
1; this, of course, is not a good approximation for Uranus
with y = 98°! Using Eq. (26) to sum the effects of all of
the forces discussed in the previous sections, we find,
with the help of some trigonometric identities, that

da
= 7
<dr> 0, (27a)
de\ _ SNV
<dr> all — )" sin g, (27b)
< > ZCos w, (27¢)
< > 730240 (27d)
sin i :
and
do\ _  _sinw .
<dr> =-Z Sin + o,. (27¢)
Here
do =0+ —ngt—8 (28)

is the solar angle, approximately the angular difference
between the longitudes of the Sun and the orbit’s pericen-
ter measured in the equatorial plane; the change in this
angle is given by

do =0, + o, — e (29)
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The precession rates arising from oblateness, electromag-
netic, and radiation forces (excluding the terms propor-
tional to Z, defined immediately below} are

: 3Ind.R; nlL ( s n )
= ) 3377 l —e-—— (30)
2, 24°%(1 — e (1 — e ¢ Q,
and
o = 3nd,R}: il (I _ e _1;1)
v aZ(] . eZ)'.’ (l _ 6,2)31'2 QP'

IS T2
+a(l e) coscf)o; a1

the Z terms are excluded for reasons that will become
apparent in the following sections. Finally, the quantity

e i 3 &20 &) (1)]
(1 —e)t” [a.s: i 21— ¢ nt (gm)( a Qp ’

(32)

represents the contributions of the two vertical forces
in the problem: the out-of-plane component of radiation
pressure and the force arising from the aligned quadrupole
field. These twoforces are small and do not cause substan-
tial orbital evolution; note that the terms proportional to
Z in Eqs. (27d.e) are equal and opposite so that for small
i, the absolute position of pericenter () + w is unaltered.
Nevertheless, the forces are important because they in-
fluence the vertical extent of an orbit, as will be discussed
in greater detail below.

The presence of J,, L, and « in all of the above expres-
sions indicate the effects of oblateness, electromagnetism,
and radiation pressure, respectively; Eq. (27b}, for exam-
ple, shows that eccentricity is driven solely by radiation
pressure. Additional approximations to the set of equa-
tions (27a—e) can be made for specific situations. For
example, we can drop the electromagnetic terms for orbits
around bodies with insignificant magnetic fields (Venus,
Mars, Pluto, asteroids, and c¢omets) or for small un-
charged objects (atoms and molecules) around any planet,
in the latter case, Eq. (4) would need to be altered since
geometrical optics is not valid for atoms and molecules
(cf. Smyth and Marconi 1993).

6. APPLICATION TO THE SATURNIAN E RING

6.1. Observations and Previous Work

We now apply these low-inclination results to describe
the orbital evolution of particles in Saturn’s E ring, This
ring extends over a broad radial range from <3R out to
8R  crossing the orbits of several satellites; its strong peak
in optical depth near the orbit of Enceladus has caused
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many to argue that this moon is the likelv source of E ring
grains. Additionally, in a thorough analysis of the ground-
based observations {(e.g., Baum et al. 1981, Larson et al.
1981) and Voyager images at a variety of phase angles,
Showalter er g¢f. (1991) found that the scattering properties
of the E ring are consistent with a monosize distribution
of grains with radii | (0.3) um. Because of the ring’s low
optical depth, Horanyi et af. (1992) studied single particle
orbital dynamics of grains launched from Enceladus and
discovered that a cancellation in the orbital precession
rates, occurring for dust grains near a micron in radius,
allows radiation pressure to force initially circular orbits
to become highly eccentric, thereby driving material
across a large radial range. The model explains how this
material can rapidly spread both inside and outside of
Enceladus’ orbit, emphasizes the dynamical importance
of one micron-sized grains, and predicts the vertical shape
of the E ring quite well. Nevertheless, a few problems
with the Horanyi et af. (1992) model remain, imost notably:

(1) As seen from Earth during ring-plane crossings, the
E ring extends further from Saturn than predicted by the
model.

(2) The predicted vertical extent of the E ring is 10 times
less than that observed.

Hamilton and Burns (1993b) suggest that other satei-
lites, most notably Tethys, provide additional sources for
E ring matenal. In the latter model, high-velocity impacts
of E ring grains into Saturnian sateilites blast debris off
these moons into circumplanetary orbits. The model natu-
rally explains why the peak in the E ring’s optical depth
occurs at Enceladus rather than at one of the other embed-
ded satellites and predicts a size distribution that is likely
to be consistent with the observations. The problems
listed above are alleviated, but not fully solved, by adding
the other Saturman satellites as supplementary E ring
sources. In the following two sections, we use the equa-
tions derived above to more thoroughly understand the
dynamics of E ring orbits, thereby gaining insight into the
ring’s three dimensional structure. Our improved under-
standing of the ring’s azimuthal and vertical profile sug-
gests sohutions to problems (1) and (2), respectively.

6.2. Azimuthal Structure: Eccentricity and Solar Angle

The orbital perturbation responsible for most of the E
ring’s structure is the large, almost periodic variation in
the eccentricity displayed in Figs. 3a and b. In contrast,
the semimajor axis remains essentially constant and the
inclination stays small. Due to the latter fact, substantial
variations in ) and o do little to change the orbit. Further-
more, since the governing equation (Eq. 27b) for eccen-
tricity in this low inclination limit depends only on the
solar angle and the eccentricity itself, these two variables
can be decoupled from the rest. Accordingly we discuss
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the eccentricity and the solar angle in this section and the
elements i, 2, and w in the next.

Ideally, we would like to find an exact solution for Eqs.
(27b) and (29) but, due to the presence of nonlinear 1 —
¢’ terms, we have bgen unable to do so. By contrast, for
small eccentricities ¢ is nearly a constant, and a solution,
in which the eccentricity varies sinusoidally, can be easily
found (Burns er al. 1979; Horanyi et al. 1992). In the
present case, however, we are interested in highly eccen-
tric orbirts and so are forced to content ourselves with a
qualitative description of the orbital evolution based on
these two equations. First, as predicted by Eq. (27b) and
seen in Fig. 3, the eccentricity always grows when 0° <
b = 180° and shrinks when 180° = ¢, = 360°. When
¢n = 0, dg in Eq. (27b) remains nearly constant, the
elliptical orbit keeps a given orientation with respect to
the Sun, and the eccentricity changes monotonically. This
situation occurs, with expected plasma parameters at the
distance of Enceladus, for E ring grains about 1 um in
radius (Horanyi et al. 1992). In the low eccentricity solu-
tion considered by these authors, an exact cancellation of
the precession rates with a associated permanent growth
of eccentricity is possible but, as seen in Egs. (30) and
(31), the rates actually depend on different powers of | —
e, which causes an imperfect cancellation as the eccen-
tricity varies. At large e, these nonlnear effects are im-
portant and significantly influence the azimuthal structure
of the ring.

In order to study the nonlinear effects, we must first un-
derstand the simple case when these terms are absent; this
situation is approximated in Fig. 3 where ¢ is always rela-
tively small. As Fig. 3 shows, at t = 0 the solar angle ¢ is
immediately driven to 90° by radiation pressure; this occurs
because, for small eccentricities, the final term in Eq. (31)
dominates g, . Afterthe eccentricity rises slightly, the final
termis less important so that the solar angle regresses con-
tinually from r = 0 to 7 = 8.5 years under the gravitational
and electromagnetic terms in Eqs. (30) and (31); in this ex-
ample, the regression rate is nearly uniform because, for
these relatively low eccentricities, nonlinear terms are
small. The vertical “‘jumps™ in ¢, an example of which
occursat f = 5 years in Fig, 3, are due simply to the fact that
the angle is plotted modulo 360°. As soon as the solar angle
crosses zero, the eccentricity begins decreasing until even-
tually it is sufficiently small that the final term in Eq. (31}
dominates again. As before, this term attempts to drive ¢,
to 90° causing the angle to become positive and the eccen-
tricity to increase. The cycle repeats almost periodically
with departures from periodicity arising from the sensitive
dependence of ¢, on e.

Because of the coupling between e and the solar angle,
the largest eccentricities in Fig. 3 are attained when the
pericenter of the orbit is pointed toward the Sun (¢ =
0%). At this time, apocenter is directed away from the Sun
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and, accordingly, particles reach their maximum distance
from the planet in this direction (r = a(l + e)—see Fig.
la). Thus, if the E ring were composed solely of such
particles, it would be asymmetric in azimuth, extending
further in the antisolar direction than in the solar direction.
A less negatively charged grain or, alternatively, a slightly
larger particle, would have an initially precessing solar
angle so that the maximum eccentricity would occur when
the apocenter of the orbit points toward the Sun (¢ =
180°). Since the true E ring is likely composed of an ensem-
ble of grains with slightly different sizes, shapes, and/
or charges, it will probably include both precessing and
regressing orbits with some apocenters pointing toward
and others away from the Sun. This ensemble predicts that
the E ring will be shaped like a Saturn-centered ellipse,
extending to equal distances in the solar and antisolar
directions and less far in the perpendicular directions.
Such a distribution would minimize the rings apparent
radial extent as viewed from Earth. This case, discussed
by Horanyi et al.(1992}, does not include the effects of
1 — ¢? terms.

To demonstrate how larger eccentricities produce non-
linear effects, we consider the orbital evolution of a 1-um
grain charged to —5.4 V (as opposed to —5.6 V for Fig.
3); all other initial conditions as well as the operating
forces remain unchanged. The resulting orbital evolution,
obtained from numerical integrations of Eqs. {27a—e), 1s
displayed in Fig. 4. The only ditference between the two
cases is the slightly altered grain charge, vet striking dis-
similarities are apparent in both the eccentricity and solar
angle traces. In Fig. 4, the solar angle initially regresses
as it does in Fig. 3, but the regression is slightly less
rapid; this allows the eccentricity to grow large enough to
reverse the sign of ¢4 before the solar angle dips below
zero. As a result sin ¢ is larger for a longer period of
time, permitting the eccentricity to increase substantially.
The augmented eccentricity causes the solar angle to pre-
cess through 180°, at which point the eccentricity finally
begins to decrease and a cycle similar to that discussed
above is established. Azimuthal asymmetry arises be-
cause the stronger | — ¢° dependence of the gravitational
precession terms in Eqs. (30) and (31) causes the orbit to
precess for large ¢ which always leads to a maximum
extension in the solar direction (b5 = 180°). Although for
this orbit, ¢ 1s large enough that the grain would actually
be lost to the main Saturnian ring system (Horanyi et al.
1992 show that e = (.65 is the largest eccentricity that a
grain from Enceladus can attain}, the orbital evolution
displayed here is typical for a large range of similar initial
conditions.

We now summarize the relevance of these results to
the E ring problem. Consider an ensemble of grains with
slightly different sizes and voltages, but all launched from
Enceladus on initially circular orbits. A fraction of the
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FI1G. 3. Osculating orbital elements plotted against time from integrations of the (a) full Newtonian and (b) orbit-averaged equations of motion.
Both integrations used the same initial conditions: a spherical grain 1 wm in radius {p, = lgiem?, Opr = 1) charged to a potential of —5.6 V initially
released from Enceladus at 3.95R on a circular Keplerian orbit in the equatorial plane. Forces operating on the orbit include the monopole and
J. components of the gravity field, radiation pressure (no shadowing), and the Lorentz force from un aligned dipole. The agreement between the
two methods is very good and is discussed further in the text, Other values of interest are the three dimensionless parameters J, = 0.01667,
aln = 0.00012, L = —0.00295; the ratio n/{}, = 0.32439. and the initial precession rates, as given by Eqgs. (30) and (31), Q (¢ ~ 0) = —345%/year
and w (e ~ 0, ¢y = 90°) = 315%/year. The difference between the two rates is roughly the initial slope of the solar angle trace in the sixth panel.
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FIG. 4. Osculating orbital elements plotted against time from integrations of the orbit-averaged equations of motion; these agree well with full
Newtonian integrations (not shown). The same forces operating in Fig. 3 are present here. and the initial conditions are identical to those in Fig.
3 except the grain's voltage has been changed slightly to —5.4 V. This small change in the voltage decreases the strength of the electromagnetic
force (L = —0.00284) which in turn, changes the precession rates to £, (¢ ~ 0) = —338%vear and w, (¢ ~ 0, by = 90°) = 315%/year; all other
quantities retain the values noted in Fig. 3’s caption. These slightly different precession rates drastically affect the eccentricity history.
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grains in this ensemble will have e,,, = 0.4; these will be
relatively uninfluenced by the nonlinear | — ¢? terms
and will lead to the “*Saturn-centered ellipse™ discussed
above. In addition, however, our ensemble will contain
grains that achieve large eccentricities. These particles all
precess eventually (the orbit in Fig. 3 almost attains the
largest eccentricity possible with a strictly regressing solar
angle), and so the maximum eccentricity always occurs
when the apocenter is pointed toward the Sun. Further-
more, because precession is rapid for very large eccentric-
ities, the most ¢longated orbits sweep through a large
range of pericenter angles (see the solar angle and eccen-
tricity panels between ¢ = 6 and ¢t = 7 years in Fig. 4),
resulting in distant particles in all directions on the sun-
ward side of Saturn. Since the real ring contains both
dynamical classes, an Enceladus-derived E ring might be
expected to extend 1.2 times as far in the solar and
perpendicular directions as in the antisolar direction. In
contrast to the Horanyi e al. (1992) model, this distribu-
tion displays nearly its full radial extent when viewed from
Earth.

The above discussion explicitly assumes that the charge
on a grain remains constant throughout its orbital evolu-
tion. Could a varying particle charge disrupt the behavior
seen here? Realistically, small rapid fiuctuations in a
grain’s voltage occur as the grain’s position in the magne-
tosphere (where plasma densities and temperatures might
vary) and its velocity relative to the plasma change. A
delay in the response of the grain’s voltage to local condi-
tions can affect long term evolution of semimajor axes
{Burns and Schaffer 1989), but over the short times con-
sidered here, this process is unlikely 1o be important.
Because the charge fluctuations are fast compared to the
orbital period, however, they should be treated before
averaging the perturbation equations over an orbit. As
argued above, this will not seriously influence the orbital
semimajor axis and eccentricity. The inclination and pre-
cession equations, however, are more strongly affected.
A difference in the inclination equation only adjusts the
magnitude of Z (Eq. (32)), however, which does not seri-
ously alter the behavior of Eqs. (23c—¢). Slightly different
electromagnetic precession rates would still cancel the
gravitational rates, although at a minutety different grain
size. Most importantly, the 1 — ¢? dependence of the
electromagnetic precession rate could be changed signifi-
cantly (exponent <<—2). In this case, the nonlinear effect
that favors an E ring with a minimum extension in the
antisolar direction would be reversed. The E ring would
then have its small dimension in the solar direction. In
any case, an asymmetry of some sort is likely to persist.

Finally we point out that the surface brightness of the
E ring depends not only on these dynamic considerations
but perhaps even more on the detailed distribution of
particle sizes and shapes present in the E ring. This distri-
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bution determines the number of grains in each of the
dynamical classes discussed two paragraphs back. If or-
bits with lower eccentricities (Fig. 4) are most prevalent,
for instance, then the surface brightness will be dominated
by the “*Saturn-centered ellipse.”” Whatever the size dis-
tribution though, the E ring’s surface brightness should
display measurable azimuthal asymmetry.

6.3. Vertical Structure: Inclination, Node,
and Pericenter

Having completed our discussion of the components
responsible for azimuthal variations, we now focus on the
smaller perturbations to the E ring’s vertical structure.
These perturbations arise from weak normal forces which
influence only the elements 7, €}, and w. We start by
discussing Figs. 3 and 4, simulations that do not include
the effects of the aligned quadrupole, for simplicity (i.e.,
g0 is artificially set to zero), although our derivations
are general and will allow us to return to the important
influgnce of the quadrupole term shortly. Perhaps the
most unusual behavior displayed by the elements ¢/, {1,
and win Figs. 3 and 4 is the fact that argument of pericenter
locks alternately to w = +90° when pericenter is above
the equatorial plane (Fig. 1b) and to @ = —90° when
pericenter 1s below the plane. This locking is correlated
with the solar position so that the orbital pericenter is
always displayed to the same side of the equatorial plane
as the Sun. In all figures the Sun starts at its maximum
elevation above the equatorial plane (the summer solstice
in Saturn’s northern hemisphere) and remains above the
plane for one quarter of its orbital period of ~29.5 years,
crossing the equatorial plane at r = 7.4, 22.1, and 36.9
years.

At first sight this locking may seem unimportant: since
inclinations are small, what difference does it make that
pericenter is always elevated out of the equatorial plane
by a few tenths of a degree? There are several answers to
this question. First, since these orbits periodically become
highly eccentric, an E ring particle can dip in very close
to the main Saturnian ring system. Because the main rings
are so thin (Cuzzi et al. 1979), however, even small incli-
nations cause E ring grains to rise well above the main
rings and hence collisions with these rings can only take
place at orbital nodes. Locking the pericenter to =90° puts
both the nodes along the latus rectum of the ellipse (Fig.
1), maximizing the ability of an orbit of a given eccentricity
to avoid intersecting the inner rings. Additionally, peri-
center locking alters the probability for an impact into a
Saturnian satellite since most lie at low inclinations rela-
tive to Saturn’s equator. Most notably, this phenomenon
enhances the probability of reimpact into Enceladus since
an E ring particle’s node lies at a radial distance a(l — ¢?)
which, for small ¢, 1s very close to Enceladus’ orbitat r =
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a. Finally, and perhaps most interestingly, this dynamical
effect suggests that the vertical structure of the E ring is
time-variable over a single orbit of Saturn around the Sun.
Before discussing the ramifications of this time variability,
we wish to understand the locking analytically.

The behavior of @ suggests that the angle is attracted to
a stable equilibrium point, and so we seek such a solution.
First, however, we note that there are several places in
Fig. 4 (e.g., near ¢t = 7, 13, 22, . .. vears) where the
argument of pericenter is not strongly locked to its equilib-
rium value; in these locales, oscillations in w are large
and circulation can occur. These deviations happen either
when the Sun passes through the equatorial plane (roughly
every 15 years) and argument of pericenter begins its
transfer from one equilibrium value to the next or when
the orbital eccentricity is small, in which case pericenter
is poorly defined and can circulate rapidly as predicted by
the final term in Eq. (31). To avoid these problems, we
choose initially to study the locking effect for nonzero and
constant values of ¢ and s, ignoring the time-dependence
of these parameters. We return to justify and relax this
approximation shortly. Setting w., = =90° (the subscript
“eq’” stands for equilibrium) and remembering that incli-
nation must be positive, we find that Eq. (27e)} is zero only
when

8in iy = wi (33a)
which, from Eq. (27d), leads to
d} . .
— =Q. .+,
dt Ryl m.\) (33b)

€q

Finally, setting Eq. {27¢) equal to zero and utilizing Eq.
(33a) yields an improved determination of w,,:

sin w,, = sign(w,,/Z). (33¢c)
We check the solution given by Eqs. (27¢—e) for stabil-

ity by linearizing it about the equilibrium point. Here we
set ¥ =W, + AV¥, where ¥ is any of /, 2, and w, to find

d Ai

<7> = leqmt\' A(u, (34::[)
d AQ toy, Al

< dt > a fog (34b)
d Aw _ (":’—K.\‘ Al

<7> =T (340)

which can be trivially solved to yield

HAMILTON
AP = iwy cos(wf + L) (35a)
AQ) = —w,sin(w, f + &), (35b)
Aw = wysin(w,,t + L), (35¢)

where the initial conditions e, and {, are independent of
i, ©2, and . Thus oscillations about the equilibrium point
are stable and have frequency @, which, for the parame-
ters of Fig. 4, corresponds to a period of ~1 year. The
fact that the oscillation peried is short compared to the
characteristic periods of e and s_justifies our earlier treat-
ment of these latter parameters as constants; since ¢ and
5. both change slowly with time, the rapid oscillations are
able to stay centered on the slowly drifting equilibrium
value. These results, Eqs. (33)-(35), seem to be in good
agreement with Figs. 3 and 4. Equation (33¢) correctly
predicts that pericenter and the Sun always lie on the
same side of the equatorial plane since w,, > 0 and, with
no quadrupole term, Z changes sign every time the Sun
crosses the equatorial plane. Furthermore, Eq. {33a)
shows that the inclination approaches zero when Z is
small which occurs either when the Sun is in the ring plane
or when ¢ — (), as we already inferred from Figs. 3 and
4. Additionally, several features of Eqs. (35a~c) can be
checked against the full numerical integrations. As ex-
pected, the oscillations in all three elements have eccen-
tricity-dependent periods of approximately 1 year and,
as predicted by Eq. (31}, this period decreases for large
eccentricities (the inclination trace in Fig. 4 provides a
nice example). Furthermore, since no discernible oscilla-
tions appear in the solar angle, which is basically the sum
of {1 and w, the oscillations in these angles must be equal
in magnitude and 180° out of phase as predicted by Egs.
(35b,¢). Additionally, we find that the / oscillations peak
one-quarter of a period before the w oscillations as pre-
dicted by Egs. (35a,c), although the phase difference is
difficult to detect in these figures.

We now add the effects of the aligned quadrupole term
to the array of forces influencing the dust grain. Figure 5
shows the orbital history of a grain with the same proper-
ties and initial conditions as the particle in Fig. 4; the only
change 1s that the magnetic field from which the Lorentz
force is calculated now includes the aligned quadrupole
component. The eccentricity and solar angle traces in
Fig. 5 are basically unchanged from Fig. 4, but the i,
1, and w traces are substantially altered. Inclinations of
nearly a degree (three times larger than in Fig. 4) are
attained—the effects of the quadrupole term are definitely
important for Saturn’s E ring! Furthermore, the pericenter
favors locking to —90° over locking to 90°; this can be
casily explained by considering how the addition of the
quadrupolar term changes Z. Using the values given in
the figure captions, we find that the second term in Eq.
(32} is always negative and, for small ¢, its magnitude
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FIG. 5. Osculating orbital elements plotted against time from integrations of the orbit-averaged equations of motion. Again, the results agree
well with the full Newtonian integrations, which are not shown. Initial conditions and numerical quantities are the same as in Fig. 4, but the
additional effects of the aligned magnetic quadrupole have been included. Note the striking difference in the f and o traces in the two figures. The
magnetic field coefficients used for Saturn are g, = 0.2154 G and g, = 0.0164 G (¢f. Connerney et al. 1984).
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is less than the maximum value of the first. Thus Z is
predominantly negative and, as predicted by Eq. (33¢), @
is usually found near —90°. When the Sun is high above
the equatorial plane, however, Z is positive and w locks
to 90° as observed in Fig. 3. Since the two terms in Z have
different eccentricity dependencies, the time spent with
w ~ 90° will vary from on¢ occasion to the next. This
same sharp eccentricity dependence of the quadrupole
contribution to Z is also responsible for the difference in
maximum inclinations observed between Figs. 4 and 5.

If all E ring particies originated from Enceladus and had
parameters like those chosen for Fig. 5, we would expect
that inner portions of the ring (the pericenter sides of
instantaneously elliptical orbits) would be offset to the
south of the equatorial plane when the Sun is not too far
to the north. The outer portions of the ring, of course,
would be offset in the opposite direction. There is not a
single solar position at which orbits transfer from one
equilibrium to the next; as the Sun rises in the northern
sky, orbits with low eccentricities switch first, followed
by those with greater eccentricities. In addition, a more
realistic ensemble of different particle sizes and shapes
would cause further smear in the time when orbits switch
equilibria since « and L vary significantly with particle
properties. So when the Sun is to the north of the equato-
rial plane, the situation is difficult to assess. Conversely,
when it is to the south, Z is negative and all orbits in the
ensemble should have their pericenters depressed toward
the south.

Adding in different initial conditions and additional sat-
ellite sources for E ring particles further complicates the
issue; these factors can cause the initial conditions to be
far from the equilibrium point. When this is true, the
oscillations in w can be large enough to cause circulation of
that element and this washes out the asymmetry discussed
above. Assuming that dust grains originate from satellites,
they will always start on nearly circular orbits for which
the equilibrium inclination is i,; = 0 (Egs. 32 and 33a).
Several effects can cause initial inclinations to differ from
zero, most notably the small underlying inclination of the
source satellite itself, and the dispersion of grain launch
velocities, We find, numerically, that initial inclinations
of more than about 0.5° for grains launched from either
Enceladus or Tethys cause oscillations large enough to
destroy the locking. This cutoff can also be found analyti-
cally from Eq. (27e). 1t is reasonable to assume that most
of the grains escape from their source moon with the
minimum possible energy; in this case escape will cccur
along the Saturn-satellite line (¢f. Hamilton and Burns
1991) with minimal change to the initial inclination. The
orbits of Enceladus and Dione are negligibly inclined, but
those of Tethys and Mimas have inclinations that exceed
a degree; thus nominally grains launched from Enceladus
will have their pericenters locked while those from Tethys
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will not. Summing the contributions of several source
satellites and different initial conditions complicates the
picture, but we believe that some vertical asymmetry and
time variability are likely to remain.

7. DISCUSSION

In the preceding sections, we have explored the orbital
dynamics of micrometer-sized dust grains both numeri-
cally and analytically, and argued for azimuthal and verti-
cal asymmetries in Saturn’s E ring. In this section we
apply our new understanding of the dynamics of E ring
dust grains to the problems of the ring’s breadth and height
mentioned in Section 6.1; we then conclude by discussing
the possibility for further ground-based and spacecraft
observations,

In contrast to the linear model of Horanyi et al. (1992),
the nonlinearity of the orbit-averaged equations consid-
ered here causes some orbits with nearly maximum eccen-
tricities 1o be oriented perpendicular to the Sun—Saturn
line. Thus our model suggests that the E ring, as seen from
Earth, displays nearly its full breadth. This correction may
be enough for a primary source of dust grains at Enceladus
and a weaker source at Tethys (g = 4.89Rp) to account
for the full width of the E ring as observed from Earth,
An additional source at Tethys is also consistent with the
extra material seen in the vicinity of that moon (Showalter
er al. 1991, Fig. 11). Finally, the vertical structure dis-
cussed above may provide further dynamical evidence for
a secondary source of particles from Tethys. If Enceladus
were the ring's only source, our numerical simulations
would predict maximum thicknesses of about 7,500 km (if
orbital pericenters are locked) and 15,000 km (if pericen-
ters are not locked). These numbers are three times larger
than those predicted by the Horanyi er al. (1992) model
which neglected the quadrupole term of the magnetic field;
clearly this term cannot be ignored! As noted above, how-
ever, the E ring is about 40,000 km thick at its outer edge,
still quite a bit broader than our predictions based on
Fig. 5. Grains launched from Tethys, however, attain
inclinations of ~2.5° and, because of Tethys’ relatively
large orbital inclination, the orbital pericenters are not
locked. When combined, these effects lead to a predicted
thickness of =40,000 km at the outer edge of the E ring,
a figure that is in agreement with the observations.

Could other mechanisms, most notably Lorentz reso-
nances, provide the increase in thickness without an addi-
tional Tethys source? While most of the strongest Lorentz
resonances lie very close to Saturn, we note that just
interior to Enceladus there is an important 3 : | resonance
driven by the tilted dipolar field whose strength is propor-
tional to ¢ig, ; (Hamilton and Burns 1993a). Simulations,
in which we assume a 0.8° tilt in Saturn’s magnetic dipole,



MOTION OF DUST IN A PLANETARY MAGNETOSPHERE

indicate that the inclination of some Enceladus-launched
grains can be pumped up to a few degrees. During this
process, the locking of the orbital pericenter, which leads
to the vertical asymmetry, can be broken. Thus we con-
clude that while a Tethys source accounts nicely for the
observed inclinations, the 3 : 1 Lorentz resonance acting
on material launched from Enceladus may also be able to
do so. In either case, however, the breath of the E ring
still argues for a Tethys source.

Can the azimuthal and vertical asymmetries discussed
in Sections 6.2 and 6.3 be observed from the ground or
from spacecraft? The most favorable time for ground-
based observations of the E ring occurs when Saturn’s
main rings, as seen from Earth, appear edge-on; this last
occurred in 1979-1980 and will next happen in 1995-1996.
Because the predicted azimuthal asymmetry of the E ring
is most ciearly present when the dimensions in the solar
and antisolar directions are compared and is less visible
in the perpendicular directions, it is very unlikely that
azimuthal asymmelry can be seen from the ground during
these times. Although the vertical asymmetry should,
technically, be visible from Earth, the magnitude of the
effect may be too small to be noticeable. When the Sun
is nearly in the ring plane, the quadrupole dominates peri-
center locking and dust exterior to Enceladus’ orbit (¢ =
3.95R,) should be oftset slightly to the north; interior to
Enceladus it should be found slightly to the south. The
magnitude of the offset depends on the unknown proper-
ties of the ensemble of grains that make up the E ring;
offsets should increase, however, with radial distance
from Enceladus.

There are definite hints of vertical asymmetry from
the Voyager flyby missions. Showalter ¢t af. (1991) cite
evidence from Voyager images centered at about 4R, for
a northern offset of several hundred kilometers—larger
than that expected by the differences between the cquato-
rial and Laplace planes. The offset predicted by Egs.
{33a—c) is small at this distance because it is just outside
the position where the orbital nodes lic. Since the Sun
was elevated only ~4° north of the equatorial plane at
the time of the fiyby, the quadrupole term should still
dominate the solar term and material exterior to the nodes
should be elevated slightly to the north as observed. In
addition, Vovager 1 swept through the E ring at a distance
of about 6. 1R, near the Dione ‘‘clear zone,” and returned
data from its PWS instrument, which was discovered to
be sensitive to dust impacts. These data imply an offset
to the south (W, Kurth, private communication, 1992},
Most of the material in this region probably originates
from Tethys. in which case the orbital pericenters are not
locked; thus we cannot easily predict the sense of the
observed offset.

Questions about the sources of dust and possible asym-
metries in the E ring’s structure are difficult to answer
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from ground-based observations alone. Because single
particle dynamics dominates collective effects in the E
ring, detailed information on individual particle orbits,
which can most easily be obtained from spacecraft obser-
vations, is desirable. The sources of E ring material should
be easily identified when the Cassini orbiter, with its so-
phisticated dust detector, arrives at Saturn and makes
repeated passes through the region. The misston should
also be able to determine the nature and extent of any
azimuthal and vertical asymmetry.
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