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of pericenter & are sufficient. These three elements, respectively, describe the instantaneous size,
shape, and orientation of an elliptical orbit; the Lagrangian equations that describe the time rate
of change of such orbital elements are well suited to visualizing the results of orbital perturbations.
The advantage of our approach is its simplicity: many non-intuitive effects of resonances, such as
resonant trapping and jumps, will be elucidated.

RESONANCE EQUATIONS

The problem of determining the perturbing effects of one satellite on another is fundamental to
celestial mechanics and has been studied for centuries. It is not solvable in closed form, but an
approximate solution can be developed as a power series of small quantities. The typical procedure
(cf. /5/, p. 339) is as follows. First, one evaluates the disturbing function, defined as the negative of
the perturbing satellite’s potential, at the position of the perturbed particle. Next, the disturbing
function is written in terms of the orbital elements; this step requires complicated power series
expansions in eccentricities, inclinations, and the semimajor axis ratio. Finally the changes to the
orbital elements can be calculated with the potential form of Lagrange’s planetary equations (/5/,
p. 336) which relate the time rates of change of the orbital elements to derivatives of the disturbing
function and to instantaneous values of the elements themselves.

We proceed in a similar manner for Lorentz resonances. Because the Lorentz force due to a magnetic
field cannot be derived from a potential, we must calculate the electromagnetic force arising from
an arbitrary magnetic field and express it in terms of orbital elements, an arduous task which
requires power series expansions in the particle’s eccentricity and inclination. These forces are then
inserted into an alternate form of Lagrange’s planetary equations (/5/, p. 327). The results of
this calculation yield, as above, expressions for time derivatives of the orbital elements which are
functions of the instantaneous values of these elements. We plan to submit the details of this
calculation for publication in Icarus.

In both of the above derivations, secular terms (i.e., those that do not depend on satellite longitudes)
as well as periodic terms (with longitude dependence) appear. Secular terms are ubiquitous, whereas
periodic terms, over long times, average to zero at all but a few resonant locations. In this paper
we focus on one of these locations as an example: the 2:1 (first-order) eccentricity resonance. Near
this location, the resonant argument ¢ is given by:
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where A and )’ are the longitudes of the perturbee and perturber, respectively. At the resonant
location (defined by ¢ = 0 - see figure 1), the perturbed body completes approximately two orbits
for every one cycle of the perturbing force (the period of an exterior satellite in the gravitational
case or the planetary spin period for Lorentz resonances). We ignore all periodic terms with different
frequency dependencies (since they average to zero), and the secular perturbations (which are small
compared to the strong 2:1 resonant terms).

The orbital elements most strongly affected by such a resonance are the abovementioned a, e, and
@. Instead of the semimajor axis a, we use the unperturbed orbital mean motion n ~ A, whlch is
related to the semimajor axis via n%a® = GM,, where G is the gravitational constant and M, is the
planetary mass (/5/, p. 131). ertmg out the Lagrange perturbation equations to lowest nrcler in
eccentricity and inclination, we find that the effects of both the gravitational and Lorentz versions
of the 2:1 first-order eccentricity resonance can be represented by a set of equations of the following
form:
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