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We study the stability of charged dust grains orbiting a planet and subject to gravity and the electromag-
netic force. Our numerical models cover a broad range of launch distances from the planetary surface to
beyond synchronous orbit, and the full range of charge-to-mass ratios from ions to rocks. Treating the
spinning planetary magnetic field as an aligned dipole, we map regions of radial and vertical instability
where dust grains are driven to escape or crash into the planet. We derive the boundaries between stable
and unstable trajectories analytically, and apply our models to Jupiter, Saturn and the Earth, whose mag-
netic fields are reasonably well represented by aligned dipoles.
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1. Introduction equilibrium charge on the grain (Whipple, 1981). These currents
The discoveries of the faint dusty ring systems of the giant plan-
ets beginning in the late 1970s greatly changed our understanding
of planetary rings. Unlike Saturn’s classical rings, which are most
likely ancient (Canup, 2010), dusty rings are young and are contin-
ually replenished from source satellites. Individual ring particles
have short lifetimes against drag forces and other loss mecha-
nisms, and because dusty rings are so diffuse, they are essentially
collisionless. Furthermore, dusty rings are affected by a host of
non-gravitational forces including solar radiation pressure and
electromagnetism, which can sculpt them in interesting ways.

Since the giant planets are far from the Sun and dusty rings are
normally near their primary, radiation pressure is usually a weak
perturbation to the planet’s gravity. The electromagnetic force
arising from the motion of charged dust grains relative to the plan-
etary magnetic field, however, can be quite strong. In particular,
with nominal electric charges, dust grains smaller than a fraction
of a micron in radius are more strongly affected by electromagne-
tism than gravity.

Dust in space acquires electric charges in several ways. Moving
through the plasma environment produces a negative charge on a
grain, since the plasma electrons are much lighter and swifter than
ions and hence are captured more frequently by orbiting dust
grains (Goertz, 1989). On the other hand, sunlight ejects photo-
electrons from the surface of a grain, and can cause positive
charges (Horányi et al., 1988). Electron or ion impacts will also pro-
duce secondary electron emission, which also favors a net positive
ll rights reserved.

Hutter).
interact in complicated ways; the charging of a dust grain depends
on the physical properties of the grain itself and also on its charge
history (Meyer-Vernet, 1982). Graps et al. (2008) provide an excel-
lent review of these processes.

Many authors have investigated detailed aspects of the motion
of charged grains in planetary magnetic fields, but no study has yet
determined the orbital stability of grains for all charge-to-mass ra-
tios launched at all distances in a systematic way. In this paper we
explore the local and global stability of both positive and negative
dust grains launched from ring particle parent bodies which them-
selves orbit at the local Kepler speed.

1.1. Motion in the Kepler and Lorentz limits

As grains with radii greater than several microns have small
charge-to-mass ratios, electromagnetic effects are weak, and the
grains orbit the planet along nearly Keplerian ellipses. In the frame
rotating with the mean motion of the dust particle, the orbits ap-
pear as retrograde elliptical epicycles with a 2:1 aspect ratio (Men-
dis et al., 1982). When gravity acts alone, the vertical, radial and
azimuthal motions all have precisely the same frequency. Equa-
tions governing the slow changes to the ellipse’s orbital elements
due to weak electromagnetic perturbations from a rotating aligned
dipole magnetic field are given by Hamilton (1993a). These equa-
tions show that the three frequencies diverge slightly and are func-
tions of the sign and magnitude of the charge as well as the
distance from the planet and from synchronous orbit.

Conversely, the very smallest dust grains approach the Lorentz
limit, where the electromagnetic force dominates over gravity. In
this regime, the frequencies of radial, vertical and azimuthal
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motions differ significantly. The radial oscillation is fastest and, as
the electromagnetic force is perpendicular to the rotating magnetic
field, particles gyrate about local field lines on typical timescales of
seconds for dust, and microseconds for ions.

Dust grains typically oscillate vertically on a timescale of hours
to days. Since this timescale is far slower than gyration, an adia-
batic invariant exists and can easily be found. In the absence of
forces other than electromagnetism, and in the absence of plane-
tary rotation, a dust grain’s speed v remains constant:
v2 ¼ v2

? þ v2
k , where v\ and vk are the speeds perpendicular and

parallel to the magnetic field lines, respectively. The v\ component
determines the radius of the gyrocycle, while the vk component
moves the center of gyration to regions of differing magnetic field
strength. If changes to a non-rotating magnetic field B

!
are small

over the size and time scales of gyromotion, the ratio v2
?=B, where

B is the local strength of the field, is an adiabatic invariant (de Pater
and Lissauer, 2010) and hence is nearly constant. These two condi-
tions provide an important constraint on the grain’s motion paral-
lel to the field lines. As a grain with a vertical velocity component
climbs up a magnetic field line away from the equatorial plane, the
field strength B increases, v\ also increases, and hence vk must de-
crease. There is thus a restoring force towards the equatorial plane
where the magnetic field strength is a local minimum, and the mo-
tion parallel to the field lines takes the form of bounce oscillations
between mirror points north and south of the equator (Störmer,
1955). Thomsen and van Allen (1980) studied the bounce motion
of particles in the Lorentz limit at Saturn. Their results neglected
the effects of planetary rotation, and hence are most applicable
to slow rotators like Mercury and potentially some planetary
satellites.

Finally, on the longest timescales (days), particles drift longitu-
dinally with respect to the rotating magnetic field (de Pater and
Lissauer, 2010), forced by a number of effects including gravity,
the curvature of the magnetic field, andrB. Because these motions
are usually slow compared to the gyration and bounce frequencies,
it is often useful to assume that in the Lorentz limit, grains are tied
to the local field lines.

1.2. Dust affected by both gravity and electromagnetism

For a broad range of grain sizes from nanometers to microns,
both gravity and the Lorentz force are significant, and their com-
bined effect causes a number of dynamical phenomena that are
distinct from either limiting case. As dust in this size range pre-
dominates in many planetary rings (Burns et al., 1999; de Pater
et al., 1999; Showalter et al., 2008; Krüger et al., 2009), their
dynamics have attracted much attention.

Schaffer and Burns (1994) provide a general framework for the
motion of dust started on initially Keplerian orbits. Since the radial
forces on a dust grain at launch are not balanced as they are for a
large parent body on a circular orbit, these dust grains necessarily
have non-zero amplitude epicyclic motions. For the magnetic field
configurations of the giant planets, a negatively-charged dust grain
gyrates towards synchronous orbit while positively-charged dust
initially moves away from this location. In fact, some positively-
charged grains are radially unstable and either crash into the planet
if launched inside synchronous orbit, or are expelled outwards if
launched from beyond this distance. The latter have been detected
as high-speed dust streams near Jupiter (Grün et al., 1993, 1998)
and Saturn (Kempf et al., 2005). Theoretical explanations for the
electromagnetic acceleration process have been given by Horányi
et al. (1993a,b), Hamilton and Burns (1993b) and Graps et al. (2000).

Mendis et al. (1982, 1983a) and Northrop and Connerney (1987)
explored the shape and frequency of epicycles for negatively-
charged grains in the transitional regime, where both EM effects
and gravity are comparable. The epicycles make a smooth transi-
tion from perfectly circular clockwise (retrograde) gyromotion in
the Lorentz limit, where EM dominates, to 2:1 retrograde elliptical
epicycles in the Kepler limit. Mitchell et al. (2003) studied the
shapes of epicyclic motion for positive grains and found that there
is not a similarly smooth transition from prograde gyromotion to
retrograde Kepler epicycles, and that the epicyclic motions of inter-
mediately-sized grains cannot be represented as ellipses. The ef-
fects of gravity and electromagnetism compete for intermediate
charge-to-mass values and motion can be primarily radial, leading
to escape or collision (Horányi et al., 1993a; Hamilton and Burns,
1993b).

Northrop and Hill (1982, 1983a) and Northrop and Connerney
(1987) studied the vertical motion of negatively-charged dust
grains on circular uninclined orbits in a centered and aligned
dipole field, a configuration most closely realized by Saturn. They
found that some small grains on initially centrifugally-balanced
circular trajectories inside the synchronous orbital distance are
locally unstable to vertical perturbations, climbing magnetic field
lines to crash into the planet at high latitudes. Some motions at
high latitude, however, are stable: Howard et al. (1999, 2000) iden-
tified non-equatorial equilibrium points for charged dust grains,
and showed that dust grains can orbit them stably. They character-
ized these ‘‘halo’’ orbits for positive and negative charged grains on
both prograde and retrograde trajectories. Howard and Horányi
(2001) used these analytical results to argue for a stable population
of positively-charged grains in retrograde orbits and developed
numerical models of such halo dust populations at Saturn. Grains
that may populate these halos, however, are unlikely to result from
the equatorial launches considered here.

If one of the dust grain’s natural frequencies matches a charac-
teristic spatial frequency of the rotating multipolar magnetic field,
the particle experiences a Lorentz resonance (Burns et al., 1985;
Schaffer and Burns, 1987, 1992; Hamilton and Burns, 1993a;
Hamilton, 1994). Lorentz resonances behave similarly to their
gravitational counterparts and can have a dramatic effect on a dust
grain’s orbit, exciting large radial and/or vertical motions. These
resonances have been primarily studied in the Kepler limit appro-
priate for the micron-sized particles seen in the dusty rings of Jupi-
ter. In our idealized problem, with an axisymmetric magnetic
dipole, Lorentz resonances cannot occur.

Variations in a dust grain’s charge can also alter its trajectory
over surprisingly rapid timescales. Gradients in the plasma proper-
ties, including density, temperature and even composition affect
the equilibrium potential of a grain by altering the direct electron
and ion currents. This can result in resonant charge variation with
gyrophase, causing radial drift. Working in the Lorentz limit,
Northrop and Hill (1983b) noted that with large radial excursions,
the grain’s speed through the plasma can vary significantly with
gyrophase, leading to enhanced charging at one extremity. A sim-
ilar effect occurs in the Kepler limit where resonant charge varia-
tion can cause a dramatic evolution in the orbital elements of a
dust grain (Burns and Schaffer, 1989). Northrop et al. (1989) found
that the varying charge has a time lag that depends on the plasma
density and grain capacitance. These time lags can cause grains to
drift towards or away from synchronous orbit depending on the
grain speed, and on any radial temperature or density gradients
in the plasma. Schaffer and Burns (1995) explored the effects of
stochastic charging on extremely small grains, where the discrete
nature of charge cannot be ignored. They found that Lorentz reso-
nances are robust enough to survive even for small dust grains
with only a few electric charges.

The dynamics of time-variable charging may play an important
role in determining the structure of Saturn’s E ring (Juhász and
Horányi, 2004) and Jupiter’s main ring and halo (Horányi and
Juhász, 2010). Another example of charge variation occurs when
the insolation of a dust grain is interrupted during transit through
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the planetary shadow. This induces a variation in charge that
resonates with the grain’s orbital frequency (Horányi and Burns,
1991). Hamilton and Krüger (2008) found that this shadow reso-
nance excites radial motions while normally leaving vertical struc-
ture unaltered. This effect can explain the appearance of the faint
outward extension of Jupiter’s Thebe ring, and the properties of
its dust population sampled by the Galileo dust detector (Krüger
et al., 2009).

1.3. Research goals

In this study, we consider the orbits of charged grains launched
in planetary ring systems. Our aim is to explore the boundaries be-
tween stable and unstable orbits in aligned and centered dipolar
magnetic fields. Dipolar fields have the advantage of being analyt-
ically tractable while still capturing most of the important physics.
Under what conditions are grains unstable to vertical perturba-
tions? Which grains escape the planet as high speed dust streams?
And which grains will strike the planet after launch? All of these
instabilities depend on the launch distance of the grain and its
charge-to-mass ratio. We first explore grain trajectories numeri-
cally and then derive analytical solutions for the stability bound-
aries that we find.

There are several standard choices for expressing the ratio of
the Lorentz and gravitational forces. The charge-to-mass ratio q/
m in C/kg (Northrop and Hill, 1982) or in statCoulomb/g (Mitchell
et al., 2003) may be the most straightforward, but it is cumber-
some. For this reason, converting to the grain potential measured
in Volts, which is constant for different-sized dust grains, is a com-
mon choice (Mendis et al., 1982; Schaffer and Burns, 1994; Howard
et al., 2000; Mitchell et al., 2003). Yet another option is to express
the charge-to-mass ratio in terms of frequencies associated with
the primary motions of the grain, such as the gyrofrequency, orbi-
tal frequency and the spin frequency of the planet (e.g. Mendis
et al., 1982; Mitchell et al., 2003).

We choose a related path, namely to fold q/m and key planetary
parameters into a single dimensionless parameter L� following
Hamilton (1993a). Consider the Lorentz force in a rotating mag-
netic field:

FB
�! ¼ q

c
ð~v � X

!�~rÞ � B
!
; ð1Þ

where c is the speed of light, ~r and ~v are the grain’s position and
velocity in the inertial frame, ~X is the spin vector of the planet,
and B
!

is the magnetic field. We use CGS units here and throughout
to simplify the appearance of the electromagnetic equations. The
second component of Eq. (1) is q E

!
, where E

!¼ � 1
c ðX
!�~rÞ � B

!
is

the so-called co-rotational electric field which acts to accelerate
charged grains across magnetic field lines. Since a dipolar magnetic
field obeys B

!¼ �g10R3
p=r3ẑ in the midplane (with g10 the magnetic

field strength at the planet’s equator), E
!

, like gravity, is propor-
tional to 1/r2 there. Thus the ratio of the electric force to gravity
is both independent of distance and dimensionless:

L� ¼
qg10R3

pX

GMpmc
: ð2Þ

Here, Rp and Mp are the planetary radius and mass, m is the dust grain
mass, and G is the gravitational constant. Note that the sign of L� de-
pends on the product of two signed quantities, q and g10. For all of the
giant planets, the magnetic north pole is in the northern hemisphere,
and g10 > 0. However, for the Earth at the current epoch, g10 < 0 and
the magnetic and geographic poles are in opposite hemispheres.

We have made a slight notational change L ? L� from Hamilton
(1993a,b) to avoid confusion with the L-shell of magnetospheric
physics. Choosing L� as an independent variable takes the place
of assuming a particular electric potential, grain size and grain den-
sity. We focus our study primarily on Jupiter, the planet with by far
the strongest magnetic field, but also apply our results to Saturn
and to the Earth.

2. Numerical simulations

Approximating Jupiter’s magnetic field as an aligned dipole by
including just g10 = 4.218 Gauss (Dessler, 1983), we tested the sta-
bility of dust grain orbits over a range of grain sizes and launch dis-
tances both inside and outside synchronous orbit. We used a
Runge–Kutta fourth-order integrator and launched grains at the lo-
cal Kepler speed with a small initial latitude of k = 0.01�. This tiny
nominal value ensures a launch close to the midplane, whilst
avoiding potential numerical problems of launching a grain pre-
cisely at k = 0. Non-zero launch speeds from the parent particle
do have a small effect on the stability boundaries, one that we will
explore in more depth in a future study.

Our models treat the grain charge as constant and neglect J2,
other higher-order components of the gravitational field, and radia-
tion pressure. For both negative and positive grains, we ran simula-
tions for a grid of 80 values of L� and 100 launch distances (rL). The
charge-to-mass ratio spans four decades from the Lorentz regime
where EM dominates (jL�j � 1), to the Kepler regime where gravity
reigns (jL�j � 1). The range of launch distances extends from the
planetary surface to well beyond the synchronous orbital distance
(Rsyn), and trajectories were followed for up to 0.1 years. With some
experimentation, we determined that all relevant dynamical time-
scales are <0.1 years and that for longer integration times, the
appearance of our stability plots does not change significantly.

In Fig. 1 we plot the fate of 8000 negative and 8000 positive
dust grains and find complex regions of instability. The nega-
tively-charged dust grains in Fig. 1a display only vertical instability
at moderate to high L� and inside Rsyn. Some are bound by high lat-
itude restoring forces (locally unstable, light grey) whilst others
crash into the planet at high latitude (both locally and globally
unstable, darker grey). To separate these globally stable grains
from locally stable ones, we choose a latitude threshold at
km = 5�. Although 5� is a small latitude, it is far greater than the
launch latitude of 0.01�; any grains excited beyond km are clearly
locally unstable, and we determined that our results were fairly
insensitive to actual value of km.

Northrop and Hill (1982) derived a boundary for the threshold
between locally stable and unstable trajectories for negatively-
charged dust and found that grains launched within a certain dis-
tance should leave the equatorial plane (NH82 curve in Fig. 1a). In
the Lorentz limit, the vertical instability allows grains to climb up
local magnetic field lines into regions of stronger magnetic field,
while for smaller L� the path taken by these grains follows the lines
of a pseudo-magnetic field which includes the effects of planetary
rotation (Northrop and Hill, 1982). The Northrop curve however, is
not a good match to our data which reveal additional stable orbits
(white areas) immediately inside this boundary and also close to
the planetary surface. These differences arise from the fact that
Northrop and Hill (1982) assumed that grains are launched at their
equilibrium circular speeds, which differ from the circular speeds
of parent bodies when L�– 0. Conversely, we launch our grains
at v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMp=r

p
, the circular speed of the parent body, which is

appropriate for debris produced by cratering impacts into these
objects. In Section 5, we develop a vertical stability criterion appro-
priate for our launch conditions.

The situation for positive grains is quite different. Fig. 1b shows
a less extensive region of vertical instability than Fig. 1a, and one
that is not active close to Jupiter. More dramatic, however, are
two regions of radial instability (darkest grey areas), separated
by the synchronous orbital distance. Grains inside Rsyn are driven
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Fig. 1. Stability of Kepler-launched (a) (negative) and (b) (positive) dust grains at
Jupiter. We model the planet with a spherically-symmetric gravitational field, and a
centered and aligned dipolar magnetic field. All grains were launched with an initial
latitude of k = 0.01� and followed for 0.1 years. The horizontal dashed line in both
panels denotes the synchronous orbital distance at Rsyn = 2.24Rp. The grain radii (ad)
in microns along the upper axis are calculated assuming a density of 1 g/cm3 and an
electric potential of ±5V so that j L� j¼ 0:0284=a2

d . Dust grains in the white regions
and lightest grey areas survive the full 0.1 years, with the latter reaching latitudes k
in excess of 5�. Grains in the moderately-grey areas are vertically unstable and
strike the planet, also at high latitudes (k > 5�). The darkest regions, seen only in
panel (b), are radially unstable grains that crash into the planet (those with
rL < Rsyn), or escape to beyond resc = 30Rp (from rL > Rsyn) at latitudes less than 5�. We
overplot three analytically-derived stability boundaries, obtained by Northrop and
Hill (1982) for negative grains, by Horányi et al. (1993a) for small positive grains,
and by Hamilton and Burns (1993b) for large positive grains. Each point on the plot
is a trajectory, some of which (marked by filled squares), are illustrated in detail in
Figs. 2–5.
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to strike Jupiter, while those outside escape the planet. If grains
move beyond resc = 30Rp, the inner magnetosphere, we consider
them to have escaped. As with km, our numerical results are fairly
insensitive to the exact value chosen for resc, so long as it is large.

To characterize the individual trajectories that make up Fig. 1,
we explore a few examples in detail, focusing on the positively-
charged dust grains and proceeding from smaller to larger grains.
Fig. 2 shows the trajectory of a dust grain that becomes vertically
unstable and crashes into the planet at high latitude. These small-
est grains spiral up magnetic field lines, which for a dipole are gi-
ven by r/cos2k = rL (de Pater and Lissauer, 2010); collision with the
planet or reflection from a high latitude mirror point typically oc-
curs within a few tens of hours. By contrast, Fig. 3 shows an elec-
tromagnetically-dominated grain that remains stable at low
latitude.
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A more subtle interplay between radial and vertical motions is
illustrated in Fig. 4. This grain is outside the radial instability re-
gion in which grains collide with the planet at low latitude (darkest
grey). Instead, large radial motions lead to instability in the vertical
direction, and ultimately, the grain strikes the planet at high lati-
tude. Notice the two white dots near (L� = 1.34, rL/Rp = 2.2) in
Fig. 1b, signifying grains that survive the full 0.1 years integration.
These trajectories are indeed stable (for at least 100 years) and, as
the effect is much more prominent for the Earth, we discuss it in
more detail in Section 6.

Finally, Fig. 5 shows a dust grain just inside the Hamilton and
Burns (1993b) L� ¼ 1

2 stability limit. Although the dust grain does
not escape, the non-linearity of its radial oscillation is large enough
to excite substantial vertical motions.

A glance at Fig. 1 shows that most stability boundaries are
unexplained. The Northrop and Hill (1982) vertical stability bound-
ary does not match the numerical data especially well, and only
applies to negative grains. For positive grains, Horányi et al.
(1993b) provided an approximate criterion for radial escape, which
they applied far from synchronous orbit near Io. Their criterion is
based on a comparison between the radius of gyromotion rg, and
the length scale over which the magnetic field changes substan-
tially, namely where jB/(rgrB)j � 10, with the gyroradius calcu-
lated in the Lorentz limit. Although not intended for use near
synchronous orbit where rg ? 0, we nevertheless plot it on the left
side of Fig. 1b. Finally, the Hamilton and Burns (1993b) L� ¼ 1

2 limit,
derived from an energy argument, is a good match to the largest
escaping grains. There is however, no analytical model for the
broad class of grains that strike the planet. Accordingly, we seek
to develop a unified theory that can cleanly determine all of these
boundaries. We take up this task first for radial and then for verti-
cal motions.

3. Local radial stability analysis

Consider a centered magnetic dipole field that rotates with
frequency X around a vertical axis aligned in the z-direction.
Northrop and Hill (1982) derived the Hamiltonian for a charged
dust grain in the rotating frame in cylindrical coordinates:

H ¼ Uðq; zÞ þ
_q2 þ _z2

2
; ð3Þ

where _q and _z are the radial and vertical velocity components. The
potential is given by
Uðq; zÞ ¼ 1
2q2

p/

m
� GMpq2L�

Xr3

� �2

þ GMp

r
L�q2

r2 � 1
� �

; ð4Þ

where the spherical radius r satisfies r2 = q2 + z2 (Northrop and
Hill, 1982; Schaffer and Burns, 1994; Howard et al., 2000; Mitchell
et al., 2003). Eq. (4) is the sum of two energetic components: first
the azimuthal specific kinetic energy, which can be expressed as a
function of r using the conservation of angular momentum, and
then the potential associated with both the corotational electric
field and gravity. Note that we have chosen the zero of our potential
to be approached as q ?1. Because U(q,z) is independent of /, the
azimuthal coordinate, the canonical conjugate momentum p/ is a
constant of the motion. For our launch condition from a large parent
body on a circular orbit at r = rL:

p/

m
¼ r2

L ðnL þXgLÞ ð5Þ

(Schaffer and Burns, 1994), where nL and XgL are the Kepler fre-
quency and gyrofrequency evaluated at the launch distance rL:

nL ¼
ffiffiffiffiffiffiffiffi
GM
r3

L

s
; ð6Þ

and

XgL ¼
qB
mc
¼ n2

L L�
X

: ð7Þ

Notice that in the gravity limit (L�? 0), Eq. (5) reduces to r2
L nL, the

specific angular momentum about the planet, while in the Lorentz
limit (L�?1), it is r2

L XgL, the specific angular momentum about
the center of gyromotion that moves with the magnetic field.

If the motion of the particle is radially stable, it exhibits epicy-
clic motion about an equilibrium point determined from Eq. (4).
The existence of equilibrium points requires that @U

@q ¼ @U
@z ¼ 0, both

in the equatorial plane (Northrop and Hill, 1982) and at high lati-
tudes (Howard et al., 1999, 2000). The local stability of the equilib-
rium points, defined as whether oscillations about these points
remain small, is then determined by considering the second deriv-
atives of the potential. Given our launch condition, we focus on the
equatorial equilibrium points which are of greatest interest. For

these, @2U
@q@z jq¼qc ;z¼0 ¼ 0, r ? q, and radial and vertical motions are

initially decoupled and may be considered separately (Northrop
and Hill, 1982; Mitchell et al., 2003).

The equilibrium point is the guiding center of epicyclic motion.
Grains launched at the guiding center have canonical conjugate
momenta that are different from our Kepler-launched grains:
namely, p/

m ¼ q2
c ðxc þXgcÞ, where xc is the orbital frequency of a

grain at the guiding center, Xgc is the gyrofrequency at the guiding
center, and qc is the guiding center distance in the equatorial plane.
A local radial stability analysis is most relevant for our Kepler-
launched grains if an equilibrium point is not too distant. Accord-
ingly, it is important to distinguish between quantities evaluated
at the Kepler launch position and those determined at the guiding
center. Here and throughout, we use the subscript c for the guiding
center and the subscript L for the launch position. At the equilib-
rium point, @U

@q

���
q¼qc ;z¼0

¼ 0, which evaluates to:

x2
c qc þ

GMpL�
q2

c
1�xc

X

� �
� GMp

q2
c
¼ 0: ð8Þ

Physically, Eq. (8) just implies a balance of forces in the rotating
frame, whereby the centrifugal force, the Lorentz force and gravity
sum to zero. We solve Eq. (8) for the angular speed of the guiding
center xc, and find two real roots for L� < 1, which includes all neg-
ative charges. For L� > 1 conversely, two equilibrium points exist
only if



1.9

2.0

2.1

2.2

2.3

r/
R

p

Rsyn

(a)

q < 0

0.1 1.0

ad (μm)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.01 0.1 1 10 100

r/
R

p

|L*|

Rsyn
(b)

q > 0

Fig. 6. The radial range of (a) negative and (b) positive grains launched azimuthally
with the Kepler speed v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=rL

p
at 2.0Rp. Both numerical data (points) and the

analytical results (curves from Eq. (13)) are included. The total radial excursion is
twice the epicyclic radius rg.

D. Jontof-Hutter, D.P. Hamilton / Icarus 218 (2012) 420–432 425
q3
c

R3
syn

6
L2
�

4ðL� � 1Þ : ð9Þ

Two equilibria always exist inside Rsyn and everywhere for L� � 1
and L� � 1. There are no equilibrium points in a region starting at
(L� = 2, qc = Rsyn) in Fig. 1b, and opening upward to include an
increasing range of L� values for increasing distance qc. In this re-
gion, no equilibrium point exists, and grains are guaranteed to be
locally unstable. Not surprisingly, this region is fully contained
within the unstable portion of Fig. 1b (darkest grey region outside
Rsyn). The existence of an equilibrium point, therefore, is a necessary
prerequisite for stability.

Additional instability in Fig. 1b comes from two sources: (i) the
intrinsic instability of the equilibrium point, if it exists, and (ii)
large amplitude motions about a locally stable equilibrium point.
Large oscillations are beyond the scope of a local stability analysis
and so we focus on small amplitude radial motion near an equilib-
rium point, which takes the form

€qþ @
2U
@q2 q ¼ 0: ð10Þ

Small radial motions are stable when @2U
@q2

���
q¼qc ;z¼0

¼ j2
c > 0, which,

from Eq. (4) can be written as:

j2
c ¼ x2

c � 4xcXgc þX2
gc ð11Þ

(Mendis et al., 1982; Northrop and Hill, 1982; Mitchell et al., 2003).
Note here that the gyrofrequency Xgc is evaluated at the guiding
center, and is given by Eq. (7) with the subscript change: L ? c.
The epicyclic frequency jc reduces to the Kepler orbital frequency
nc at the guiding center rc in the gravity limit, and to the gyrofre-
quency Xgc in the Lorentz limit. Radial excursions in both of these
cases are small and, since j2

c > 0, are guaranteed to be stable.
Radial motions are also initially small near synchronous orbit

where electromagnetic forces are very weak (Eq. (1)), and so a local
stability analysis is also applicable. At synchronous orbit,
xc = nc = X and Eq. (11) reduces to j2

c ¼ X2 1� 4L� þ L2
�

� �
, which

is positive for small or large L�. For 2�
ffiffiffi
3
p

< L� < 2þ
ffiffiffi
3
p

, however,
Eq. (10) shows that radial motions near synchronous orbit are lo-
cally unstable. Comparing this analysis with Fig. 1b, we see that
all orbits with rL � Rsyn that are locally stable are, not surprisingly,
also globally stable. The converse, however, does not hold:
although most of the locally unstable orbits are also globally unsta-
ble, some are in fact globally stable (e.g. L� < 1

2 just outside Rsyn in
Fig. 1b). In conclusion, the local analysis is consistent with our
numerical experiments but cannot fully account for our stability
boundaries. Accordingly, we turn to a global analysis, pausing first
to put the potential of Eq. (4) into a more useful form and to derive
the radius of gyration, rg.

3.1. Radius of gyration

With our launch condition, grains are often far enough from an
equilibrium point that the small oscillation approximation of Eq.
(10) is invalid. This is particularly true far from Rsyn and for
L� � 1. Returning to the effective potential of Eq. (4) with the
canonical conjugate momentum determined by launching the
grain at the Kepler speed (Eq. (5)), and limiting our attention to
planar orbits for which z = 0 and r = q, we express the potential
as a quartic polynomial function of distance and a quadratic func-
tion of L�:

Uðr; L�Þ ¼
GMp

rL
A

r4
L

r4 þ B
r3

L

r3 þ C
r2

L

r2 þ D
rL

r

� �
; ð12Þ

with dimensionless coefficients
A ¼ n2
L L2
�

2X2 ;

B ¼ �nLL�
X

nLL�
X
þ 1

� �
;

C ¼ 1
2

nLL�
X
þ 1

� �2

;

D ¼ L� � 1:

To determine the radius of the epicycles (rg) induced by a Kepler
launch, we follow the procedure of Schaffer and Burns (1994), and
solve for the distance to the potential minimum, where
@U
@r

��
q¼qc ;z¼0 ¼ 0. Note that this is only valid to first order in small

quantities, since we are effectively assuming that the potential is
symmetric about the equilibrium point. Evaluating the derivative,
multiplying by r5, setting r = rL + rg, and assuming rg� rL, we obtain
the epicycle radius for a grain launched at rL in terms of parameters
known at launch:

rg ¼
rLðX� nLÞXgL

X2
gL �XgLð3Xþ nLÞ þ n2

L

: ð13Þ

In this limit, the radial range of motion of a dust grain is simply 2jrgj,
and the grain reaches a turning point at rt = rL + 2rg. Note the sign
conventions used here; rg and XgL may be either positive or nega-
tive; thus negative grains (with XgL < 0) always gyrate towards Rsyn.
Eq. (13) corrects a sign error in Schaffer and Burns (1994) which led
to an artificial disagreement between the numerical and analytical
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model in their Fig. 6. Eq. (13), by contrast, shows excellent agree-
ment with our numerical data for negative grains (Fig. 6a). The peak
in Fig. 6a, for oscillations towards synchronous orbit, occurs at

rg ¼
rL

3
nL �X
nL þX

� �
; L� ¼ �

X
nL
: ð14Þ

Eq. (14) predicts that grains with L� ¼ � X
nL

launched near Rsyn reach
about halfway to the synchronous orbital distance, in agreement
with Fig. 6a.

For the positive grains, Eq. (13) gives the proper radial range
about stable local minima in both the Lorentz limit and in the Kep-
ler limit (Fig. 6b). At critical values of L�, however, jrgj?1 and the
assumptions under which Eq. (13) was derived are violated. This is
readily apparent in the decreasing quality of the match between
the theory and the data for intermediate-sized grains in Fig. 6b.
Note that this is the same region where Mitchell et al. (2003) find
large non-elliptical gyrations. Nevertheless, the relatively close
agreement between theory and numerical data in Fig. 6 confirms
that the epicyclic model is usually a good assumption in planetary
magnetospheres.
potential; this is the stability threshold. For smaller L�, the peak is lower and escape
occurs.
4. Global radial stability analysis

Our local radial stability analysis makes a number of successful
predictions, but cannot fully account for the boundaries in Fig. 1b,
primarily because of the large radial excursions experienced by the
positive grains. The quartic potential within the equatorial plane
given by Eq. (12) contains all the information necessary to deter-
mine which grains strike the planet and which escape into inter-
planetary space.

4.1. Escaping grains

Close to the planet, the A/r4 term of Eq. (12) dominates, and
U(r ? 0,L�) ? +1, while for the distant particles we have
U(r ?1,L�) ? 0. Accordingly, the quartic potential can have at
most three stationary points (one local maximum and two local
minima). Setting r = rL gives a simple form for the launch potential

UðrL; L�Þ ¼
GMp

rL
L� �

1
2

� �
: ð15Þ

Energetically, a particle is able to escape if
U(rL,L�) > U(r ?1,L�) = 0 and we immediately recover
the L� < 1

2 stability criterion of Hamilton and Burns (1993b). Note
that only positive grains can escape from Jupiter’s dipolar mag-
netic field and that, in principle, grains with L� > 1

2 at all launch
distances, both inside and outside Rsyn are energetically able to
escape. Whether or not they do so depends on the form of
U(r,L�), in particular, on the possible existence of an exterior po-
tential maximum with U(rpeak,L�) > U(rL,L�).

Analysis of Eq. (12) shows that the potential prevents all grains
launched with Kepler initial conditions from crossing Rsyn. Positive
grains gyrate away from Rsyn, while negative grains cannot reach
Rsyn (Eq. (13), Fig. 6).

Outside Rsyn, U(r,L�) monotonically decreases for L�J 1
2. Thus

L� ¼ 1
2 is a global stability boundary and it matches Fig. 1b very

well. For larger L� (smaller grains), the topography is illustrated
in Fig. 7. Stability is determined by the height of the distant peak
in the potential. For L� � 1 no such peak exists. For larger L�, how-
ever, the radial potential decreases with distance from rL, then in-
creases to the distant peak, and finally declines to zero as r ?1.

Consider the quartic equation U(r,L�) � U(rL,L�) = 0, which by
construction, has one root at r = rL, and one root at a more distant
turning point r = rt. The critical quartic, where the turning point is
also a local maximum (as in Fig. 7) has a double root at r = rt. By
factoring out (r � rL), and then differentiating with respect to r,
we find a quadratic equation for the location of the turning point;
rt varies smoothly from rt = rL at synchronous orbit to rt ¼ 3

2 rL for
rL� Rsyn. The stability boundary, rL(L�) starts at

r ¼ Rsyn; L� ¼ 2þ
ffiffiffi
3
p� �

and asymptotes to

rL

Rsyn
¼ 2L�

27

� �1
3

ð16Þ

for rL� Rsyn. Eq. (16) for r� Rsyn is a useful approximation for the
boundary far from Rsyn, which nicely compliments the exact value
we have found at the synchronous orbital distance. The full solution
for the boundary rL(L�) is given by a rather messy cubic equation
and so we resort to numerical methods for its solution, which we
plot on Fig. 9b.

4.2. Grains that strike the planet

Inside Rsyn, the surface of the planet presents a physical bound-
ary to radial motion. Particles that strike the atmosphere are slo-
wed and removed from orbit. The potential at the planet’s
surface U(q,z) varies with latitude, and so for simplicity, we restrict
our attention to planar motions where Eq. (12) applies. Since, for
positive grains in the equatorial plane, the potential declines as
the grain moves inwards from its launch distance rL, it can have
at most one local maximum within rL. There are thus two ways
in which a grain can be prevented from striking the planet: (i)
the potential U at the surface is greater than the launch potential,
or (ii) a potential peak exists between the surface and the launch
position and its value is greater than or equal to the launch poten-
tial. These two scenarios are illustrated in Fig. 8. For case (i), the
stability criterion is where U(Rp,L�) = U(rL,L�). Using Eq. (12), we
find a quadratic expression in L� that implies two boundaries:

n2
L r2

L

2X2R2
p

rL

Rp
� 1

� �
L2
� þ 1� nLr2

L

XR2
p

 !
L� þ

1
2

rL

Rp
� 1

� �
¼ 0: ð17Þ

The two quadratic roots of Eq. (17), L1 and L2, may be obtained ana-
lytically and are plotted on Fig. 9b. The roots obey the simple
expression
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L1L2 ¼
rLR2

p

R3
syn

< 1: ð18Þ

Eq. (18) conveniently highlights several features of the lower curves
in Fig. 9b: The two curves marking the grains on the threshold of
collision with the planet are centered on L� < 1, as required by Eq.
(18). In addition, for smaller rL, the center of the instability shifts
to smaller L�, hence the left-most curve is steeper than the right-
most. Finally, a planet with a larger Rsyn (e.g. the Earth) will have
roots that shift to very low L� near the planet.

The curves determined by Eq. (17) match our numerical data
cleanly with two important exceptions. Firstly, because our meth-
od is only valid for grains that collide with the planet in the equa-
torial plane (recall our assumption z = 0), it misses the high latitude
collisions near (rL = 2Rp,L� = 2) in Fig. 9b. All collisions exterior to
the boundaries given by Eq. (17) necessarily involve substantial
vertical motions, and the greyscale shading of Fig. 9b shows that
they do. Secondly, our criterion predicts instability for a small re-
gion near (rL = Rsyn,L� = 0.2) that our numerical data show in fact
are stable. These grains encounter a high peak, similar to curve
(ii) in Fig. 8, that prevents them from reaching the planetary sur-
face. Thus U(rL,L�) > U(Rp,L�) is a necessary condition for radial
instability in the equator plane, but it is not sufficient.

The additional requirement for instability is that
U(rL,L�) > U(rpeak,L�), where rpeak is the location of an intervening
maximum. Just as for the escaping grains exterior to synchronous
orbit, evaluation of this condition necessarily involves a cubic
and a semi-analytic method. We find that no corrections to Eq.
(18) are needed for the high L� radial boundary and for all grains
near the planet. Only for the right-most curve near Rsyn is there a
discrepancy. Our new curve is plotted in Fig. 9b and it perfectly
matches the numerical instability boundary. Although the stability
curve in this region can only be obtained semi-analytically, the
point at which it becomes necessary occurs when the potential
maximum is located at the planetary surface; @U

@r

��
r¼Rp
¼ 0 and

U(rL,L�) = U(Rp, L�). Evaluating these conditions, we find

L� ¼
rL
Rp
� 1

� �2

R3=2
syn r3=2

L

R3
p
þ 2� 3rL

Rp

: ð19Þ
For Jupiter, the critical point that satisfies both Eqs. (17) and (19) is at
L� = 0.112, rL = 1.694Rp (solid point in Fig. 9b). The stability curve
meets rL = Rsyn at L� ¼ 2�

ffiffiffi
3
p

, a result suggested by our local stability
analysis of Section 3. Note that our energy arguments yield analytic
expressions both inside and outside Rsyn. Arguments involving the
location of potential maxima, conversely, require semi-analytic
methods.

5. Local Vertical Stability Analysis

The stability of grains against vertical perturbations was first ex-
plored by Northrop and Hill (1982). In their model, a grain is launched
on a circular orbit at the equilibrium orbital frequencyxc in the poten-
tial of Eq. (4) so that there is no gyromotion around magnetic field lines.
If the grain orbit at the equilibrium point is stable to vertical perturba-
tions, the square of the bounce frequency Xb, given by

X2
b ¼

@2U
@z2

�����
q¼qc ;z¼0

¼ GMp

q3
c

3L� _/c

X
þ 1

 !
¼ 3x2

c � 2n2
c ð20Þ
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(Northrop and Hill, 1982) is positive. Here _/c ¼ xc �X is the dust
grain’s azimuthal frequency in the frame rotating with the magnetic
field. When multiplied by z, Eq. (20) gives the centrifugal (first
term), and gravitational (last term) accelerations along a nearly ver-
tical magnetic field line.

For X2
b < 0, the vertical motion is unstable; note that the gravi-

tational acceleration is negative and thus destabilizing. This fol-
lows from the fact that the dipolar magnetic field curves toward
the planet and so a grain leaving the equatorial plane along a field
line moves downhill in the gravitational potential. The (Northrop
and Hill, 1982) solution for the boundary where Xb ¼ 0 is plotted
in Figs. 1a and 9a. At distances closer to the planet than a critical
distance qcrit , gravity forces grains to leave the equatorial plane.
5.1. Vertical Instability in the Lorentz Limit

In the limit of high charge-to-mass ratio, Eq. (20) can be solved
exactly:

qcrit

Rsyn
¼ ð2=3Þ

1
3 � 0:87: ð21Þ

The effect of our initial condition, launching grains at the Kepler
speed, however, necessarily causes epicyclic gyromotion as the grain
orbits the planet. This leads to a stabilizing magnetic mirror force, in
which the grain resists moving out of the equatorial plane to regions
of higher magnetic field strength as discussed in Section 1.1. Follow-
ing the procedure of (Lew (1961)) and (Thomsen and van Allen
(1980)), the magnetic mirror force for equatorial pitch angles near
90
 adds a component of strength 9r2

gX
2
gc=2q2

c to Eq. (20). In the Lor-
entz limit, Eq. (13) simplifies to rgXgc ¼ qcðX� ncÞ, and the bounce
frequency can be found from

X2
b ¼ 3X2 � 2n2

c þ
9
2
ðnc �XÞ2: ð22Þ

As above, the first two terms are due to the centrifugal and gravita-
tional forces on a grain tied to a nearly-vertical magnetic field line.
The third term of Eq. (22) is the magnetic mirror term, generalized
to account for a rotating magnetic field. The three vertical acceler-
ations add linearly, and are valid in the limit that L� ! 1 and
rg ! 0. Fig. 10 compares the (Northrop and Hill (1982)) bounce
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Fig. 10. The bounce period for L� ¼ �104 grains at Jupiter over a range of launch
distances. Northrop’s solution (Eq. (20), dotted line) and our solution (Eq. (22), solid
lines) with Tb ¼ 2p=Xb , are plotted alongside numerical data (points). Note that our
solution for Tb is smaller than Northrop’s everywhere, except at Rsyn ¼ 2:24Rp . In the

limit rc � Rsyn , Eq. (22) shows that grains satisfy Xb !
ffiffi
5
2

q
nc , while for rc � Rsyn ,

Xb !
ffiffiffiffi
15
2

q
X and Tb ! 3:62 h.
period Eq. (20)) with our Eq. (22)) that accounts for epicyclic motion
for small dust grains at Jupiter. The Northrop formalism erroneously
predicts bounce periods that are too long both inside and outside
synchronous orbit and, more seriously, misses the second solution
near the planet.

The third term in Eq. (22)) is positive everywhere inside the
Northrop boundary and thus leads to enhanced vertical stability.
The stability boundaries in the high jL�j limit are determined by
Eq. (22)); setting Xb ¼ 0, we find:

rL

Rsyn
¼ 5

9	
ffiffiffi
6
p

� �2=3

� 0:58;0:84: ð23Þ

These limits are valid for both positive and negative grains with
jL�j ! 1. Between these limits, X2

b < 0 and grain orbits are locally
unstable; the enhanced stability from the mirroring force moves
the vertical stability boundary inwards from Northrop’s 0.87Rsyn

to 0.84Rsyn. A more important change, regained stability inside
0.58 Rsyn, is due to the higher launch speeds relative to the field
lines, larger gyroradii, and a stronger magnetic mirror force. For
Jupiter these distances are at 1:29Rp and 1:87Rp respectively (see
Fig. 9). Hints of this inner stability zone were seen numerically by
(Northrop and Hill (1983a)) and (Northrop and Connerney
(1987)); here we have derived analytical solutions for vertical sta-
bility in the Lorentz limit.

5.2. Vertical instability for all charge-to-mass ratios

To extend our model for bounce motion to all charge-to-mass
ratios we must, in principle, account for the variation in the
strengths of the vertical gravitational, centrifugal and electromag-
netic accelerations over one gyrocycle. Extending the electromag-
netic mirror acceleration requires breaking the assumption of
perfectly circular gyrocycles, and is beyond the scope of this work.
The remaining two accelerations, however, can be extended to sec-
ond order in rg=qc while retaining circular gyrations. We begin by
writing the vertical acceleration as a function of the epicyclic phase
h:

@2U
@z2 z ¼ GMpzðhÞ

q3ðhÞ
3L� _/ðhÞ

X
þ 1

 !
: ð24Þ

To first order in rg , the epicycles are circles in the guiding center
frame. Setting h ¼ 0 at the closest point to the planet, we find

qðhÞ ¼ qc � jrg j cos h; ð25Þ

and

_/ðhÞ ¼ _/c � jc
jrg j
qc

cos h: ð26Þ

Due to the geometry of a dipole near its equator, an epicycle is tilted
by an angle � 3k (where k is the latitude). Hence the vertical offset
is given by:

zðhÞ ¼ zc �
3jrg j
qc

cos h: ð27Þ

To calculate the bounce frequency, we average the restoring accel-
eration over an epicycle, a procedure that is valid as long as
jc � Xb:

X2
b ¼

z @2U
@z2

D E
hzi ¼ 1

2pzc

Z 2p

0

@2U
@z2 zðhÞdh: ð28Þ

Using Eqs. (25) and (26) to eliminate qðhÞ and _/ðhÞ in Eq. (24), we
expand to Oðr2

gÞ, integrate Eq. (28)), and add in the magnetic mirror-
ing term from Eq. (22) to obtain:
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X2
b ¼ 3x2

c � 2n2
c þ

9
2
ðnc �XÞ2 �

r2
g

q2
c

9
2

Xgc
_/c þ

3
2

n2
c

� �
: ð29Þ

The frequencies in Eq. (29): xc (Eq. (8)), nc (Eq. (6)), Xgc (Eq. (7)),
and _/c ¼ xc �X, are all evaluated at the guiding center of motion
qc ¼ rL þ rg , which is determined by Eq. (13). Our calculation adds
two additional destabilizing terms that are strongest for intermedi-
ate values of L� where gyroradii are largest (Fig. 6).

How does our solution compare to numerical data? In Fig. 9, we
plot our theoretical curves against the numerical data for both neg-
ative and positive grains launched at the Kepler rate in an aligned
dipole field for Jupiter. We find the curves tracing the unstable
zone semi-analytically by setting Xb ¼ 0 in Eq. (29). Within the re-
gions bordered by the curves, trajectories are locally unstable but
may remain globally bound due to high-latitude restoring forces.

Our model closely matches the outer stability boundary for neg-
ative grains but is less successful for the inner boundary, especially
for moderate L�. This is precisely where our derivation is weakest;
recall that we have not accounted for higher-order corrections to
the magnetic mirror force which are strongest close to the planet
and for jL�j � 1. Near jL�j ¼ 1 epicycles become large and distorted
for negative grains and even more so for positive grains (Mendis
et al., 1982, 2003). Figure 6b shows that the epicyclic model
matches the radial range of positively-charged grains well for val-
ues L� > 10. This is exactly where the numerical data depart from
the theory in Fig. 9b. Apparently, large gyroradii and interference
from the proximate radial instability strip lead to unmodeled ef-
fects and excess vertical instability.

The curvature of the outer boundary in Fig. 9a is similar to that
for the Northrop instability, albeit displaced to locations closer to
the planet. Notice that, with decreasing jL�j, the instability region
curves towards the planet for negative grains, and away from it
for positive grains (Fig. 9). This is primarily due to the 3x2

c � 2n2
c

term that determines the Northrop boundary. For negative grains
inside synchronous orbit, nc > xc , and xc increases with decreas-
ing jL�j due to a weakening outwardly-directed electromagnetic
force. It thus takes a greater value of nc to make 3x2

c � 2n2
c change

sign, which destabilizes the vertical motion. Hence the boundary
curves to lower launch distances in Fig. 9a. For the positive grains
in the Lorentz limit, by contrast, xc decreases as L� decreases, and a
smaller nc will destabilize the grain. Thus with decreasing L�, the
boundary in Fig. 9b curves up to higher launch radii.

Finally, notice the band of locally unstable but globally stable
points that stretches from jL�j � 0.1 at the surface of the planet
to jL�j � 1 at large distances in Figs. 1a and 9a. These grains are af-
fected by a jjcj = 2Xb resonance that couples their radial and verti-
cal motions. Energy is transferred from the radial oscillation to a
vertical oscillation and back again. Near the synchronous orbit,
gyroradii are initially small and therefore there is not as much ra-
dial motion to transform into vertical motion; these grains do not
reach our km = 5� threshold and appear as white space in Fig. 9a.

The existence of stable trajectories within the Northrop boundary
is an important result, particularly for small slowly-rotating planets
with distant synchronous orbits like Earth. Small dust grains gener-
ated by the collisional grinding of parent bodies on Keplerian orbits
can remain in orbits near the planetary surface. High energy plasma,
like that found in Earth’s van Allen radiation belts, is more stable
than we have calculated here by virtue of exceedingly rapid gyra-
tions and a greatly enhanced mirroring force.

Our analysis to this point is completely general and, although
we have focused on Jupiter, can be easily applied to other planets.
Saturn and Earth are logical choices, as their magnetic fields are
also dominated by the g10 aligned dipolar component. The appear-
ance of the stability map for any planet depends on only the
parameters Rsyn and Rp, and not on the substantially different mag-
netic field strengths which, due to our use of L�, only affect the
conversion to grain radius ad. The synchronous orbital distance is
somewhat closer to the planetary surface at Saturn (Rsyn = 1.86Rp)
than at Jupiter (Rsyn = 2.24Rp), while at Earth (Rsyn = 6.61Rp) it is
much further away. This leads to interesting differences between
the planets, as we shall see below.
6. Saturn and Earth

A centered and aligned dipole is an excellent approximation for
Saturn’s magnetic field. We take g10 = 0.2154 Gauss from Conner-
ney et al. (1984) and plot both our numerical data and analytical
stability boundaries in Fig. 11. The Cassini measurement of g10

does not vary significantly from the older value that we use (Bur-
ton et al., 2009). A lower synchronous orbit at Saturn pushes the
local vertical instability inward, as expected from Eq. (23). Com-
paring Fig. 11 to Fig. 9, we see that the proximity of the surface
at Saturn causes all the locally vertically unstable grains to physi-
cally collide with the planet. This is true for both negative and po-
sitive grains.

Outside synchronous orbit in Fig. 11b, the solutions derived for
positive escaping grains in Section 4 apply at Saturn to very high
accuracy, for both the low L� and high L� boundaries. As in
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Fig. 9b, grains with L�K 1
2, do not have enough energy to escape de-

spite achieving large radial excursions (light grey region outside
Rsyn in Fig. 11b). For these grains, vertical motions are excited over
several orbits, as in Fig. 5.

Within synchronous orbit, the condition U(Rp) = U(rL) (solved in
Eq. (17)) bounds most of the unstable grains. As at Jupiter, a small
set of large grains near Rsyn requires a semi-analytical treatment of
the potential between the launch position and the surface to deter-
mine global stability. This analysis yields the curve connecting the
filled black circle at (rL = 1.568Rp,L� = 0.14) and the open circle

rL ¼ Rsyn; L� ¼ 2�
ffiffiffi
3
p� �

in Fig. 11b.
Compared to Jupiter and Saturn, Earth’s magnetic field is ‘‘in-

verted’’ at the current epoch, with magnetic north near the geo-
graphic south pole (g10 = �0.3339 Gauss taken from Roberts and
Soward, 1972). Thus at Earth, L� > 0 for negative grains. This causes
positive grains to be radially stable, gyrating between the launch
position and synchronous orbit, and negatively-charged grains to
be radially unstable. The Earth is also far smaller on the scale of
its own synchronous orbit than the gas giants, and so serves as
an excellent test of the accuracy of our analytical solutions far from
Rsyn. For the Earth, Fig. 12a shows the radial global instabilities.
Outside Rsyn, the boundaries are in excellent agreement with our
analytical results for large and small grains. Inside Rsyn, grains are
globally radially unstable and all the grains that collide with the
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Fig. 12. Stability of charged grains at Earth, modelled with a centered and anti-
aligned dipole field. Theoretical curves and initial conditions are the same as in Figs.
9 and 11. Since Rsyn is much larger than for Jupiter and Saturn, we extend the radial
range of the integrations to rL = 10Rp and the distant threshold signifying escape to

resc = 100Rp. The open circles at rL ¼ Rsyn; L� ¼ 2þ
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and rL ¼ Rsyn ; L� ¼ 2�
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are as in Fig. 9, and the solid circle, marking the transition from the analytical to
semi-analytical boundary for the larger grains is at L� = 0.0248, rL = 2.074Rp. The two
solid squares in (a) are individual grain trajectories illustrated in Figs. 13 and 14.
planet at low latitudes are launched between our two solutions gi-
ven by Eq. (17). The set of grains for which Eq. (17) is an insuffi-
cient criterion for collision with the planet, however, is much
larger at the Earth than at Jupiter or Saturn. For Earth, just like
for the gas giants, the global solution for radial stability inside syn-
chronous orbit perfectly matches the numerical data and meets
Rsyn at the local stability solution rL ¼ Rsyn; L� ¼ 2�

ffiffiffi
3
p� �

. Further-
more, the solutions of Eq. (17) have shifted to much lower L� (see
Eq. (18)), reducing the total range in L� for grains which collide
with the planet at low latitude.

The local vertical stability boundary matches the numerical
data well, although in the Lorentz limit, all grains are globally sta-
ble since the high latitude restoring forces become much stronger
close to the planet (Howard et al., 2000). Only at jL�j 6 1 do the po-
sitive grains collide with the planet. As in Figs. 9 and 11 the vertical
stability curves match very well for large L� and deviate from the
data for L� � 1. The jjcj = 2Xb resonance also matches the data well.

Earth has a much larger class of grains that experience large ra-
dial excursions, which excite vertical motions. Most of these grains,
from the medium-grey areas on the stability map of Fig. 12a that
link the disjoint dark grey regions of global radial instability, col-
lide with the planet at high latitudes. An example of a trajectory
in this class is shown in Fig. 13.

At Saturn all of the grains in this region collided with the planet,
but at the Earth we see three white tracks of orbits that never leave
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Fig. 13. A grain with large radial excursions that gradually excite substantial
vertical oscillations at the Earth (rL = 4.51Rp,L� = 0.948,ad = 0.0149 lm).
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the equatorial plane, and hence are energetically prevented from
striking the planet. We plot an example in Fig. 14. A few of these
trajectories are also apparent for Jupiter (Figs. 1 and 9b.) We sus-
pect, based on the similarity of the white stable tracks in Fig. 12a
and the jjcj = 2Xb line in Fig. 12b, that these are resonant
phenomena.
7. Conclusion

For Kepler-launched grains in centered and aligned dipole plan-
etary fields, we have employed both local and global stability anal-
yses to provide solutions for stability boundaries that match
numerical simulations for Jupiter, Saturn and the Earth. Fig. 15 pro-
vides a summary of the various analytical results discussed in this
work for positive grains at Jupiter.

We find that local radial stability is very useful in the immediate
vicinity of synchronous orbit, since rg ? 0 there (Eq. (13)). More
importantly, our restriction of the global radial analysis to equato-
rial orbits is justified by the excellent agreement between analytics
and numerics. Radial instability has important implications for
depleting particles near the surface of a planet but beyond the
reach of atmospheric drag forces. At Earth, for example, the radial
instability eliminates negatively-charged particles with
rg [ 0.2 lm from Low Earth orbit, and [0.1 lm from within
2000 km. For Jupiter, this instability sweeps positive grains with
rg < 1 lm from the region within 10,000 km from Jupiter’s cloud-
tops.

Our local vertical analysis of grains launched on Kepler circles in
the equatorial plane adds the effect of the magnetic mirror force
and is a major improvement to the equilibrium model of Northrop
and Hill (1982). We do not undertake a fully global analysis which
would seek to distinguish grains that strike the planet from those
that simply sustain large amplitude oscillations in latitude.

Although the intrinsic magnetic fields of Jupiter, Saturn and the
Earth are all nearly dipolar, each planet has additional components
that make the field more complicated. Saturn has the simplest field
and is well represented by a dipole offset northward by a few thou-
sand km. Jupiter and the Earth have non-zero dipole tilts that cause
the magnetic field seen by an orbiting grain to fluctuate. Neverthe-
less, since tilts and offsets are generally small, we expect that the
radial forces will be only slightly affected, and the radial instability
region will remain nearly the same. Vertical motions, by contrast,
should be strongly affected since a circular orbit in the equatorial
plane is no longer an equilibrium point. The global radial analysis,
which included the effects of radial oscillations, led to a much lar-
ger instability region than the simple local analysis (top of Fig. 15);
in exactly the same way, we expect the region of vertical instability
to expand substantially when dipole tilts or offsets are included.
We will take up the study of more complicated magnetic field con-
figurations and launch conditions in a forthcoming paper.
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