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Abstract

In this paper, we investigate whether Uranus’s 98° obliquity was a by-product of a secular spin–orbit resonance
assuming that the planet originated closer to the Sun. In this position, Uranus’s spin precession frequency is fast
enough to resonate with another planet located beyond Saturn. Using numerical integration, we show that
resonance capture is possible in a variety of past solar system configurations but that the timescale required to tilt
the planet to 90° is of the order ∼108 yr—a time span that is uncomfortably long. A resonance kick could tilt the
planet to a significant 40° in ∼107 yr only if conditions were ideal. We also revisit the collisional hypothesis for the
origin of Uranus’s large obliquity. We consider multiple impacts with a new collisional code that builds up a planet
by summing the angular momentum imparted from impactors. Because gas accretion imparts an unknown but
likely large part of the planet’s spin angular momentum, we compare different collisional models for tilted,
untilted, spinning, and nonspinning planets. We find that a 1 M⊕ strike is sufficient to explain the planet’s current
spin state, but that two 0.5M⊕ collisions produce better likelihoods. Finally, we investigate hybrid models and
show that resonances must produce a tilt of at least ∼40° for any noticeable improvements to the collision model.
Because it is difficult for spin–orbit resonances to drive Uranus’s obliquity to 98° even under these ideal
conditions, giant impacts seem inescapable.

Unified Astronomy Thesaurus concepts: Uranus (1751); Neptune (1096); Solar system planets (1260); Orbital
resonances (1181); Orbits (1184); Planet formation (1241); N-body simulations (1083); Celestial mechanics (211)

1. Introduction

Uranus’s 98° obliquity, the angle between the planet’s spin
axis and normal to its orbital plane, is perhaps the most unusual
feature in our solar system. The most accepted explanation for its
origin is a giant collision with an Earth-sized object that struck
Uranus at polar latitudes during the late stages of planetary
formation (Harris & Ward 1982; Benz et al. 1989; Korycansky
et al. 1990; Slattery et al. 1992; Parisi & Brunini 1997;
Morbidelli et al. 2012; Izidoro et al. 2015; Kegerreis et al. 2018,
2019; Kurosaki & Inutsuka 2019; Ida et al. 2020; Reinhardt et al.
2020). Collisions between massive objects are an expected part
of solar system formation; indeed, our own Moon was likely
formed as a result of a collision between Earth and a Mars-sized
object (Canup & Asphaug 2001). There are problems with a
collisional origin of Uranus’s obliquity though. These impacts
could significantly alter the planet’s primordial spin rate, yet
both Uranus and Neptune spin at similar periods (TU= 17.2 hr,
TN= 16.1 hr). Just as with Jupiter and Saturn, the two ice giants
likely acquired their nearly identical spin rates while accreting
their massive gaseous atmospheres from a circumplanetary disk
(Batygin 2018; Bryan et al. 2018).

Additionally, Morbidelli et al. (2012) argue that for Uranus’s
regular satellites to orbit prograde around the planet, two or more
collisions would be necessary. Tilting from 0° to 98°with a single
impact would lead to nodal precession of the satellites, and they
would form a torus around the tilted spin axis. The satellites would
then cross orbits and undergo mutual collisions, and this collision
damping would allow the satellites to eventually realign with
the planet’s equatorial plane; however, the resulting protosatellite
disk would preserve its pre-impact angular momentum and hence

would form retrograde satellites. Maintaining the orientation of its
regular satellites is possible if Uranus’s initial obliquity was large
so that the final impact tilts the planet by less than 90°.
Ida et al. (2020) circumvent this multicollision issue by

suggesting that the Uranian satellite system was a by-product of
debris from an ice-rich giant impact. Previous simulations
showed that a debris disk from a single rocky impactor would
generate a disk 100 times more massive and 10 times smaller in
size than the current Uranian satellite system (Slattery et al.
1992; Kegerreis et al. 2018, 2019; Kurosaki & Inutsuka 2019;
Reinhardt et al. 2020). But, an icy impactor would eject a
water-vapor-rich disk that viscously evolves until particles
recondense to ice. Nearly all of the debris falls back onto
Uranus, but the remaining 1% of the disk spreads to 10 times
the size of the initial debris disk and forms the equatorial
satellite system observed today; alternatively, having the
planet already tilted beyond 30°would also reduce the number
of impacts required by Morbidelli et al. (2012) back to one. If
the Uranian satellites were indeed formed from a circumpla-
netary disk (Szulágyi et al. 2018) rather than a debris disk, then
exciting Uranus’s pre-impact tilt through some mechanism
other than collisions is desirable.
In this paper, we will explore an alternative collisionless

approach based on the resonant capture explanation for Saturn’s
27° obliquity. Because Saturn is composed of mostly hydrogen
and helium gas (Alibert et al. 2005; Guillot 2005), we would
expect gas accretion during planet formation to conserve angular
momentum and force any primordial obliquity to ò∼ 0°. A
collisional explanation would then require an impactor of
6–7.2M⊕ (Parisi & Brunini 2002), which is even more unlikely
than the putative Uranus strike. Juno mission observations of
Jupiter’s gravitational field suggest that the planet’s core is
diluted of heavy elements (Wahl et al. 2017; Debras &
Chabrier 2019), and Liu et al. (2019) posit that a 5M⊕ impact
can mix these metals within the planet’s inner envelope. This
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model implies that such collisions could be common in the early
solar system, but in situ explanations, such as erosion of the core
from convective mixing (Guillot et al. 2004; Wilson &
Militzer 2012) or planetesimal enrichment (Hori & Ikoma 2011;
Lozovsky et al. 2017), are still viable alternatives and do not
require stochastic cataclysmic events. Instead, Saturn’s obliquity
can best be explained without collisions entirely by an ongoing
secular spin–orbit resonance between the precession frequencies
of Saturn’s spin axis and Neptune’s orbital pole (Hamilton &
Ward 2004; Ward & Hamilton 2004). Even Jupiter’s small tilt
may have resulted from a resonance with either Uranus or
Neptune (Ward & Canup 2006; Vokrouhlický & Nesvorný
2015). A significant advantage of this model is that the gradual
increase of Saturn’s obliquity preserves both the planet’s spin
period and the orbits of its satellite system, which would
eliminate all of the issues present in the giant impact hypothesis
for Uranus (Goldreich 1965).

Uranus’s current spin precession frequency today is too slow
to match any of the planets’ orbital precession rates, but that
may not have been the case in the past. Boué & Laskar (2010)
posit that a resonance is possible if Uranus harbored a moon
large enough so that the planet’s spin axis could precess
sufficiently fast to resonate with its own orbit. This moon
would, however, have to be larger than all known moons
(between the mass of Ganymede and Mars), have to be located
far from Uranus (≈50 Uranian radii), and then have to
disappear somehow, perhaps during planetary migration.

A more promising solution is instead to place a circumplanetary
disk of at least 4.5× 10−3M⊕ around Uranus during the last
stage of its formation (Harris & Ward 1982; Rogoszinski &
Hamilton 2020). Because Uranus must have harbored a massive
circumplanetary disk to account for its gaseous atmosphere, and
Szulágyi et al. (2018) calculated a circumplanetary disk of around
10−2M⊕, capturing into a spin–orbit resonance by linking
Uranus’s pole precession to its nodal precession seems plausible
during formation. Rogoszinski & Hamilton (2020) find that a
70° kick is possible within the accretion time span of 1Myr and
that while a subsequent impactor is still necessary to fully account
for Uranus’s 98° tilt, it only needs to be 0.5 M⊕. The odds of this
collision generating Uranus’ current spin state are significantly
greater, but to attain the 70° obliquity, Uranus’s orbital inclination
would need to be around 10°. An inclination this high is a little
uncomfortable and hints that further improvements to the model
may be necessary. For instance, Quillen et al. (2018) demonstrated
a similar set of resonance arguments that are not sensitive to a
planet’s orbital inclination and that are capable of pushing a
planet’s obliquity beyond 90°. These arguments include mean-
motion terms which arise naturally if the planets are configured in
a resonance chain (Millholland & Laughlin 2019).

Here, we investigate yet another possibility by placing Uranus
closer to the Sun where tidal forces are stronger and precession
timescales are shorter. This will require us to make some
optimistic modifications to the planets’ initial configurations in
order to generate the desired resonance, as will be seen below. If
our models yield fruitful results, then these assumptions will
need to be carefully examined in the larger context of solar
system formation. Furthermore, we also revisit the single and
multicollision explanation in Section 4, as well as hybrid
resonance and collision models. We will then critically compare
all of these resonance and collisional models.

2. Capture into a Secular Spin–Orbit Resonance

2.1. Initial Conditions

Gravitational torques from the Sun on an oblate planet cause
the planet’s spin axis to precess backwards, or regress, about
the normal to its orbital plane (Colombo 1966). Similarly,
gravitational perturbations cause a planet’s inclined orbit to
regress around the Sun. A match between these two precession
frequencies results in a secular spin–orbit resonance. In this
case, the spin axis remains fixed relative to the planet’s orbital
pole, and the two vectors precess about the normal to the
invariable plane. The longitudes of the two axial vectors, fα
and fg, are measured from a reference polar direction to
projections onto the invariable plane, and the resonance
argument is given as (Hamilton & Ward 2004)

f fY = -a . 1g ( )

The precession rate of Uranus’s spin axis can be derived
from first principles by considering the torques of the Sun and
the Uranian moons on the planet’s equatorial bulge. Following
Colombo (1966), if ŝ is a unit vector that points in the direction
of the total angular momentum of the Uranian system, then

s
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where n̂ is a unit vector pointing in the direction of Uranus’s
orbital angular momentum, α is the spin precession rate near
zero degree tilts, and t is time. Uranus’s axial precession period
is therefore
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where ò is the obliquity and s= ncos ˆ · ˆ. The precession
frequency near zero obliquity, α, incorporates the torques from
the Sun and the planet’s moons on the central body
(Tremaine 1991):
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3 1 2( ) is the orbital angular speed of the

planet, G is the gravitational constant, Me is the Sun’s mass, rp
is the Sun–planet distance, ω is the planet’s spin angular speed,
J2 is its quadrupole gravitational moment, and K is its moment of
inertia normalized by M Rp p

2. For Uranus today, Mp= 14.5M⊕,
Rp= 2.56× 109 cm, K= 0.225, and J2= 0.00334343.1 The
parameter qº å -q M M a R 1 sini i p i p i

1

2
2 3

2
2( )( ) ( ) is the

effective quadrupole coefficient of the satellite system, and
qº å-l R M M GM a cosp i i p p i i

2 1
2( )( ) is the angular momentum of

the satellite system divided by M Rp p
2. The masses and semimajor

axes of the satellites are Mi and ai, q s= scos p ˆ · ˆ , and

q s= lcos i î · ˆ , where ŝ is the direction of the spin angular
momenta of the central body, and lî is the normal to the
satellite’s orbit (Tremaine 1991). Note that Mi=Mp, where Mp

is the mass of the planet, and because the satellite orbits are
nearly equatorial, we can take θp= θi= 0.

1 All physical values of the solar system are courtesy of NASA Goddard
Space Flight Center: http://nssdc.gsfc.nasa.gov/planetary/factsheet/.
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Torques from the main Uranian satellites on the planet
contribute significantly to its precessional motion, while those
from other planets and satellites can be ignored. We therefore limit
ourselves to Uranus’s major moons—Oberon, Titania, Umbriel,
Ariel, and Miranda. We find q = 0.01558, which is about 4.7
times larger than Uranus’s J2, and l= 2.41× 10−7, which is
smaller than Kω by about a factor of 100. So from Equation (4),
the effective quadrupole coefficient of the satellite system plays a
much more significant role in the planet’s precession period than
the angular momentum of the satellite system. At its current
obliquity, ò= 98°, Uranus’s precession period is about 210
million years (or α= 0.0062 arcsec yr−1), and reducing Uranus’s
obliquity to 0° results in a precession period 7.2 times faster: 29
million years (or α= 0.045 arcsec yr−1). This pole precession rate
is much longer than any of the giant planets’ fundamental
frequencies (Murray & Dermott 1999), but it can be sped up to
≈2Myr by placing Uranus at around 7 au. This is just fast enough
for Uranus to resonate with a similar planet—Neptune—located
beyond Saturn.

Placing Uranus’s orbit between those of Jupiter and Saturn is
not entirely ad hoc. Thommes et al. (1999, 2002, 2003) argue
that at least the ice giants’ cores might have formed between
Jupiter and Saturn (4–10 au), as the timescales there for the
accretion of planetesimals through an oligarchic growth model,
when the large bodies in the planetary disk dominate the
accretion of surrounding planetesimals, are more favorable than
farther away. The Nice model (Gomes et al. 2005; Morbidelli
et al. 2005; Tsiganis et al. 2005) places Uranus closer to the Sun
but beyond Saturn for similar reasons; however, having the ice
giants form between Jupiter and Saturn is not inconsistent with
the Nice model. If Uranus and Neptune were indeed formed
between Jupiter and Saturn and later ejected sequentially, then a
secular spin–orbit resonance between Uranus and Neptune is
possible. Note that such close encounters would not yield any
significant obliquity excitations because the perturbing torque is
too weak as it depends on the planet’s gravitational quadrupole
moment (Lee et al. 2007). A related possibility that is also
sufficient for our purposes is if the planets were formed from
pebble accretion, as the pebble isolation mass can be similar
everywhere in the outer solar system (Lambrechts et al. 2014),
allowing Neptune to be initially formed beyond Saturn and
Uranus between Jupiter and Saturn. In the following, we assume
that Uranus is fully formed with its satellites located near their
current configurations to derive the spin axis precession rate. We
also include only the known giant planets because adding a third
or fourth ice giant, as suggested by the Nice model to better
reproduce the solar system (Nesvorný 2011; Batygin et al. 2012;
Nesvorný & Morbidelli 2012), would increase the planet’s
orbital precession rates and make it more difficult for Uranus to
obtain a spin–orbit resonance. Only if we succeed to tilt Uranus
reasonably under these conditions would we consider introdu-
cing more giant planets to the model.

2.2. Method

Calculating Uranus’s obliquity evolution requires tracking the
planets’ orbits while also appropriately tuning Neptune’s nodal
precession rate. We use the HNBody Symplectic Integration
package (Rauch & Hamilton 2002) to track the motion of bodies
orbiting a central massive object using symplectic integration
techniques based on two-body Keplerian motion, and we move
Neptune radially with an artificial drag force oriented along the
velocity vector using the package HNDrag. These packages do

not follow spins, so we have written an integrator that uses a
fifth-order Runge–Kutta algorithm (Press et al. 1992) and reads
in HNBody data to calculate Uranus’s axial orientation due to
torques applied from the Sun (Equation (2)). For every time step,
the integrator requires the distance between the Sun and Uranus.
Because HNBody outputs the positions and velocities at a given
time frequency different from the adaptive step that our
precession integrator uses, calculating the precessional motion
requires interpolation. To minimize interpolation errors, we use a
torque averaged over an orbital period that is proportional to
á ñ = -- - -r a e1p p p

3 3 2 3
2( ) , where ap is the planet’s semimajor axis

and ep is its eccentricity. This is an excellent approximation
because Uranus’s orbital period is 105–106 times shorter than its
precession period. We tested the code for a two-body system
consisting of just the Sun and Uranus, and recovered the analytic
result for the precession of the spin axis (Figure 1).
For our simulations, we place Jupiter and Saturn near their

current locations (5 au and 9 au, respectively), Uranus at 7 au,
and Neptune well beyond Saturn at 17 au. Leaving Uranus in
between the two gas giants for more than a few million years is
unstable (Lecar & Franklin 1973; Franklin et al. 1989; Gladman
& Duncan 1990; Holman & Wisdom 1993), but eccentricity
dampening from remnant planetesimals can delay the instability.
Scattering between Uranus and the planetesimals provides a
dissipative force that temporarily prevents Uranus from being
ejected, and we mimic this effect by applying an artificial force
to damp Uranus’s eccentricity. We apply the force in the orbital
plane and perpendicular to the orbital velocity to damp the
eccentricity while preventing changes to the semimajor axis
(Danby 1992). With Uranus’s orbit relatively stable, we then
seek a secular resonance between its spin and Neptune’s orbit.

2.3. A Secular Resonance

Capturing into a spin–orbit resonance also requires the two
angular momentum vectors, the planet’s spin axis and an
orbital pole, and the normal to the invariable plane be coplanar.
Equilibria about which the resonance angle librates are called
“Cassini states” (Colombo 1966; Peale 1969; Ward 1975;
Ward & Hamilton 2004), and there are multiple vector
orientations that can yield a spin–orbit resonance. In our case,
the resonance angle, Ψ, librates about Cassini state 2 because
Uranus’s spin axis and Neptune’s orbital pole precess on
opposite sides of the normal to the invariable plane.
As Neptune migrates outwards away from the Sun, its nodal

precession frequency slows until a resonance is reached with
Uranus’s spin precession rate. If the consequence of the resonance
is that Uranus’s obliquity increases (Ward 1974), then its spin
precession period increases as well (Equation (3)), and the
resonance can persist. The time evolution of the resonance angle
and obliquity are given by Hamilton & Ward (2004):

aY = - - g Icos cos , 5( )

= Y g Isin sin , 6( )

where g is the negative nodal precession rate, and I is the
amplitude of the inclination induced by Neptune’s perturbation
on Uranus’s orbit. If Neptune migrates outward slowly enough,
then Y is small and the two planets can remain in resonance
nearly indefinitely.
Figure 2 shows Uranus undergoing capture into a spin–orbit

resonance when Neptune crosses ∼24 au en route to its current
location at 30 au. Here we have set Neptune’s migration rate to
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Figure 1. Calculated relative error of three quantities describing Uranus’s spin axis. Here ω is the unit vector pointing in the direction of Uranus’s spin axis. ò is the
planet’s obliquity and f is the planet’s spin longitude of the ascending node. All quantities should be constant with time as the system only contains the Sun and
Uranus. Numerical errors at the levels shown here are sufficiently low for our purposes.

Figure 2. A resonance capture. The top panel shows Uranus’s obliquity evolution over time. The middle panel shows the evolution of the precession frequencies with
the dashed line indicating the resonance location, and the bottom panel shows the resonance angle (Ψ). The solid vertical line at t ≈150 Myr indicates when Neptune
reaches it current location at 30 au. In this simulation, resonance is established at t = 0.05 Gyr when Neptune is at ≈24 au, and it breaks at t > 0.7 Gyr with Neptune
near ≈ 120 au. Stopping Neptune at 30 au, we find that this capture could account for perhaps half of Uranus’s extreme tilt. Here, Uranus is located at aU = 7 au, with
its current equatorial radius. Neptune’s inclination is set to twice its current value at iN = 4°, which strengthens the resonance.
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∼0.05 auMyr−1, which is within the adiabatic limit—the
fastest possible rate to generate a capture with òi≈ 0°. The
adiabatic limit occurs when Neptune’s migration takes it across
the resonance width in about a libration time, which is just
2π/wlib with a= - w g Isin sinlib (Hamilton &Ward 2004).
Just as slow changes to the support of a swinging pendulum do
not alter the pendulum’s motion, gradual changes to Neptune’s
orbit do not change the behavior of the libration. However, if
Neptune’s migration speed exceeds the adiabatic limit, then
resonance cannot be established. The top panel of Figure 2
shows Uranus tilting to 60° in 150 Myr when Neptune reaches
its current location, and all the way to 90° in 600Myr if we
allow Neptune to continue outwards. Planets migrate by
scattering planetesimals, which can decrease inclinations;
accordingly, we optimistically assumed an initial value for
Neptune’s inclination at twice its current value. Because we
have increased Neptune’s inclination and moved Neptune out
as fast as possible and yet still allowed capture, 150 million
years represents a rough lower limit to the time needed to tilt
Uranus substantially.

The bottom panel of Figures 2 and 3 both show the evolution
of the resonance angle, and the angle oscillates with a libration
period of about 30Myr about the equilibrium point. The
libration period increases as ò increases in accordance with the
predictions of wlib. The noticeable offset of the equilibrium
below Ψ= 0° in Figures 2 and 3 is due to the rapid migration of
Neptune (Hamilton & Ward 2004):

a
a

Y =
+


g I

g I

cos cos

sin sin
. 7eq ( ) 

Recall that g, the nodal precession frequency, is negative, α is
positive, and as Neptune migrates away from the Sun, g is
positive. Because α is constant, a = 0 , and so Ψeq is slightly
negative in agreement with Figure 2. We conclude that although
a spin–orbit resonance with Neptune can tilt Uranus over, the
model requires that Uranus be pinned between Jupiter and

Saturn for a few hundred million years, yet close encounters with
either gas giant makes it unstable to leave Uranus there for more
than a million years (Lecar & Franklin 1973; Franklin et al.
1989; Gladman & Duncan 1990; Holman & Wisdom 1993). Is
there any room for improvement?
Solar system evolution models calculate planetary migration

timescales on the order of 106–107 yr (Hahn & Malhotra 1999;
Thommes et al. 1999, 2002, 2003; Gomes et al. 2005; Morbidelli
et al. 2005; Hahn &Malhotra 2005; Tsiganis et al. 2005; de Sousa
et al. 2020). This is incompatible with this resonance capture
scenario, which requires at least 108 yr. Speeding up the tilting
timescale significantly would require a stronger resonance. The
strength of this resonance is proportional to the migrating planet’s
inclination and it sets the maximum speed at which a capture can
occur (Hamilton 1994). Although Neptune’s initial orbital
inclination angle is unknown, a dramatic reduction in the tilting
timescale is implausible.
Another possibility is that the gas giants were once closer to

the Sun where tidal forces are stronger. Some evidence for this
comes from the fact that the giant planets probably formed
closer to the snow line (Ciesla & Cuzzi 2006), where volatiles
were cold enough to condense into solid particles. Shrinking
the planets’ semimajor axes by a factor of 10% decreases the
resonance location by about 3 au and reduces the obliquity
evolution timescale by about 15%. Although this is an
improvement, a timescale on the order of 108 yr seems to be
the fundamental limit on the speed at which a significant
obliquity can be reached (Rogoszinski & Hamilton 2016;
Quillen et al. 2018).
Less critical than the timescale problem but still important is

the inability of the obliquity to exceed 90° (Figure 2). The reason
for this follows from Equation (3), which shows that Uranus’s
precession period approaches infinity as ò approaches 90°.
Neptune’s migration speed then is faster than the libration
timescale, and the resonance ceases. This effect is more apparent
in Figure 3, in which the libration period also increases with

Figure 3. Corresponding polar plot to Figure 2 where Neptune is migrating well within the adiabatic limit. The short-period oscillations here are at the pole precession
rate while the longer oscillations are the librations about the equilibrium point, which itself is moving to higher obliquities (to the right). The red dotted circles
represent points of constant obliquity in increments of 15°.
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obliquity. The resonance breaks when the resonance angle stops
librating about an equilibrium point and instead circulates a full
2π radians. Quillen et al. (2018) show that a related resonance
that occurs when the planets are also close to a mean-motion
resonance could tilt the planet past 90°, but this, like the
resonance considered here, is probably too weak. Keeping
Uranus between Jupiter and Saturn for 108 yr is as implausible as
the planet having once had a massive distant moon (Boué &
Laskar 2010).

3. Obliquity Kick from a Secular Spin–Orbit Resonance

A resonance capture with Neptune may not be able to tilt
Uranus effectively, but this resonance may still contribute
significantly on a timescale more compatible with current
planetary formation models. A resonance kick occurs if
Neptune’s migration speed is too fast to permit captures (i.e.,
exceeds the adiabatic limit). If g, the rate Neptune’s nodal
precession frequency changes as the planet migrates, is large
enough, then from Equation (5), g Icos shrinks faster than
Uranus’s spin precession frequency a cos . Thus, Y < 0 ,
which drives Ψ to −180°. For a capture, on the other hand, g is
smaller so that the resonance lasts more than one libration
cycle. A kick can also occur at slower migration speeds if the
relative phase of the two precession axes are misaligned.
Figure 4 shows an example of a resonance kick with a
concurrent change in obliquity lasting 50Myr. Overall, the
magnitude of the kick depends on Neptune’s orbital inclination,
Uranus’s initial obliquity, the migration speed, and the relative
orientation of Uranus’s spin axis and Neptune’s orbital pole at
the time resonance is encountered. We will explore the entirety

of this phase space to examine how effective Neptune’s
resonant kicks are at tilting Uranus.
For a range of migration speeds consistent with orbital

evolution rates from planetesimal scattering (Hahn & Malhotra
1999, 2005), we ran simulations for initial obliquities ranging
from ò≈ 0° to ò≈ 90° in increments of 5°. While Uranus may
have originated with zero obliquity due to gas accretion, this
does not need to be the case in general. Impacts, for example,
are a source of at least small obliquities, the prior spin–orbit
resonance discussed by Rogoszinski & Hamilton (2020) likely
induced significant obliquity, and tidal torques onto detached
circumplanetary disks may also excite planetary obliquities
(Martin et al. 2020). For each initial obliquity, we sample a
range of phase angles from 0 to 2π.
Distinguishing kicks from captures is more difficult when

Neptune is migrating near the adiabatic limit, especially at low
inclinations, so to highlight this effect, we raise Neptune’s
inclination to 8° in Figure 5. This figure shows how the phase
angle determines whether the resonance would yield a kick or a
capture. Note, however, that it is actually the phase angle on
encountering the resonance that matters, not the initial phase
angle plotted in Figure 5. Also, the outlying oscillations in this
figure are due to librational motion as the final obliquity is
calculated only when Neptune reaches its current location at
30 au. In this case, there is a clear division between captures
and kicks near azimuthal angles 150° and 250°. In other cases
at lower inclinations, however, the boundaries between kicks
and captures seem more ambiguous.
Figure 6 shows the corresponding polar plots for a selection

of points in Figure 5 contrasting the difference between kicks
and captures. Near the adiabatic limit, the phase angle will not

Figure 4. A resonance kick with a particularly large 40° amplitude. Here, Neptune is migrating out at an average speed of 0.068 au Myr−1, and Uranus’s radius is at its
current size. Jupiter, Saturn, and Uranus are located 10% closer to the Sun than today, and Neptune has an inclination of 4°.
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librate more than one or two cycles for captures before the
resonance breaks. This is most apparent in Figure 6(b), where
Uranus completes just over one libration cycle. For compar-
ison, Figure 3 shows a capture well within the adiabatic limit,
and here, the phase angle clearly librates multiple times until
the planet’s obliquity reaches ò∼ 90°. We therefore identify
kicks as a resonance active for less than one libration cycle.
Resonance kicks near the adiabatic limit can also generate large
final obliquities, so we will focus our attention to this region in
phase space. As shown in Figures 4 and 5, it is possible to
generate kicks up to Δò∼ 40° for iN= 4° and Δò∼ 55° for
iN= 8°.

In Figure 7, we map the fraction of resonances that produce
captures for a range of migration speeds and initial obliquities.
The transition from 100% kicks to 100% captures over
migration speeds is sharpest at lower initial obliquities. This
can be understood by considering the circle that Uranus’s spin
axis traces as it precesses; for small obliquities, significant
misalignments between the two poles are rare, and the outcome
of a resonance is determined primarily by Neptune’s migration
speed. With increasing initial obliquities, large misalignments
become more common, and the probability of generating a
resonance kick increases (Quillen et al. 2018).

We expect and find that the strongest resonant kick occurs at
around the adiabatic limit because a slow migration speed gives
ample time for the resonance to respond. Conversely, a rapid
migration speed would quickly punch through the resonance,
leaving little time for the resonance to influence Uranus.
Figure 8 depicts the distributions of kicks and captures near the
ò = 0° adiabatic limit. Looking at the resonance kicks, we see
that they can reach maximum changes in obliquities of 40°
(Figure 4) for iN near twice Neptune’s current inclination and
even greater changes in obliquity for a higher assumed iN
(Figure 5). This looks promising, but we need to understand the
probability of these large kicks. In fact, looking at Figure 8
shows that, for high obliquities, negative kicks are common.

Figure 5. Change in obliquity as a function of Uranus’s initial azimuthal angle
where ò = 1°, iN = 8°, and the system is near the adiabatic limit. Here, we
sampled 10,000 initial azimuthal angles from 0° to 360° and raised Neptune’s
inclination even further to emphasize the transition region from kicks (phases
near 0°) to captures (phases near 180°). The annotated points (A, B, C) are
discussed further in Figure 6.

Figure 6. Polar plots of one kick (a) and two captures (b, c) taken from
Figure 5. (A) The largest resonance kick at the transition region in Figure 5.
The resonance angle undergoes less than one libration cycle. It approaches
180° and then leaves the resonance. (B) A very tenuous capture whose libration
angle exceeds 180° for one cycle before escaping the resonance creating the
large outer circle. (C) A resonance capture well within the capture region in
Figure 5. Here the system also breaks free from the resonance after a few
libration cycles. Short-period oscillations in these plots are due to the effects of
pole precession.
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For low obliquities, kicks must be positive because ò itself
cannot be negative. However, if Neptune is migrating quickly
and ò is large enough, then the relative phase angle is random,
resulting in a range of possible obliquity kicks; in particular, if

Ysin( ) is positive in Equation (6), then  is negative.
Figure 9(a) shows the maximum possible kicks over all initial

obliquities and migration speeds, and although large kicks are
possible, they are rare. Apart from resonant kicks that occur near
the adiabatic limit, which can be seen in this figure as the
magenta feature extending linearly up and to the right, the
maximum strength of resonant kicks is typically Δò≈ 10°– 20°.
On top of that, resonance kicks can also decrease obliquities,
which are depicted in Figure 9(b). If Uranus’s obliquity was
initially large, then the percentage of positive kicks is around
50%, tending toward primarily negative kicks as Neptune’s

migration speed decreases. Because about half of all possible
resonance kicks at initial obliquities greater than 10° are
negative, the average kick should be low. Figure 9(c) depicts
the corresponding mean changes in obliquity, and they tend to be
weak, with mean resonance kicks of only a few degrees. At low
initial obliquities, though, kicks tend to increase the planet’s
obliquity by at least 10°. Generating a large resonance kick
would most commonly occur if òi= 0°with Neptune migrating
no faster than 0.1 auMyr−1 or a crossing time on the order of
∼107 yr. These figures show that, as a statistical process,
resonances have only a weak effect, and that one needs favorable
initial conditions for large kicks.
We could increase Uranus’s obliquity further if it received

multiple successive resonance kicks. This might be achieved, for
example, with either a resonance between Uranus and another
possible ice giant that may have existed in the Thommes et al.
(1999) model, a resonance with its own orbital pole after Uranus’
spin precession rate was amplified by harboring a massive
extended circumplanetary disk (Rogoszinski & Hamilton 2020),
or if Uranus’s precession frequency quickened as the planet cools
and shrinks. The latter process is interesting and merits further
discussion.
Uranus was hotter and therefore larger in the past (Bodenhei-

mer & Pollack 1986; Pollack et al. 1991, 1996; Lissauer et al.
2009), and conserving angular momentum requires that a larger
Uranus must spin significantly more slowly. Both Uranus’s spin
angular frequency, ω, and its quadrupole gravitational harmonic,
J2, appear in Equation (4) and change if the planet’s radius
changes. Because ω∝ R−2 and J2∝ ω2 (Ragozzine & Wolf
2009), the result is a slower precession frequency. Here, for
simplicity, we have ignored the contributions of the satellites, as
including them would soften the response somewhat. Although
this is highly dependent on Uranus’s cooling rate, Bodenheimer
& Pollack (1986) and Pollack et al. (1991) show that Uranus
shrank by a factor of 2 on a timescale of order 10Myr. We
simulated this scenario by having Uranus’s radius decrease
according to an exponential function with Neptune stationary at
25 au. Figure 10 shows the resulting kicks as a function of
Uranus’s initial obliquity, and they never exceed 15°. Scenarios
that include multiple crossings of the same resonance would
likely still fall short of fully tilting Uranus (e.g., Correia &
Laskar 2004; Hamilton & Ward 2004; Ward & Hamilton 2004).

4. Revisiting the Collision Model

4.1. Conditions for Collisions

Recall that the leading hypothesis for Uranus’s tilt is a single
Earth-mass impactor striking the planet’s polar region (e.g.,
Slattery et al. 1992; Ida et al. 2020), but that Morbidelli et al.
(2012) argue for two or more collisions if the satellites were
formed primordially from a circumplanetary disk (Szulágyi
et al. 2018). In this section, we consider each of these scenarios
and derive the resulting probability distributions for such
impacts. To do this, we designed a collisional code that builds
up a planet by summing the angular momenta of impactors to
determine the planet’s final obliquity and spin rate under
various circumstances, and we typically run this for half a
million randomized instances. Our assumptions are that the
impactors originate within the protoplanetary disk, they
approach a random location on the planet on trajectories that
parallel its orbital plane, and all the mass is absorbed upon
impact. Because nearly every object in the solar system orbits

Figure 7. Percentage of resonances that produce captures for a range of initial
obliquities and migration speeds. Captures occur most readily in the lower-left
corner of the figure for small obliquities and slow migration rates. Here,
iN = 4°.

Figure 8. Change in obliquity as a function of Uranus’s initial obliquity. The
blue circles depict resonance kicks, while the red crosses depict resonance
captures. Neptune’s migration speed is 0.068 au Myr−1, which is near the
adiabatic limit at small initial obliquities. We set iN = 4°. It should be noted
that our sampling of 100 initial azimuthal angles for Uranus is too coarse to
resolve any captures for initial obliquities greater than 55°. It is possible for
captures to happen at larger initial obliquities, but the range of favorable phase
angles is very small.
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in roughly the same direction, the impactors’ relative speed
would be at most several tens of percent of Uranus’s orbital
speed (6.8 km s−1). Because we expect most impactors to
follow orbits with lower eccentricities, we sample relative
velocities between 0 and 0.4 times Uranus’s circular speed.
Considering that the impactor’s relative speed is small

compared to the planet’s escape speed (21.4 km s−1),
gravitational focusing is also important. For cases where
gravitational focusing is strong, the impact cross section is
large and the impactor is focused to a hyperbolic trajectory
aimed more closely toward the planet’s center. Because head-
on collisions do not impart any angular momentum, we expect
the planet’s spin state to be more difficult to change when
focusing is included. The impact parameter for this effect is
given by b with

= +b R V V1 . 8p
2 2

esc rel
2( ( ) ) ( )

Also, because we do not know how the density profile
changes between impacts, we maintain the dimensionless
moment of inertia at º =K 0.225I

M Rp p
2 but vary the planet’s

radius as the cube root of the total mass. Although these
assumptions are mildly inconsistent, we find that even large
impacts incident on a mostly formed Uranus yield just small
changes in radius and that the final spin rates changes by only
about 10% for other mass–radius relations. Finally, Podolak
& Helled (2012) suggest a maximum impact boundary of
around 0.95 Rp as beyond this, the impactor simply grazes the
planet’s atmosphere and departs almost unaffected. For
simplicity, and in the spirit of approximation, we ignore this
subtlety.

4.2. Accretion of Planetesimals and Protoplanets

In Figures 11(a) and (b), we assume that the planet’s initial spin
rate was low to highlight the angular momentum imparted by
impacts. Because =V GM R2 p pesc

2 , the impact cross section
b2∝Rp for Vrel=Vesc (Equation (8)). The corresponding prob-
ability density distribution of impact locations is pd b dRp

2( ) ,
which is constant; therefore, the spin distribution induced from a

Figure 9. (a) Corresponding maximum change in obliquity for resonant kicks
depicted in Figure 7. Diagonal hatching in the four boxes to the lower left in all
panels corresponds to captures. The scale ranges from 40° (magenta) to 0°
(cyan) kicks. (b) Percentage of kicks that yield positive changes in obliquity.
100% positive kicks are depicted in magenta. (c) Mean changes in obliquity for
resonant kicks. The scale measures the change in obliquity, with magenta being
the maximum.

Figure 10. Change in obliquity as a function of Uranus’s initial obliquity for a
cooling and shrinking Uranus with iN = 4°. There are 1900 simulations
depicted here.

9

The Planetary Science Journal, 2:78 (18pp), 2021 April Rogoszinski & Hamilton



single collision is flat (Figure 11(a)). However, if the impactor’s
relative speed is instead much greater than the planet’s escape
speed, then gravitational focusing is weak, and the impactors will
be traveling on nearly straight lines. In this case, a single collision
produces a spin distribution that increases linearly, as there is an
equal chance of striking anywhere on the planet’s surface. But
because gravitational focusing only varies the radial concentration
of impacts on a planet’s surface, the obliquity distribution for a
single impact onto an initially nonspinning planet with or without
gravitational focusing is uniform. A Uranian core formed from the
accretion of many small objects, by contrast, would likely have a
very low spin rate (Lissauer & Kary 1991; Dones & Tremaine
1993a, 1993b; Agnor et al. 1999) because each successive strike
likely cancels out at least some of the angular momentum imparted
from the previous impact (Figures 11(c) and (d)). The planet would
also have a narrower range of likely obliquities because the phase
space available for low tilts is small.

The calculation for the planet’s final spin state for many
impacts behaves similarly to a random walk, so from the
central limit theorem, each directional component of the
imparted angular momentum can be described by a normal
distribution. The theoretical curve of Figure 11(c) is given by
the probability distribution fL(l), which describes the prob-
ability that L, the magnitude of the planet’s spin angular
momentum = + +L L L LX Y Z

2 2 2 , takes the value l:

p s s
b= F -

s-
f l

l e
l

2

2
0.5; 1.5; 9L

l

z

2 2

2
2

2 2

( ) ( ) ( )

(Dones & Tremaine 1993a, Equation (109)). Here, σ is the
standard deviation for the components of the planet’s spin
angular momentum that lie in the orbital plane, σz is the standard
deviation for the component perpendicular to the orbital plane,
and b s s s s= - 2z z

2 2 2 2( ) . The angular momentum imparted is

Figure 11. (a) The spin distribution for 5 × 105 realizations of a single impact (mi = 1 M⊕) on a nonspinning proto-Uranus with initial mass 13.5 M⊕ including the
effects of gravitational focusing. ωU is the current uranian spin angular frequency, and all of the following distributions are normalized so that the shaded areas equal 1
(with the obliquities in radians); therefore, the solid line that fits the distribution is the probability distribution function (PDF) w w=P U max. (b) The corresponding
obliquity distribution (depicted in degrees) with the solid line given by P = 1.0/π. (c) The spin distribution for 100 impacts of equal mass (mi = 0.01 M⊕). (d) The
corresponding obliquity distribution for 100 impacts. The dashed lines tracing the distributions in both of these figures are the analytic results (Equations (9) and (10)),
and a detailed analysis can be found in the Appendix.
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always perpendicular to the plane of the impactor’s trajectory.
After multiple impacts, standard deviations are related by
s s» 2z , so β< 0. Finally, Φ(0.5; 1.5; βl2) is the confluent
hypergeometric function of the first kind. The corresponding
obliquity probability distribution is

e
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(Dones & Tremaine 1993a, Equation (111)); we provide
derivations of these two equations in the Appendix. Notice how
well these calculations agree with the numerical result for many
impacts (Figures 11(c) and (d)). Consequentially, keeping the
total mass imparted constant and increasing the number of
impactors in Figure 11(c) from 100 to 1000 would shift the
peak to slower spin rates by a factor of 10 . Because Uranus’s
spin period is quite fast, its spin state could not have simply
been a by-product of myriad small collisions.

Accordingly, we will now consider the intermediary cases
with only a few impactors incident on a nonspinning planet.
Figure 12 shows the product of two equal-sized hits, and the
resulting distributions already resemble the limit of multiple
collisions. If the masses of the two impactors differ significantly,
however, the corresponding spin and obliquity distributions are
more similar to those of the single impact case (Figure 13).
Therefore, while the planet’s obliquity distribution may be more
or less flat, its spin rate strongly depends on both the number of
strikes and the total mass in impactors.

Table 1 shows a range of possible collisions onto a
nonspinning planet. Here we show that the smallest amount
of mass necessary to push Uranus toward its observed spin
state is about 0.4M⊕, regardless of the number of impacts. The
odds of this happening decrease for each additional collision
because each impact needs to hit at exactly the right location.
We also provide statistics for impactors much greater than an
Earth-mass in the last section of Table 1. Impactors this
massive would likely violate our no mass-loss assumption, yet
the odds of generating Uranus’s current spin state are still low.
A more detailed analysis of these impacts is beyond the scope
of this paper; however, see Kegerreis et al. (2018, 2019) for a
smooth particle hydrodynamics analysis on the effects that
impacts have on Uranus’s rotation rate and internal structure.

We also explored cases with multiple unequal-sized
impactors and discovered that the order of the impacts does
not matter, as expected, and that the odds are improved for
similar-sized impactors. An example of this can be seen in
Figures 12(a) and 13(a), where for the same total mass, the spin
distribution for two equally sized impactors is concentrated
near Uranus’s current spin state, whereas the distribution is
flatter for two unequal-sized impacts. We conclude that a small
number of equal impacts totaling to about 1M⊕ is the most
likely explanation for Uranus’s spin state if the planet was
initially nonspinning.

4.3. Adding the Effects of Gas Accretion

Gas accretion almost certainly provides a significant source
of angular momentum, so much so that we might expect the
giant planets to be spinning at near break-up velocities if they

Figure 12. (a) The spin distribution for two impacts of equal mass
(mi = 0.5 M⊕) onto an initially nonspinning Uranus. (b) The corresponding
obliquity distribution for two equal impacts. The dashed line is the analytic
result for the limit of an Earth mass distributed among a large number of
particles. (c) A density plot of the spin frequency versus obliquity where the
value of each pixel is the number of iterations that yielded that result. Values
within 10% of Uranus’s current obliquity and spin rate are contained within the
red rectangle. The probability of falling within this rectangle compared to a
similar space around the most likely value is 0.96, meaning that the current
state is a likely outcome.
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accreted gas from an inviscid thin circumplanetary disk
(Bodenheimer & Pollack 1986; Lissauer et al. 2009; Ward &
Canup 2010). Instead, we observe the gas giants to be spinning
several times slower, so there must have been some process for
removing excess angular momentum. This mechanism may be
a combination of multiple effects: magnetic braking caused by
the coupling between a magnetized planet and an ionized disk
(Lovelace et al. 2011; Batygin 2018), vertical gas flow into the
planet’s polar regions and additional midplane outflows from a
thick circumplanetary disk (Tanigawa et al. 2012; Szulágyi
et al. 2014), and magnetically driven outflows (Quillen &
Trilling 1998; Fendt 2003; Lubow & Martin 2012; Gressel
et al. 2013). Because both Uranus and Neptune spin at about
the same rates and have likely harbored circumplanetary disks
of their own (Szulágyi et al. 2018), we suspect that gas
accretion is responsible, though pebble accretion may also
contribute a significant amount of prograde spin (Visser et al.
2020). As such, the planet’s initial obliquities should be near
0° as the angular momentum imparted by gas accretion is
normal to the planet’s orbital plane.
First, we explore cases where the planet initially spins slowly

(Ti= 17.2 hr). In Figure 14, we have Uranus’s initial spin
period four times slower than its current value, tilted to 40°,
and the planet was struck by two Earth-mass impactors. In this
case, even if Uranus was tilted initially by another method, the
odds of generating Uranus’s current spin state are about the
same as if the planet was untilted. This is shown in Table 2, and
the entries show similar likelihoods to the nonspinning case.
However, both the nonspinning and slow-spinning cases are
improbable for two reasons. First, the mechanism responsible
for removing excess angular momentum during gas accretion
needs to be extremely efficient. And second, the odds that both
Uranus and Neptune were spun up similarly by impacts require
significant fine-tuning.

Figure 13. (a) The spin distribution for two impacts of masses 0.8 M⊕ and
0.2 M⊕ onto a nonspinning planet. (b) The corresponding obliquity distribution
for these two unequal impacts. The dashed line is the analytic result for the
limit of an Earth mass distributed among a large number of particles. (c) A
density plot of the spin frequency versus obliquity where each pixel is the
number of iterations that yielded those values. Values within 10% of Uranus’s
current obliquity and spin rate are contained within the red rectangle. The
likelihood of falling within 10% of the planet’s current spin state is
lU = 0.0062, 0.76 times that of falling within 10% of the most likely value.

Table 1
A Nonrotating Uranus

N Mi MT Probability (lU) Normalized Probability

1 1 1.0 5.0 × 10−3 1.00
2 0.5 1.0 1.1 × 10−2 2.20
3 0.333 1.0 7.1 × 10−3 1.42
4 0.25 1.0 4.5 × 10−3 0.90
7 0.142 1.0 6.4 × 10−4 0.13
100 0.01 1.0 0 0

2 0.8, 0.2 1.0 6.2 × 10−3 1.24

1 0.41 0.41 5.2 × 10−3 1.04
2 0.205 0.41 4.4 × 10−5 0.001
3 0.137 0.41 2.0 × 10−6 ∼0

1 3.4 3.4 1.6 × 10−3 0.32
2 1.7 3.4 2.3 × 10−3 0.46

Note. This table shows the probability of a number of collisions (N), each with
mass Mi totaling to MT (in Earth masses) simultaneously generating a spin rate
between 0.9 < ω/ωU < 1.1 and an obliquity between 93° < ò < 103° out of
5 × 105 realizations. In this data set, Uranus is initially nonspinning with an
obliquity of 0°, and in general, probabilities decrease with more impactors. The
final column divides the probability by the odds of generating Uranus’s current
state from a single Earth-mass impactor (first entry).
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Accordingly, we investigate the effects of gas accretion by
considering impacts onto an untilted fast-spinning (Ti= 17.2
hr) Uranus. Note that because we are adding angular
momentum vectors, the order does not matter; therefore,
striking Uranus with a giant impactor before the planet accretes
gas will yield the same probability distributions as the reverse
case considered here. For an initial spin period near Uranus’s
current value, the minimum impactor mass increases by

2 from∼ 0.4M⊕ to 0.55M⊕ over the nonspinning case
because the planet already has the correct |L|, which must be
rotated by ∼90° by the impact. However, while the slowly
spinning cases have a relatively flat obliquity distribution, a
fast-spinning planet is more resistant to change. For example,
striking this planet with a 1 M⊕ object will most likely yield
little to no change to the planet’s spin state (see Figure 7(a) in

Rogoszinski & Hamilton 2020). Introducing more impactors
does not change this conclusion appreciably; the planet still
tends to remain with a low tilt and similar spin period.
Figure 15 demonstrates this with the most favorable case of two
1 M⊕ strikes onto an untilted planet already spinning with a
17.2 hr period. Additional cases are reported in Table 3.
If Uranus was initially tilted by a 40° resonance kick, its

rapid rotation ensures that its spin state will tend to remain
relatively unaffected by subsequent impacts. This can be seen
in Figure 16(a) with a 1 M⊕ strike, where the probability of
tilting Uranus to 98° is only 4.5× 10−3. The odds do improve

Figure 14. Density plot showing two impacts of equal mass (mi = 1.0M⊕)
incident on Uranus with Ti = 68.8 hr and òi = 40°. The probability of Uranus’s
spin state falling within 10% of the maximum value is 1.2 times that of the
planet’s current state (lU = 0.005).

Table 2
An Initially Slow-rotating Uranus

N Mi MT òi Probability (lU) Normalized Probability

1 1.0 1.0 0° 4.5 × 10−3 0.90
2 0.2 0.5 0° 5.4 × 10−4 0.11
2 0.5 1.0 0° 1.0 × 10−2 2.00
2 1.0 2.0 0° 4.7 × 10−3 0.94
2 1.5 3.0 0° 2.5 × 10−3 0.50

1 1.0 1.0 40° 4.7 × 10−3 0.94
2 0.25 0.5 40° 9.0 × 10−4 0.18
2 0.5 1.0 40° 1.0 × 10−2 2.00
2 1.0 2.0 40° 5.0 × 10−3 1.00
2 1.5 3.0 40° 2.7 × 10−3 0.54

1 1.0 1.0 70° 4.8 × 10−3 0.96
2 0.25 0.5 70° 1.7 × 10−3 0.34
2 0.5 1.0 70° 1.0 × 10−2 2.00
2 1.0 2.0 70° 5.0 × 10−3 1.00
2 1.5 3.0 70° 2.7 × 10−3 0.54

Note. This table shows the same calculations as in Table 1, but with the planet
having an initial spin period of 68.8 hr. òi is Uranus’s initial obliquity. The
normalized probability column divides the probability by 5 × 10−3 as in
Table 1.

Figure 15. Density plot for collisions incident on Uranus. Two impacts of
equal mass (mi = 1.0 M⊕) incident on Uranus with Ti = 17.2 hr and òi = 0°.
The color bar shows the number of realizations for that value, and the contour
lines contain the values within which a percentage of realizations are found.
The red box contains the space within 10% of Uranus’s current obliquity and
spin rate. Uranus having a spin of 2 ωU and ò = 30° is twice as likely as its
current state (lU = 0.0042).

Table 3
An Initially Fast-rotating Uranus

N Mi MT òi Probability (lU) Normalized Probability

1 1.0 1.0 0° 3.4 × 10−3 0.68
2 0.25 0.5 0° 0 0
2 0.5 1.0 0° 3.7 × 10−3 0.74
2 1.0 2.0 0° 4.1 × 10−3 0.82
2 1.5 3.0 0° 2.6 × 10−3 0.52
5 0.6 3.0 0° 6.1 × 10−3 1.22
10 0.3 3.0 0° 7.5 × 10−3 1.50
15 0.2 3.0 0° 6.0 × 10−3 1.20

1 1.0 1.0 40° 4.5 × 10−3 0.90
2 0.25 0.5 40° 1.3 × 10−3 0.26
2 0.5 1.0 40° 7.4 × 10−3 1.48
2 1.0 2.0 40° 4.7 × 10−3 0.94
2 1.5 3.0 40° 2.6 × 10−3 0.52

1 1.0 1.0 70° 8.3 × 10−3 1.66
2 0.25 0.5 70° 2.6 × 10−2 5.20
2 0.5 1.0 70° 1.4 × 10−2 2.80
2 1.0 2.0 70° 5.7 × 10−3 1.14
2 1.5 3.0 70° 2.7 × 10−3 0.54

Note. This table shows the same calculations as in Table 1, but with the planet
having an initial spin period of 17.2 hr. òi is Uranus’s initial obliquity. The final
column normalizes the probability column by 5 × 10−3 as in Table 1.
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if the number of impacts increases (Figure 16(b)), but they are
not better than the nonspinning case. However, if Uranus was
initially tilted by 70° via a spin–orbit resonance (Rogoszinski &
Hamilton 2020), then two 0.5 M⊕ strikes generate a favorable
result (Figure 16(c)). Also, only in this case will two 0.25 M⊕
strikes yield even better likelihoods (see Figure 8 in
Rogoszinski & Hamilton 2020). Therefore, if Uranus’s and
Neptune’s current spin rates were a by-product of gas accretion,
then a large resonance kick can significantly reduce the mass
needed in later impacts.
Finally, the mechanism that removes angular momentum

during gas accretion could have been very weak, and Uranus
would have been initially spinning very fast (Ti? 17.2 hr). In
this case, slowing down Uranus’s spin rate and tilting the planet
over would require very massive impacts. As discussed in the
previous subsection, changing the planet’s spin state with many
impactors requires more impacting mass to compensate for the
partial cancellations of impact effects. Table 4 shows that 10
impacts totaling to 4M⊕ produce plausible outcomes. While
their obliquity distributions peak at around 30°, which favors a
Neptune formation scenario, the planets would still likely be
spinning twice as fast as they are today (Figure 17). We would
therefore not expect the required massive impactors to spin
down both Uranus and Neptune similarly. Additionally, 10
independent strikes is less probable than only 2, while also
requiring the solar system to have been populated with many
massive rogue planetary cores.

5. Summary and Conclusion

We have searched exhaustively for ways to tilt Uranus to 98°.
Because gas accretion provides the giant planets with a significant
source of angular momentum (Bodenheimer & Pollack 1986;

Figure 16. (a) Density plot showing one impact (mi = 1.0M⊕) incident on
Uranus with Ti = 17.2 hr and òi = 40°. It is 17.5 times more likely to fall within
10% of the initial state than Uranus’s current spin state (lU = 0.0045). Notice
the sharp spike of over 2000 counts near the planet’s initial spin state. (b) Two
impacts (mi = 0.5 M⊕) incident on Uranus with Ti = 17.2 hr and òi = 40°. The
probability of Uranus’s spin state falling within 10% of the maximum value is
3.5 times that of the planet’s current state (lU = 0.0075). (c) Two impacts
(mi = 0.5 M⊕) incident on Uranus with Ti = 17.2 hr and òi = 70°. The
probability of Uranus’s spin state falling within 10% of the maximum value is
1.8 times that of the planet’s current state (lU = 0.014).

Table 4
An Initially Very Fast-rotating Uranus

N Mi MT òi Probability (lU) Normalized Probability

1 1.0 1.0 0° 2.3 × 10−3 0.46
2 0.25 0.5 0° 0 0.00
2 0.5 1.0 0° 2.6 × 10−4 0.05
2 1.0 2.0 0° 2.7 × 10−3 0.54
2 1.5 3.0 0° 2.0 × 10−3 0.40

1 1.0 1.0 40° 4.1 × 10−3 0.82
2 0.25 0.5 40° 0 0
2 0.5 1.0 40° 2.0 × 10−3 0.40
2 1.0 2.0 40° 4.1 × 10−3 0.82
2 1.5 3.0 40° 2.5 × 10−3 0.50

1 1.0 1.0 70° 2.1 × 10−3 0.42
2 0.25 0.5 70° 1.2 × 10−4 0.02
2 0.5 1.0 70° 3.3 × 10−3 0.66
2 1.0 2.0 70° 3.0 × 10−3 0.60
2 1.5 3.0 70° 2.4 × 10−3 0.48

5 0.8 4.0 0° 3.4 × 10−3 0.68
10 0.4 4.0 0° 5.0 × 10−3 1.00
15 0.266 7 4.0 0° 4.4 × 10−3 0.88

Note. This table shows the same calculations as the previous tables, but the
planet is spinning with a period of 8.6 hr. The final column has been
normalized as in Table 1.
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Lissauer et al. 2009; Ward & Canup 2010), and the planet’s
core was likely to have formed from the accumulation of pebbles
and planetesimals, any primordial spin state was likely to be
erased, leaving near-zero initial obliquities and relatively fast
spin rates. As such, changing the planets’ obliquities significantly
without altering the planet’s spin period requires either a
specific configuration of large collisions or a secular spin–orbit
resonance.

A single Earth-mass strike is certainly capable of reprodu-
cing Uranus’s spin state, and the debris disk could recreate the
present-day satellite system (Ida et al. 2020). If the Uranian
satellites were instead formed from the planet’s circumplane-
tary disk, then there needed to have been multiple collisions in
order to explain the prograde motion of the Uranian satellites
(Morbidelli et al. 2012). Maximizing the probability of this
outcome requires minimizing both the number of impacts and
the mass of each impactor, as there must have been many more
rogue Mars-sized cores than Earth-sized ones dispersed
throughout the early solar system (Izidoro et al. 2015; Levison
et al. 2015a, 2015b). We have shown that, in general, two
impacts totaling to 1M⊕ yields the most favorable outcome
compared to all other possibilities, but the odds generally do
not change by more than a factor of a few for other scenarios—
single impact or otherwise. Furthermore, the likelihood of
generating Uranus’s current spin state is still very low. An
initially fast-spinning planet cannot be tilted easily because of
its large initial angular momentum. We could improve the
likelihood of generating Uranus’s spin state by assuming a
slower initial spin period (Figure 14), but this would require an
even more efficient method of removing angular momentum as
the planet accretes its gaseous atmosphere; there seems to be
little justification for this.

The advantage of the collisionless secular spin–orbit
resonance model is that it preserves both Uranus’s spin rate
and its moons’ orbits by gently tipping the Uranian system
over. Here we have investigated a resonance argument with
Uranus commensurate with Neptune. We have shown that
Uranus, being located between Jupiter and Saturn, can augment
the planet’s spin precession rate enough to match with Neptune
located beyond Saturn. Capture into resonance can tilt the

planet to near 90°, but only on unrealistic 100Myr timescales.
Resonance kicks, on the other hand, require just ∼107 yr, but
would produce at most a 40° obliquity under ideal circum-
stances. This resonance can, however, easily excite Uranus’s
obliquity by about 10° or 20°, which would eliminate one of
the impacts required by Morbidelli et al. (2012). As we have
seen in Tables 2 and 3, however, an initial obliquity of 40° does
not provide much mass reduction or probability improvements
in the subsequent collisions needed to generate Uranus’s
current spin state. We would need to tilt the planet all the way
up to ∼70° to significantly reduce the mass of later impacts,
which would be more likely to occur during the time that
Uranus harbored a circumplanetary disk (Szulágyi et al. 2018;
Rogoszinski & Hamilton 2020). Even in ideal circumstances,
these noncollisional models cannot drive the planet’s obliquity
beyond 90°, and so large collisions seem unavoidable.
Tilting Uranus is a difficult problem, and each of the models

that we have considered contains a major fault. Neptune’s
30° obliquity, by contrast, can be much more easily explained by
any one of these scenarios. Regardless of the planet’s initial spin
rate, Figures 14 and 15 imply a high probability of generating
Neptune’s current spin state. If Neptune’s spin rate was a by-
product of gas accretion, then a small impact or an impact near
the planet’s center is sufficient to explain Neptune’s low
obliquity. Reinhardt et al. (2020) reinforce this scenario because
a head-on collision of a large impactor with Neptune may also
explain its core’s higher moment of inertia, in opposition to
Uranus’s more centrally dense interior. Furthermore, if Neptune
was instead captured into a spin–orbit resonance, then we require
a less massive disk and a smaller orbital inclination than for
Uranus to tilt Neptune over (Rogoszinski & Hamilton 2020).
Because ice giants probably have harbored large circumplanetary
disks while accreting their massive atmospheres, then we should
expect at least minor obliquity excitations. Under these
circumstances, a combination of the two models, a spin–orbit
resonance followed by a giant impact, may be the more likely
explanation for Uranus’s unusual spin state.
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NASA Earth Science and Space Fellowship grant NNX16AP08H.
We thank Alexander Dittmann, Pradip Gatkine, and Scott
Lawrence for useful discussions, and we thank the anonymous
reviewers for helpful feedback. We also thank Leslie Sage for his
helpful comments and suggestions on an earlier draft of this
manuscript.

Appendix
Angular Momentum and Obliquity Distributions

Here we derive the angular momentum and obliquity
distributions from accreting multiple small particles, similar
to the approach of Dones & Tremaine (1993a). If these
particles are isotropically distributed, then they possess a wide
range of eccentricities and inclinations, and so there is no
preference for any spin direction. This isotropy breaks down if
particles instead orbit within the planetary disk at low
inclinations and eccentricities. This discussion draws heavily
from Grinstead & Snell (2006).

A.1. Angular Momentum Distributions

The calculation for the angular momentum distribution of a
planet from multiple strikes at random locations on the planet’s

Figure 17. Density plot showing 10 impacts of equal mass (mi = 0.4M⊕)
incident on Uranus with Ti = 8.6 hr and òi = 0°. The probability of Uranus’s
spin state falling within 10% of the maximum value is 2.9 times higher than
falling near the planet’s current state (lU = 0.005), as shown in the red box.
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surface is a random walk scenario. We start with the magnitude
of the spin angular momentum of a planet:

= + +L L L L , A1X Y Z
2 2 2 ( )

where the probability distribution ( f lL kk
( )) of each component

(Lk) of the angular momentum vector is described by a normal
distribution as a by-product of the central limit theorem:

s p
= s-f l e

1

2
. A2L k

k

l 2
k

k k
2 2( ) ( )

As such, to find the distribution of the magnitude of the angular
momentum, we will first need to determine the square of each
distribution and then the sum of three squares, and finally, to
take the square root of the sum as seen in Equation (A1).

The distribution of the square of each component (Lk
2) can be

calculated by assuming that X and Y are continuous random
variables (i.e., “variates” as depicted in upper case), with x and
y as specific elements in the ranges of their corresponding
variates (i.e., also called “quantiles,” depicted here in lower
case; Grinstead & Snell 2006). X and Y have cumulative
distribution functions FX and FY, and Y is described by a strictly
increasing function of X: Y= f(X). FY(y)= P(Y� y), where the
right-hand side describes the probability that the variate Y is
less than or equal to a number y, which is equal to
P(f(X)� y)= P(X� f−1(y))= FX(f

−1(y)).
So, for the variate X2 and its corresponding quantile x2:

= = -  F x P X x P x X x . A3X
2 2 22 ( ) ( ) ( ) ( )

The right-hand side can be rearranged accordingly:

- = - -   P x X x P X x P X x , A4( ) ( ) ( ) ( )

so that

= - -F x F x F x . A5X X X
22 ( ) ( ) ( ) ( )

The corresponding density distribution function for an
arbitrary variate Y is =f y F yY

d

dy Y( ) ( ). Starting with
FY(y)= FX(f

−1(y)), we take the derivative of each side and
employ the chain rule to obtain f f= - -f y f y yY X

d

dy
1 1( ) ( ( )) ( ).

So,

=
+ -

f x
f x f x

x2
. A6X

X X22 ( )
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Because the normal distribution is centered at zero and is
symmetric, the density distribution for Lk

2 is then
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= s-f l
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which is the distribution for a chi squared with one degree of
freedom.

Next, the density distribution of the sum of two independent
random variables is their convolution. Let = +L L LXY x y

2 2 2 and
its corresponding density distribution:

ò= -f l f l l f l dl , A8L xy
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L xy y L y y
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2 2 2 2
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X Y
2

2
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where LY
2 ranges from 0 to LXY

2 . Note that the standard
deviations for both fLX

and fLY
are equal with σ= σx= σy.

Thus, combining Equations (A7) and (A8),
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Now, let = +L L LXY Z
2 2 2 and repeat the above process. The

probability distribution f lL
22 ( ) describes the probability that L2

takes the value l2, and f lL z
2

Z
2 ( ) describes the probability that LZ

2

takes the value lz
2. We explicitly treat the general case σ≠ σz.

The density distribution for L2 is
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let b s s s s= - 2z z
2 2 2 2( ) , g b= lz

2, and g b=d dlz
2, and so
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Equation (A11) is of similar form to Equation (109) found in
Dones & Tremaine (1993a). Applying Equation (A6) to f L2 and
noting that because L is the magnitude of the planet’s angular
momentum, fL(− l)= 0. We find =f l f l l2L L2( ) ( ) · . The
probability distribution describing the angular momentum of
the planet for β> 0, or σx= σy> σz is then

p s s b
g b=

s-
f l

le
l

2

1
0.5, , A12L
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z

2

2
2

2 2

( ) ( ) ( )

where γ(0.5, βl2) is the lower incomplete gamma function. For
β< 0 (σx= σy< σz):

p s s b
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where Φ(0.5; 1.5;− βl2) is the confluent hypergeometric
function of the first kind. For β= 0, where σ= σx= σy= σz
(isotropic case), the form is particularly simple:

p s
=
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2
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2 2

( ) ( )

A.2. Obliquity Distributions

The obliquity angle (ò) is defined by = + L Ltan x y
2 2( )

=L L Lz XY z. To find the distribution of the quotient of two
independent variants, we let Q= X/Y, where X and Y are
independent random variables. Then, FQ(q)= P(Q� q)=
P(X/Y� q). If Y> 0, then X� yq, while if Y< 0, then X� yq.
Therefore, P(X/Y� q)= P(X� yq, Y> 0)+ P(X� yq, Y< 0).
These constraints determine the integral limits in the corresp-
onding cumulative distribution:
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and density distribution:

ò ò= + -
¥

-¥
f q yf yq y dy y f yq y dy, , .

A16
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0
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So, to calculate the obliquity distribution, let σ≠ σz, and
= U tan( ) with e=u tan( ) as the corresponding quantile.

Thus,
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If we let a = +
s s
u

2

1

2 z

2

2 2 , then the equation is now of the
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We can change variables to obliquity (ò) by setting e =f ( )
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This is equivalent to the obliquity distribution given in Dones
& Tremaine (1993a, Equation (111)). For the isotropic case,
σz= σ, the distribution reduces to

e e=f
1

2
sin . A22( ) ( ) ( )
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