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The Disturbing Function

Do I dare
Disturb the universe? ‘

T.S. Eliot, The Love Song of J. Alfred Prufrock.

6.1 INTRODUCTION

In §3 we approached the three body problem from the point of view of
the location and stability of equilibrium points in the restricted problem.
However, we made no attempt to tackle the more general problem of the
motion of a third body under the gravitational effects of the two other
bodies for arbitrary initial conditions. This problem is non-integrable, but
we can make some progress by analysing the accelerations experienced by
the three bodies. If their motions are dominated by a central, or primary
body, then the orbits of the secondary bodies are conic sections with small
deviations due to their mutual gravitational perturbations. In this chapter,
we show how these deviations can be calculated by defining and analysing
the disturbing function.

Consider a mass m; orbiting a primary of mass m. in an elliptical path.
As we have seen in §2, this problem is integrable and the orbital elements,
a;, €;, I;, w; and Q; of the mass m; are constant, provided the gravitational
effect of the central body can be treated as arising from a point mass. If
we now introduce a third mass, m;, then the mutual gravitational force
between the masses m; and m; results in accelerations in addition to the
standard two body accelerations due to m.. These additional accelerations
of the secondary masses relative to the primary can be obtained from the
gradient of a scalar function called the disturbing function.

This chapter is concerned with a mathematical analysis of the properties
of a Fourier series expansion of the disturbing function. We show how
particular problems in Solar System dynamics can be tackled by isolating
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. THE DISTURBING FUNCTION 177
the appropriate terms in the expansion of the disturbing function and by
assuming that the time-averaged contributions to the equations of motion
of all the other terms are negligible. An understanding of the properties
of the disturbing function is the key to understanding the dynamics of
resonance and other long-period motions in the Solar System.

6.2 THE DISTURBING FUNCTION

Let the position vectors with respect to a fixed origin, O, of the three bodies
of masses m¢, m; and m; be R., R; and R; respectively. Let r; and r;
denote the position vectors of the secondary masses m; and m; relative to

the primary where
1/2 5 1/2
ril=ri= @43 +D)" Inl=r =@+ 6D

and
lrj —mil = [(fﬂj — )2+ (g —w)” + (2 — Zi)z] / (6.2)

and the primary is the origin of the coordinate system (see Fig.6.1).

Figure 6.1 The position vectors, r; and ; of two masses, m; and m;, with respect
to the central mass, m,. The three masses have position vectors R, R and R,
with respect to an arbitrary, fixed origin, O.

From Newton’s laws of motion and the law of gravitation we obtain the
equations of motion of the three masses in the inertial reference frame:

mcR§ = chmi% + chmj% (6.3)

mR; = gm;m;———7% (rj=mi) - szmc—% : (A6.4)
rj =7l T3

m; R = gmjmz(T—“‘—T—j%— - gmjmc%'. (6.5)
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178 THE DISTURBING FUNCTION

The accelerations of the secondaries relative to the primary are given by

#;=R; — Ry, (6.6)
#;=R; — R (6.7)

Substituting the expressions for R., R; and R, from (6.3)—(6.5) we have

73+ G (me +my) % = gm; <—T—j———ﬂ— —r—l> (6.8)

rj—ril® 73

. 7, ri—T; T
T +g(mc +mj) ;% =gm; ([—T——‘;J—]g - 7‘—;) . (6.9)
) J AL ] %

These relative accelerations can be written as gradients of scalar func-
tions, that is, we can write

7 = V; (UZ + Rz)

.9 .08 .0 (6.10)
— ('Lami -l—]ayi + kﬁé{) (Ui +R;)
and )
#j = V; (U; +Ry)
.0 L0 .0 (6.11)
- (i, 3y, oy ) 0+
where .
g U, = g(_mL::_”i) and U; = g@E:_TnL) (6.12)
i J

are the central, or two body parts of the total potential. The subscript 4
or j is included in the V operator to emphasise that the gradient is with
respect to the coordinates of the mass m;. The R term in the potential
is the disturbing function which represents the potential which arises from
the other secondary mass. Since 7; is not a function of z;, y; and z; and
r; is not a function of z;, y; and z;, we can write

gmj

7'. .’r‘:
Ri = ——— — Gm,;——~ 6.13
5 — 7l T (8:12)

_ Gm, 7T
R; = P —gm; 3 (6.14)

The leading terms in these expressions are called the direct terms while
the other terms that arise from the choice of the origin of the coordinate
system, are called the indirect terms. If the origin of the coordinate system
was at the center of mass, then these indirect terms would not appear.
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The above analysis can be extended to any number of bodies. In ad-
dition, the accelerations associated with the disturbing function can arise
from any source and not just from point-mass gravitational forces. They
could, for example, arise from a potential associated with the oblateness of
the central mass (see §6.9). However, in what follows in this chapter we are
mostly concerned with the particular case of two point-mass secondaries
of masses m and m’' and position vectors » and r’ relative to the central
mass, where 7 < r’ always. With this notation, the equation of motion of
the inner secondary is

/

. r r—r r
7+ G (me +m) == Gm’ (m - 773> (6.15)

and its disturbing function can be written

:U'/ /T'TI

R = (6.16)

v’ — 7] —H '3

where 1/ = Gm’ and the associated reference orbit has osculating elements
n2a® = G (mc+m). Similar equations can be written for the outer sec-

ondary giving

- 7 r—7r T
’ —
The corresponding disturbing function for the outer secondary is then
Y
R = - b3 (6.18)

where 11 = Gm and the associated reference orbit has osculating elements
n/2a/3 — g (mc + m/).

Although this is the most straightforward way to derive expressions for
R and R’, it is worth pointing out that this procedure and the resulting
expressions are not unique. For example, it is possible to add an additional
term, Gmz' /"3, to each side of the equation of motion for the mass n?/,
(6.17), resulting in a additional term —u/r’ in the expression for R'; how-
ever, this requires that the associated reference orbit for m’ has osculating
elements n'2a’® = G (m. +m +m/). '

6.3 EXPANSION USING LEGENDRE POLYNOMIALS

Consider the configuration shown in Fig.6.2 where r and ' denote the
position vectors of the masses m and m/' respectively. Let v denote the
angle between the two position vectors. From the cosine rule we have

ir’ — | =r2 472 — 201 cosep (6.19)
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or, alternatively,
1 1 2] 71/2
== {1 - 2% cosh + ({7) } . (6.20)

' —r| 7

This can be expanded in Legendre polynomials to give

1L _ly (TI/-)IPZ(COS@Z)) (6.21)

| —7r| e~

where Py (cos 1/1) =1, Py(cos) = cos®, Pp(costp) = 1(3cos? 1 — 1), ete.

Figure 6.2 The position vectors, 7 and 7’ of two masses, m and m/, with respect
to a central mass, m.. The angle between the position vectors is .

Since 7 - ' = rr’ cosy = rr’Pi(cosv)), the disturbing function for the
inner secondary can be written

= -’:—,/i <%>lPl(cos ») (6.22)

=2

where the Pyp(cos®)) term has been omitted because it does not depend on
r and, ultimately, we are only interested in the gradient of R with respect
to the coordinates of the inner secondary. Similarly the disturbing function
for the outer secondary can be written

/

’:g;( )Pl(cosw)—f—u cosp — u—cosw - (6.23)

Thus, apart from two extra terms (that are actually unimportant for the
applications discussed in the book), the expressions for R and R’ are very
similar.

This chapter is concerned with the series expansion of the disturbing
functions R and R’ in terms of the orbital elements (as opposed to the
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EXPANSION USING LEGENDRE POLYNOMIALS 181

Cartesian coordinates) of m and m'. We use the standard orbital elements
a, e, I, w,  and A to denote the semimajor axis, eccentricity, inclination,
longitude of pericentre, longitude of ascending node and mean longitude,
respectively, of the mass m, with similar primed quantities for the mass
m/. We show that the expansion of R has the form

R——Qu’ZS(a,a’,e,e’,I,I’)coscp (6.24)
where ¢ is a permitted linear combination with general form
= jl)\’ + JoA + j3’CU/ + Jawm + j5Q/ + 76€2 (6.25)

where the j;, (1 = 1,2,...,6) are integers, and

6
> gi=0. (6.26)
=1

By knowing the explicit form of the function S and the permissible values
of ¢, we can identify those terms that make the dominant contributions to
the equations of motion and, conversely, those that can be neglected.

To illustrate the nature of this expansion let us consider the special case
where the orbits of the two masses m and m/ lie in the same plane and we
can ignore any terms arising from the inclination. In this case we can write
the angle 1 as the difference of the true longitudes,

b= (f+o)-(f+=) (6.27)
where f and f/ denote the true anomalies of m and m’. Hence,
cc;sw = cos(f’ + @) cos(f + w) + sin(f’ + ') sin(f + =)
= (cos f’ cosw’ — sin f’ sinw’)(cos f cosw — sin f sinw)

+ (sin f' cos @’ + cos f’ sine’)(sin f cos @ + cos f sinw@).

We have already given series expansions for cos f and sin f in §2.5 and we
can find similar series for cos f' and sin f/ by substituting M’ for M and
¢’ for e. Taking these expansions to second degree in e and ¢’ we find

cosp = (1— e —e?) cos]M — M' +w — ']
—ecos[M’ —w + '] — € cos[M + w — ']
+ecos2M — M' + @ — w'] + € cos{M — 2M' + w — w']

1 1
- gez cos|M + M' —w + '] - —8-6’2 cos(M + M' + w — ']
9
+ -2—62 cos[3M — M' +w —w'] + gelz cos|M — 3M' + w —w']
+ ee’ cos[w — @] + e€’ cos[2M — 2M' + w — @]

— e’ cos[2M + @ — w'] — e€’ cos2M' — w + =],
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Even at this stage some properties of the expression for cos ' are evident.
It is clear that the degree of the eccentricity term associated with each
cosine argument is at least the modulus of the sum of the coefficients of the
mean anomalies in the argument. Another property shows up if we express
the angles in terms of the mean longitudes rather than the mean anomalies
using the substitutions M = A\ —w and M’ = ) — w’. This gives

cosyp = (1 —e* — %) cos[]A — X]
— ecos[\ — @] — €’ cos[A — @]
+ecos[2A — X — @] + €' cos[A — 2\ + ]

1
— %ez cos[A + N — 2w — ge’z cos[A + A — 2]

9
+ gez cos[3\ — X — 2w] + ge’z cos[A — 3\ + 2w']

+ ee’ cos[tr — @] + e€’ cos[2) — 22X — w + ]

— e€’ cos[2A — w — w'] — e€’ cos[2N — w — ']
With this choice of angles it is clear that the sum of the integer coefficients
of the longitudes in each argument is zero. This particular property is
also true of the final expansion when the angles are expressed in terms of

longitudes and it allows us to determine the permissible arguments.
If we now turn our attention to the radially dependent parts of the

disturbing function (6.22), we can write

R= %ial (9.1.>l+1 (£>l Py(cos) (6.28)

=2

where
a

is the ratio of the semimajor axes of the masses m and m'.
If we consider the terms with [ = 2 then the series expansion for r/a
given in §2.5 gives

T\ 2 1\ »
(;) ~1—2@cosM+<§)e (3 —cos2M)

/N 3
3
(%) ~ 1+ 3e cosM' + <§> e”?(1 + 3 cos 2M")
with

T 2 a/ 3 3 >2 3 2 /
<_> <—7> ~1+ -2-5 + 58 — 2ecos M + 3¢’ cos M’
a T

- %ez cos 2M + g—e’z cos 2M’
— 3ee’ cos|[M — M'] — 3ee’ cos[M + M'].
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