DYNAMICAL STABILITY OF MULTI-PLANET SYSTEMS

APPLICATION TO EXTRASOLAR SYSTEMS WITH MEAN MOTION RESONANCES

Maxime Rizzo

TERPS Conference – Dec 2010

Introduction:

 Why studying the dynamics of planetary systems?

General approach

- Hill-stability criterion
 - ✓ Order of planets remains constant, but outer planet can escape
 - ✓ Analytical expression

Lagrange-stability criterion

- ✓ All planets remain bound to the star
- ✓ Numerical simulations

fastili James Garry

Hill Stability

- Determined by masses, total energy h, total angular momentum c
- $\beta(h,c,m_i) > \beta_{crit}(m_i) => Hill stable$

Two-planet system HD 82943

Lagrange Stability

- Use of symplectic integrators
- Can test cases of instability

Lagrange stability boundary ≈ Hill stability

boundary!

Two-planet system HD 82943 $P_c/P_b = 1.9$ $e_c = 0.21$ (simulation)

Resonant systems

- Strong resonance -> can add stability regions
- Most extrasolar systems are believed to be in resonance

Unexpected stability for $e_c = 0.2$ and $P_c/P_b=2$

Thank you for your attention!!

