The *Extreme* Physical Properties of Super-Earth CoRoT-7b

Presented by Mahmuda Afrin Badhan

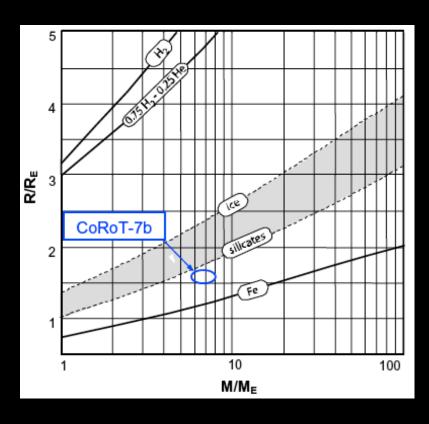
Department of Astronomy, University of Maryland College Park

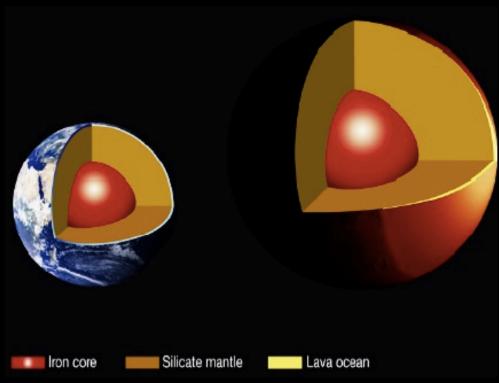
TERPS Conference, December 5, 2012

Motivation for Work

COnvection **RO**tation and planetary **T**ransits (French exoplanet search mission) One of three detected transiting exoplanets around star CoRoT-7 (G9V).

Why CoRoT-7b over other planets?

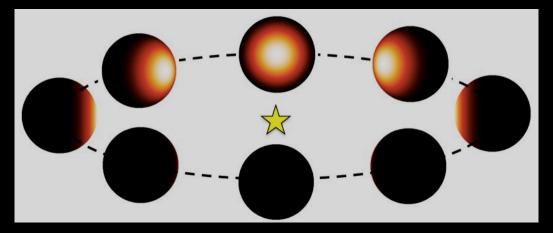

- $M > M_E$ (~6.9 M_E) rocky not gas giant, not too much larger than Earth (~1.58 R_{Earth})!
- Close to Sun (a = 0.0171 AU = 4.48 Rst only!)
- → short orbits (~0.8 day → 100 orbits in 4 mos!)
- → Stronger signals (vary as a^{-1/2})



Tidally phase-locked (spin and orbit synced) thus certain extremes apply such as very thin & cloudless atmosphere, day-side vs night-side temperature dichotomy. Rare and interesting! Pioneer to study of "lava-ocean" planets. Author also states such "planets would lead to better understanding of planet formation and migration mechanisms."

Structure and Composition

- Atmosphere eroded by stellar winds → no He-H envelope or water;
 only major materials remain → dry-earth like composition.
- Complete liquid core (unless $T_{core} = T_{core_lower_limit}$) 0.11 V_{pl} , silicate mantle, silicate mantle (like Earth), upper mantle only 0.08 V_{pl} and completely solid (high g) except except day-side surface.



Formation and Orbit

Proposed scenarios

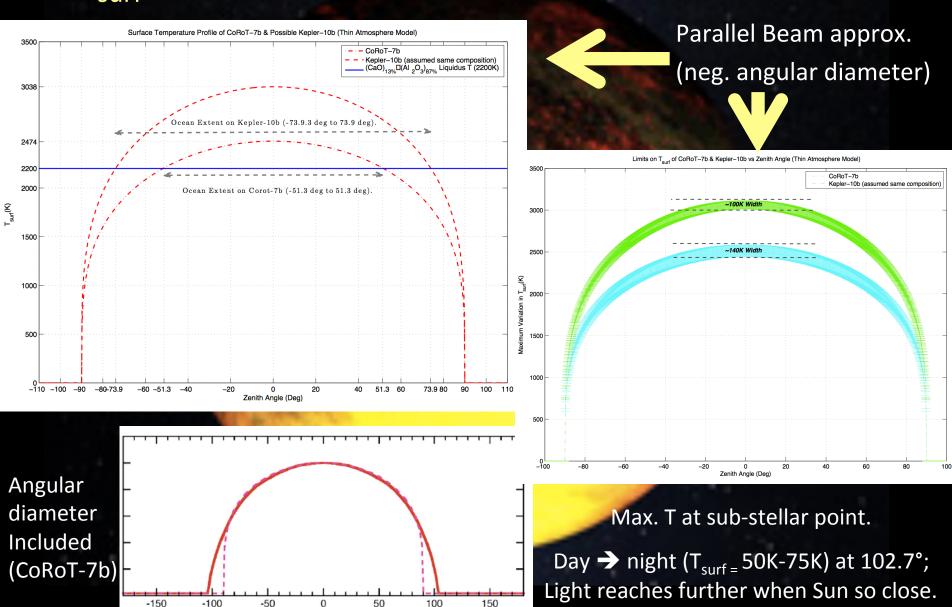
- (i) In situ accretion requires large inner solid densities to initiate process, collisions cause accretion into planet: possible
- (ii) Initial formation at larger $a \rightarrow$ inward migration requires resonant configurations with nearby planets (7a and 7c): possible
- (iii) Resonant migration of large planet requires resonance with gas giants but RV data doesn't support: unlikely
- (iv) Photoevaporation—exposed core of hot Neptune/Saturn: possible
- (v) Eccentricity of orbit decrease over time, now near circular, timescale
 of tidal effects = ~time to become circular orbit → tidal-locking

Day-side Temperature Distribution: Background

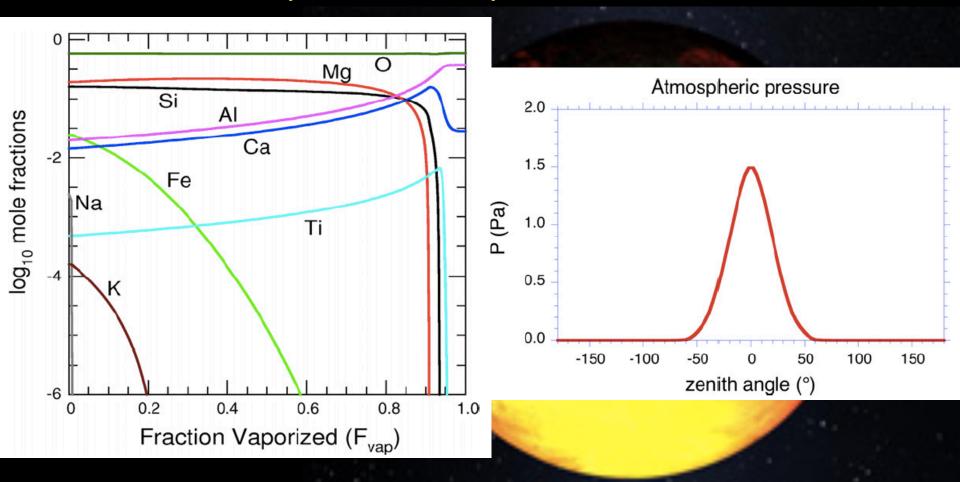
- Thermal evolution \rightarrow solely determined by T_{surf} .
- Winds/G.E. \rightarrow no effect on T distribution on either sides.
- Viscosity of high T lava → need 3D model to know effect.
- Ocean radially symmetric from sub-stellar point.
- Maximum possible extent of ocean, θ_{m} found from power emitted by *ocean* = received by *ocean*.

$$\Phi_{\rm em} = 2\pi\varepsilon_2 \sigma T_{oc}^4 (1 - \cos\theta_m) R_{pl}^2$$

$$\Phi_{\rm rec} = \pi \varepsilon_5 \sigma T_{\rm st}^4 \sin^2 \theta_m R_{pl}^2$$


$$f(\theta_m) = \frac{1 - \cos(\theta_m)}{\sin^2(\theta_m)} = \frac{R_{st}^2}{2a^2} \left(\frac{T_{st}}{T_{oc}}\right)^4 \frac{\varepsilon_5}{\varepsilon_2}$$

RHS = 0.88 (verified) but paper quotes θ_m as 75° (corresponding to 37% ocean coverage)


W.R.O.N.G! $-82^{\circ} \rightarrow 43\%$ ocean (actual value is 51.3° -- 19%).

$$T_{\mathrm{surf}} = (\varepsilon_5/\varepsilon_2)^{1/4} (R_{st}/a)^{1/2} (\cos\theta)^{1/4} T_{st}$$
 (day-side only)

T_{surf} (Day) Distribution: CoRoT-7b + Kepler-10b

Atmosphere: Composition + Pressure

- Refractory materials: hard to vaporize! @High T → CaO and Al₂O₃ remain in ocean
- Pressure 1.5Pa \rightarrow 10⁻² Pa (shore).
- vapor/sublim. at surface \rightarrow atmosphere, so local atm P = vapor P of rock at local T.
- Ocean depth is 45km (assumption: convection in inefficient).

Reference List for Visuals

Title Page Image + Most figures + equations:

Leger, A., Grasset, O., Fegley, B., 2011. The extreme physical properties of the CoRoT-7b super-Earth. Icarus 213, 1-11.

Slide 2 image:

http://suptg.thisisnotatrueending.com/archive/6103018/

Slide 4 image:

Rouan, D., Deeg, H.J., Demangeon, O., 2011. The orbital phases and secondary transit of Kepler-10b. arXiv:1109.2768

Slide 5 image:

http://danielmarin.blogspot.com/2011/02/planetas-con-oceanos-de-lava.html

Coriolis force:

Wikipedia

Surface temperature discussion:

Léger, A. et al., 2009. Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: The first super-Earth with measured radius. Astron. Astrophys. 506, 287–302 (LRS09).

Appendix: Assumptions

Radius -> measured with acceptable accuracy (±6%) by transit method

Mass \Rightarrow ±17% accuracy by RV data analyses (median of five different analyses) (stellar activity noise is large ($\propto a^{-1/2}$), cannot be removed in inner regions)

No clouds (A = 0) for day-side \rightarrow atm pressures are very low, thin atmosphere.

"Dry Earth" atmosphere with no condensible species (mean molecular mass due to SiO and Mg > higher than Earth!).

Coriolis force neglected (for equatorial regions)

- Radial symmetry.
- Heat transport only along equator → E-W circulation only
- No fishy wind motion!

Remarks about actual ocean circulation mechanisms, shape and distribution require a full 3D treatment.

Appendix: Determined Parameters (so far...)

Parameter	CoRoT-7b	Note	Kepler-10b	Note
Star				
T_{st} (K)	5250 ± 60	(a)	5627 ± 44	(e)
R_{st} (R_{Sun})	0.82 ± 0.04	(a)	1.056 ± 0.021	(e)
$L_{st}\left(L_{Sun}\right)$	0.48 ± 0.07	(a)	1.004 ± 0.059	(e)
M_{st} (M _{Sun})	0.91 ± 0.03	(a)	0.895 ± 0.060	(e)
Age (Gyr)	1.2-2.3	(b)	11.9 ± 4.5	(e)
Mag	V = 11.7, $R = 11.3$	(a)	Kepl = 10.96	(e)
Sp type	G9 V	(a)	\sim G3 V	
Planet				
$\Delta F/F$ (ppm)	335 ± 12	(b)	152 ± 4	(e)
Tr. dur. (h)	1.25 ± 0.05	(b)	1.81 ± 0.02	(e)
b	0.61 ± 0.06	(b)	0.30 ± 0.08	(e)
i (°)	80.1 ± 0.3	(b)	84.4 ± 1.4	
$P_{\rm orb}$ (day)	$0.85359 \pm 3 \times 10^{-5}$	(b)	$0.837495 \pm 5 \times 10^{-6}$	
R_{pl} (R_{Earth})	1.58 ± 0.10	(b)	1.416 ± 0.034	(e)
M_{pl} (M _{Earth})	6.9 ± 1.2	(c)	4.56 ± 1.23	(e)
ho (g cm ⁻³)	9.7 ± 1.9	(a) + (c)	8.8 ± 2.5	(e)
a (AU)	0.01707 ± 0.00019	(b)	0.01684 ± 0.00033	(e)
a/R_{st}	4.48 ± 0.22	(a) + (b)	3.43 ± 0.10	(e)
F_{st} (MW m ⁻²) Modelling	2.14 ± 0.24	(d)	4.87 ± 0.33	(e) + (d)
T_{sub-st} (K)	2474 ± 71	(d)	3038 ± 51	(e) + (d)
θ_{lava} (°)	51.3 ± 5.3	(d)	73.9 ± 1.1	(e) + (d)
$\theta_{\text{day-night}}$ (°)	102.7 ± 0.7	(d)	106.7 ± 0.5	(e) + (d)
$2\theta_{st/pl}$ (°)	25.8	(d)	33.9	(e) (u)
20st/pi ()	20.0	(4)	33.3	(0)