Stable Isotope Geochemistry, Sulfur, and My Research on Iron Meteorites

Michael A. Antonelli

Department of Geology, University of Maryland, College Park, MD, 20742, Mantonel@umd.edu

Outline

- 1. Stable Isotope Fractionation
 - 2. Methods
 - 3. Iron Meteorites
 - 3. Preliminary Results
 - 5. Possible Implications
 - 6. Conclusion

Stable isotope Fractionation

Equilibrium fractionation

$$H_2^{18}O + C^{16}O \longleftrightarrow H_2^{16}O + C^{18}O$$

- Isotope Exchange reactions have K values different than one (eg. 1.008)
- Due to vibrational frequency differences of different "isotopologues"
- Lower free energy for heavier isotopes in tighter bonds
- Temp dependent, can do isotope thermometry in rocks to find equilibration temperatures

Stable isotope Fractionation

Kinetic fractionation

$$H_2^{18}O_{(I)} + H_2^{16}O_{(I)} \rightarrow H_2^{16}O_{(g)} + H_2^{18}O_{(g)}$$

- Lighter isotopologues react FASTER
- In non-equilibrium reactions the light version will dominate on the product side
- Can quantify extent of reactions in rocks (eg. Evaporation in chondrules, lunar formation)
- Bacteria preferentially take in light isotopes...
 commonly used as signs of first life in rock record.

"The Terrestrial Reference Array" (holy music)

 For all these reactions involving sulfur it is almost always observed that:

$$\delta^{33}$$
S = $(\delta^{34}$ S)^{0.515} And δ^{36} S = $(\delta^{34}$ S)^{1.91}

 The logarithmic relationships describe a curve known as the "Mass-Dependent Reference Array" (Terrestrial is a slight misnomer)

Natural Abundances

"The Terrestrial Reference Array"

(holy music)

Fig. 2. Plot of δ^{33} S vs. δ^{34} S for terrestrial sulfide and sulfate younger than 2.0 Ga [7–9,26,50]. The array defines a tightly constrained curve with $^{33}\lambda = 0.515$. This terrestrial mass fractionation line does not reflect a single fractionation process but represents the average effects of the various mass-dependent fractionation processes that have operated over Earth's history. The slope

Mass Independent Fractionation

(Scary music)

- certain isotope systems (O, S, Hg) have observed departures from classical physics in natural samples.
- Exotic mechanisms of fractionation discovered as a result include:
 - UV photolysis (PES shifts, symmetry)
 - nucleus effects (size/odd vs. even)
 - high energy particle interactions
 - nucleosynthetic anomalies

Mass Independent Fractionation

(Scary music)

Methods of analysis

- Crushed Rock + Acid \rightarrow H₂S_(g)
 - $-H_2S_{(g)}+\overline{AgNO}_{3(I)} \rightarrow \overline{Ag_2S}_{(s)}$
- $-Ag_2S_{(s)} + F_{2(g)} ----HEAT---> SF_{6(g)}$
- SF₆ Purified (Gas Chromatography)
- SF_6 + Mass Spectrometer \rightarrow 4 separate ion Beams
- Measure electrical currents from ³²SF₅⁺, ³³SF₅⁺, ³⁴SF₅⁺, ³⁶SF₅⁺
 - fancier methods are being fine-tuned (SIMS)
 - All measurements are ratios and are reported with respect to a known standard

Iron meteorite types

- Separated into chemical groups
- Each chemical group has to come from a separate parent body (according to chemical modelling).
- Dichotomy between "Magmatic" and "Non-Magmatic" iron meteorite groups
 - "Non-Magmatic" irons didn't have enough heat to fully segregate cores, and therefore contain abundant silicate (basaltic) inclusions.
 - "Magmatic" irons are thought to come from fully segregated cores and lack rock inclusions

Iron meteorite types

NON-MAGMATIC

LATER (younger)

MAGMATIC

EARLIER (older)

Δ^{33} S vs. Δ^{36} S

Can distinguish between exotic fractionation mechanisms based on the relative enrichments in ³³S and ³⁶S

Possible implications

- Magmatic Iron meteorites inherited their sulfur from a region with more intense UV bombardment, earlier in solar system evolution
 - Non-Magmatic irons inherited sulfur from sources without mass-independent processes later in solar system evolution
 - Could Reflect:
 - evolution of sun (transition out of T-Tauri phase)
 - Progressive loss of gas phase sulfur over time

Questions?

Institute for Sulfur Isotope Studies, University of Maryland

Smithsonian Institution Linda Welzenbach

The American Museum of Natural History, NY

Naturhistoriches Museum, Austria

NASA

Troilite nodule, Thule IIIAB

Troilite nodule, Cerro del Inca IIIF

Supplemental

