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ABSTRACT

We describe a new software package, HNBody, for simulating the dynamical evo-

lution of hierarchical (i.e., nearly-Keplerian) N-body systems. The main algorithms

are based on Wisdom-Holman type symplectic methods, in which Keplerian motion is

treated exactly. Native support is included for second and fourth order methods, sym-

plectic correctors, post-Newtonian corrections, and others. Particles may be assigned to

one of three mass classes (heavy, light, and zeroweight); zeroweight particles comprise a

semi-independent subsystem and may be integrated using a different coordinate system

and/or time step than the other bodies. Our implementation features efficient round-

off control which can reduce finite-precision artifacts by several orders of magnitude,

with negligible increase in run time (< 10%). Integrations are initialized via input files

employing a flexible keyword-based interface. As one of several sample applications,

we apply HNBody to the classic problem of the long-term evolution of the Solar Sys-

tem, including a 10 Gyr run modeling the Moon as a quadrupole perturbation, and a

200 Myr run in which the Moon is explicitly resolved. We compare our results with the

JPL DE406 ephemeris and with a recent best-of-class Störmer calculation extending

over 50 Myr into the past; excellent agreement with both is found. We also conclude

that the Wisdom-Holman method remains an order of magnitude more efficient than

Störmer methods even for high-precision, roundoff-limited Solar System integrations.

Subject headings: celestial mechanics — ephemerides — methods: numerical — solar

system: general

1. INTEGRATION OF NEARLY-KEPLERIAN SYSTEMS

Symplectic integration schemes have become highly popular tools for the numerical study of

dynamical systems, a result of their often high efficiency as well as their typical long-term stability
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(see, e.g., Marsden, Patrick, & Shadwick (1996) and the many references within)....

2. THE HNBODY PACKAGE

The effort required to turn an abstract computational algorithm into a practical and reliable

numerical method can be a significant barrier to its widespread use (and hence usefulness). In

principle explicit symplectic integrators such as leap frog and the basic Kepler mappings are easily

programmed; however, implementing an efficient and reliable Kepler stepper and extensions such

as symplectic correctors, etc., require major additional investments of time that most researchers

cannot afford. In addition, variations in the coding of numerical details will affect performance; for

high precision calculations in particular, this can obscure whether systematic differences observed

between two particular algorithms are inherent to the methods or instead are implementation

artifacts.

The purpose of HNBody 1 is to provide an extensible symplectic integration infrastructure

enabling convenient, selective use of a variety of integration algorithms and physical processes.

Although our primary focus is on Kepler mappings, two generic ODE integrators—Runge-Kutta

and Bulirsch-Stoer—are also available. In coding the algorithms, careful attention has been paid to

maintaining maximum numerical accuracy, in order to make our implementation as ‘transparent’

(close to ideal) as possible within the limits imposed by double-precision computer arithmetic. This

has been accomplished without significantly reducing performance. At the software level, modern

coding standards and development tools (e.g., CVS, autoconf, doxygen) have been used to produce

a maintainable, stable, and well-tested code base.

Performing a simulation with HNBody involves creating a plain text options file containing

keywords describing the integration (number of particles, initial conditions, integration stepsize, and

so on); this is then supplied as input to a driver program which carries out the specified simulation.

The package includes a default driver program supporting the baseline functionality and physical

effects described below, and is organized such that additional physics (non-gravitational forces,

etc.) can be added easily to a particular simulation through creation of a custom driver. This

arrangement allows straightforward integrations to be performed very quickly (without writing or

compiling code), while also providing the flexibility required to simulate more complicated systems.

The following sections detail the architecture and current capabilities of HNBody. We focus on

precise definitions of the mathematical equations underlying each algorithm rather than a tutorial-

style exposition (user-level documentation is available in the download package and on our web

site).

1http://janus.astro.umd.edu/HNBody/
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2.1. Integration Methods

2.1.1. Symplectic Methods

The performance of a symplectic integrator depends on both the form of the Hamiltonian

describing the system, and how it is divided into pieces to produce a practical algorithm. Consider

a generic Hamiltonian H = H(q,p), where q and p are generalized position and momentum vectors,

respectively. An arbitrary splitting of H into pieces can be written in the form

H = H0 + K(q) + S(p) +
∑

i

Di(q,p). (1)

The constant term H0 does not affect the equations of motion and can be neglected. The Hamil-

tonian piece K(q) is called the ‘kick’ term as the equations of motion ṗ = −∇qK alter only

the momentum component. We refer to S(p) as the ‘shift’ term since the equations of motion

q̇ = +∇pS change the position vector at fixed momentum. The ‘drift’ term(s) Di evolve multiple

position and momentum components simultaneously and are the most critical to the performance

of the algorithm in that finding tractable (easily integrated) drift terms can be a challenging task.

The essence of the Wisdom-Holman mapping, for example, is to choose a representation H of the

gravitational N -body problem for which the drift terms can be efficiently advanced in time. In

contrast, the dynamics produced by kick and shift terms are straightforward to calculate; the leap

frog algorithm corresponds to the special case where no drift terms are present in Eq. (1).

HNBody can simulate the evolution of any nearly-Keplerian system of particles governed by a

Hamiltonian of the form

H = H0 + K(x) + S(v) + DKep(x,v) + DMisc(x,v), (2)

where

K(x) = KKep + KOB + KPN + KMisc, (3)

S(v) = SKep + SPN + SMisc, (4)

and x and v are the particle positions and velocities. Here DKep, KKep, and SKep are respec-

tively the drift, kick, and shift components of the Kepler (N -body) Hamiltonian; KOB implements

oblateness corrections; KPN and SPN implement post-Newtonian corrections. The latter two effects

are optional and can be selected via input options. The DMisc, KMisc and SMisc terms represent

arbitrary additional dynamics which can be implemented by the user through creation of a custom

driver program. The mathematical form of each term will be defined in the following sections.

The error Hamiltonian for a symplectic method—and hence order of convergence as a function

of step size—is determined by both the chosen partitioning of the Hamiltonian and the manner

in which the pieces are interleaved to advance the system one time step. Defining a time-advance

operator H [∆t] which evolves the phase space coordinates (q,p) through a time ∆t for a physical

system defined by H = H(q,p), consider as an example the Hamiltonian H = K(q) + S(p). Then



DRAFT 4

both K [∆t/2] S [∆t] K [∆t/2] and S [∆t/2] K [∆t] S [∆t/2] define valid but different second-order

leap frog algorithms for advancing the system H by a time ∆t. Higher-order methods can be

constructed through composition of the basic second-order step, as well as other means (...).

HNBody supports both second- and fourth-order symplectic algorithms as well as three inter-

leaving variations; each can be specified via runtime input options. The interleaving choices are

called Drift-Kick, Kick-Drift, and Shift-Drift and determine the ordering of Hamiltonian pieces

as follows: for option Drift-Kick the second-order base step is

DKep [∆t/2] DMisc [∆t/2] S [∆t/2] K [∆t] S [∆t/2] DMisc [∆t/2] DKep [∆t/2] , (5)

for Kick-Drift it is

K [∆t/2] S [∆t/2] DMisc [∆t/2] DKep [∆t] DMisc [∆t/2] S [∆t/2] K [∆t/2] , (6)

and for Shift-Drift it is

S [∆t/2] K [∆t/2] DMisc [∆t/2] DKep [∆t] DMisc [∆t/2] K [∆t/2] S [∆t/2] . (7)

Fourth-order mappings are implemented by composing three second-order steps with different

timesteps according to

H4 [∆t] = H2 [α∆t] H2 [β∆t] H2 [α∆t] , (8)

where α = 1/(2 − 21/3) and β = −21/3/(2 − 21/3) (Yoshida 1990). Our implementation of both

second- and fourth-order mappings combine adjacent sub-steps where possible to maximize effi-

ciency during an extended integration (e.g., in Eq. (5) the trailing DKep [∆t/2] term for one step

is automatically combined with the leading drift term of the following step).

2.1.2. ODE Methods

As a debugging aid, and to provide a generic alternative integrator for performing compar-

ative simulations, HNBody also provides two general-purpose numerical integrators based on the

Runge-Kutta and Bulirsch-Stoer methods (e.g., Press et al. 1992). We have developed a cus-

tom implementation of these basic algorithms incorporating advanced round-off control and other

features to facilitate their use with HNBody. Support for oblateness terms and post-Newtonian

corrections is also available with these methods, as is the ability to add arbitrary additional forces

to a calculation by creating a custom driver program.

Round-off control was implemented in both the symplectic and ODE integrators by augment-

ing the primary position and velocity vectors x and v with residual coordinate vectors δx and δv,

where the full-precision phase space coordinates are (x + δx,v + δv). Algorithms were then coded

such that the (generally small) changes in particle coordinates suffered during an integration step

are accumulated directly into the residual vectors δx and δv. After each step the vectors are renor-

malized using the Kahan summation formula (Goldberg 1991) to make |δx/x| . 10−16 (assuming
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double-precision arithmetic) without altering the numerical sum x+ δx. In practical simulations—

such as the long-term Solar System integrations presented in § (3.4)—this method was found to

reduce round-off by several orders of magnitude, with only a minor performance penalty (. 10%).

2.2. Particle Classes

N -body systems often contain bodies with a wide range of masses. In the Solar System, for

example, M� � MP � MA, where M�, MP and MA are the masses of the Sun, planets, and

asteroids, respectively. This hierarchy of mass (gravitational potential) between particle types

provides an opportunity to increase simulation efficiency by removing Hamiltonian terms with

negligible impact on the overall dynamics, such as the self-gravity of the asteroids in the previous

example.

HNBody provides explicit support for a three-level mass hierarchy consisting of heavyweight,

lightweight, and zeroweight particles (HWPs, LWPs, and ZWPs, respectively). Heavyweight

particles—of which there is always at least one (the dominant central mass)—form a fully self-

consistent dynamical subsystem. For LWPs, self-gravity (LWP-LWP forces) is ignored; otherwise

they are dynamically equivalent to HWPs (HWP-LWP interactions are included). Zeroweight par-

ticles comprise a semi-independent subsystem of bodies, each of which is integrated as a perturbed

two-body problem, with perturbations due to HWPs and (optionally) LWPs automatically in-

cluded; ZWPs themselves perturb no other bodies and thus are effectively massless. Note however

that HWPs and LWPs may also be massless (assigned zero mass).

Two unique features of ZWPs are the ability to utilize a different step size than the primary

HWP-LWP integration, and the option to perform the integration using time-regularized coor-

dinates (Mikkola 1997), which greatly improves the stability of the Kepler mapping for highly

eccentric orbits (Rauch & Holman 1999). Quadratic interpolation of HWP-LWP coordinates at

times intermediate to the HWP-LWP time step is performed when needed to calculate the ZWP

perturbations. These capabilities are particularly useful for systems consisting of widely separated

components; for example, a simulation of Kuiper belt objects including perturbations by the Jovian

planets could utilize a significantly larger time step for the ZWPs (Kuiper belt) than the HWPs

(planets), considerably decreasing the simulation’s total running time.

2.3. Coordinate Systems

HNBody provides several different integration (i.e., Hamiltonian) coordinates under which to

perform the simulations; the available choices vary with....
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2.4. Symplectic Correctors

2.5. Optional Hamiltonian Terms

2.5.1. J2 and J4 Oblateness Corrections

2.5.2. Post Newtonian Corrections

2.6. Input/Output Facilities

2.7. Customization

3. COMPARATIVE ANALYSES

The input files defining these tests are available on the HNBody website.

3.1. Jacobi Constant

3.2. Two Jupiters

3.3. Resonance Trapping in the Kuiper Belt

3.4. Long-Term Evolution of the Solar System

Investigation of the long-term stability and evolution of our Solar System is a classic endeavor

for which the Kepler mapping is ideally suited. Such simulations remain timely for several reasons.

One is the growing number of extra-solar planetary systems being found observationally, several

of which display intriguing variations on the dynamics observed in the Solar System (REFS).

Advancing interest in the impact of orbital variations on Earth’s climate (Varadi, Runnegar, &

Ghil 2003, and references therein) and the true value (and consequences) of the Sun’s quadrupole

moment (Pireaux & Rozelot 2003) are additional examples. Equally important is the availability

of published results calculated using a variety of numerical methods and encompassing a range

of accuracies and timescales, which allow us to undertake a rigorous comparative analysis of the

performance of the symplectic algorithms as implemented by HNBody.

Analytic secular theory (REF), which treats the planets as smooth, massive ellipses instead of

discrete particles, predicts (to first-order in eccentricities and inclinations) that the Solar System

is stable, and can provide a great deal of insight into the dynamics of well-ordered systems such as

our own (REF). As higher-order extensions quickly become unwieldy, however, studying in detail

the dynamics of even (apparently) quiescent systems quickly becomes a numerical task; a prime

example is the discovery that Pluto’s motion is chaotic (Sussman & Wisdom 1988). Two basic

computational models can be used—a numerical secular approach, and a direct, particle-based ap-
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proach; simplistically, the trade-off between them is (as usual) speed vs. accuracy. Both have been

applied to the problem at hand; see, e.g., [Laskar...] and references within for a discussion of the

secular method, and Sussman & Wisdom (1992), Quinn, Tremaine, & Duncan (1991), and Apple-

gate et al. (1986) for three examples of direct particle integrations—all using different algorithms.

HNBody is of course particle-based, and we limit our comparisons to this class. Some comparison

of the direct and secular methods can be found in Varadi et al. (2003).

3.4.1. Numerical Models

We analyze the performance of HNBody applied to this problem using several models that

can be directly compared to previous works; these are listed in Table 1. The models are named

after the corresponding driver programs used to compute them (supplied as part of the standard

distribution). The models differ in their physical accuracy (especially their treatment of the Moon),

their numerical accuracy (i.e. truncation error), and the length of the integration. As shown below,

the differences in numerical accuracy are noticeable only for Mercury. All models include the nine

planets as explicit bodies (HWPs, to be precise) as well as the leading order general relativistic

corrections due to the Sun, incorporated as described in section 2.5.2. Planet masses include the

mass of their satellites, and positions and velocities refer to the barycenter of the combined system.

The constants and initial conditions used are those from the JPL ephemeris DE 405 (Standish

1998), the most accurate general ephemeris currently available (the more recent and special-purpose

DE 410 ephemeris—see Standish (2003)—covers only the years 1901 through 2019). The initial

epoch was the same as DE 405, JD 2440400.5 (1969 June 28).

Model QTD duplicates the physical model used by Quinn et al. (1991), which accounts for

the Moon’s influence on the net motion of the Earth-Moon barycenter through inclusion of a mean

lunar quadrupole potential. The potential includes an overall scale factor f ∼ 1 to correct for

details of the orbital geometry, to which the authors assign the value f = 0.9473. Recession of the

lunar orbit due to tidal dissipation is also included in this model; note that we did not include this

process in any other models since its effect on the barycenter motion is quite small (it amounts

to a very slowly varying value for f) and since it breaks energy conservation, a useful indicator

of long-term integrator stability. Model Lunar is similar to QTD except that f = 0.8525 is used,

the value advocated by Varadi et al. (2003) as most suitable (accurate) for long-term integrations;

this model also uses a somewhat smaller stepsize, and neglects tidal effects. Model Lunar+Big3 is

identical to Lunar except that the Big 3 asteroids (Ceres, Pallas, and Vesta) are added, and again

the stepsize is reduced.

Model EMS+Big3 is analogous to Lunar+Big3 except that the Moon is included as an explicit

body instead of a mean potential. It was not, however, treated simply as an extra “planet”; this

would be impractical with a standard mapping since the Moon’s orbit relative to the Sun is not

nearly-Keplerian. Instead, a sub-integration was used in which the Earth-Moon-Sun subsystem was

treated self-consistently (hence the moniker EMS), with the remaining planets treating the Earth-
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Moon barycenter (as computed by the sub-integration) as a single particle, just as in the other

models. Technical details of this procedure can be found in section A.1. Finally, model EMS+J2

is similar to EMS+Big3 with asteroids replaced by a non-zero Solar quadrupole moment; the value

used, J2 = 2 × 10−7, is commensurate with current estimates (Pireaux & Rozelot 2003; Roxburgh

2001; Pijpers 1998). Note that models EMS+Big3 and EMS+J2 used a fourth-order mapping (and

a corresponding symplectic corrector), so that truncation errors in these models are much smaller

than for the others—-which used the usual second-order mapping—-in spite of their only modestly

reduced step size.

We assessed the physical accuracy of each model by comparing its output with the DE 406

ephemeris, the extension of DE 405 spanning the date range 3000 B.C. to 3000 A.D. The relative

differences for each planet are listed in Table 2 in terms of mean linear and quadratic growth

rates (α and β, respectively) in their positional errors relative to DE 406; velocity errors were

proportionate. Note that the values provided are neither formal least-squares fits (local averages

were used), nor do they represent tight relations (although the amplitude of oscillation about the

mean trend was typically a few times smaller than the value of α); however, they reproduce the

average trends quite well. The sign of the deviation indicates whether the error was in the leading

(+) or trailing (-) hemisphere defined by the body’s local velocity V. For all models and bodies

(except the Moon) the positional error δX = X −X406 was nearly aligned with V (either parallel

or anti-parallel); hence offsets were mainly in orbital phase, with δX ·V > 0 indicating an advanced

phase relative to DE 406 and δX ·V < 0 indicating retarded phase.

We can draw a number of conclusions from Table 2 regarding both the leading source of error

for each model, and their absolute accuracy relative to the uncertainties of DE 406 itself (whether

due to observational or modeling limitations). For Mercury, the dominant error for models QTD

and Lunar is truncation error; in Lunar+Big3 it accounts for approximately one third of the total,

as seen by comparing it with EMS+Big3 (whose integration error is much smaller). The physical

modeling error in each case amounts to ≈ 3×10−4 arcsec/yr—less than 10−3 of the 43.0 arcsec per

century of general relativistic precession suffered by Mercury’s orbit (e.g., Weinberg 1972). This

residual error is likely the result of neglected relativistic terms, though we have not attempted to

prove this. Venus’s case is similar—note in particular how little effect the Big 3 asteroids have on it

(compare Lunar and Lunar+Big3). For Earth the error is clearly dominated by limitations of the

lunar quadrupole approximation, for those models not resolving the Moon explicitly. Interestingly,

the modified value of f used by Varadi et. al (2003) actually worsens the Earth-Moon barycenter

position over this time interval; in spite of this, long-term accuracy is much improved (see below).

Notice also the dramatic improvement in Earth’s motion when the Moon is treated explicitly

(EMS+Big3 and EMS+J2). By contrast, the lunar ephemeris produced by these models is rather

crude; lunar motion is influenced by a variety of physics—rigid-body dynamics, non-spherical shape

terms, tidal dissipation, etc.—not included in our models. Touma & Wisdom (1994) discuss the

formulation of rigid-body dynamics as a symplectic map.

For Mars and the giant planets, asteroids are the limiting factor. Adding the Big 3 (Ceres,
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Fig. 1.— See caption section at end of text.
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Pallas, and Vesta) reduces the error in Mars by nearly a factor of two, and in the giant planets by

an order of magnitude. Although the potential of the asteroid belt is too “grainy” to be accurately

modeled as a smooth potential (Standish & Fienga (2002)), we can make a rough estimate of its

importance by treating it as a ring of matter. For simplicity, assume a circular ring and circular,

co-planar planetary orbits....

4. DISCUSSION

We thank Matthew Holman, Jack Wisdom, Ferenc Varadi, and Hal Levison for helpful dis-

cussions. Examination of model EMS+J2 (§3.4.1) was motivated by an early draft of Varadi et al.

(2003). This work was supported by NASA Origins Grant .

A. COMPUTATIONAL DETAILS

A.1. Earth-Moon-Sun Integrations
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Figure Captions

Fig. 1.— Earth’s eccentricity at the Oligocene-Miocene boundary for several models (cf. Table 1)

computed by HNBody; models are listed in the same order their curves appear (top to bottom) at

time 23.94 Myr. Model R7 from Varadi, Runnegar, & Ghil (2003)—a best-of-class Störmer method

calculation—is included for reference (cf. their Figure 1). Model Lun (Lunar) duplicates the

physics of R7 using HNBody, and produces virtually identical results. The close agreement between

models LB3 (Lunar+Big3) and EB3 (EMS+Big3) confirms the efficacy of the lunar quadrupole term

advocated by Varadi et al. (2003). Model QTD duplicates Lunar except that the lunar model of

Quinn et al. (1991) is used, and shows the variations induced by a 10% change in the magnitude of

the lunar quadrupole term. Model EJ2 (EMS+J2) demonstrates the influence of a non-zero solar

quadrupole moment. The inset box displays a close-up of the indicated portion of the figure.
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Table 1. Long-Term Solar System Simulations

Modela Lengthb Stepsizec |∆E/E|d Asteroidse Lunar modelf Solar model

(Myr) (d)

QTD -25 4 4.0 × 10−12 · · · f = 0.9473 point mass

Lunar -25 3 1.1 × 10−12 · · · f = 0.8525 point mass

Lunar+Big3 ±5400 1.8 2.8 × 10−12 Big 3 f = 0.8525 point mass

EMS+Big3 ±100 1.5 6.2 × 10−13 Big 3 explicit point mass

EMS+J2 -25 1.5 2.7 × 10−13 · · · explicit J2 = 2 × 10−7

aIn addition to the effects listed here, all models include the nine planets and first-order

general relativistic corrections due to the Sun.

bNegative values denote integrations into the past, positive values into the future.

cThe EMS models used a fourth-order mapping; the others were second-order.

dMaximum relative energy error recorded during the simulation.

eBig 3 ≡ Ceres, Pallas, and Vesta.

fSee text for the meaning of f . The QTD lunar model also includes recession of the Moon

due to tidal dissipation (the others do not).
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Table 2. Solar System Simulation Accuraciesa

QTD Lunar Lunar+Big3 EMS+Big3 EMS+J2

Body αb βb α β α β α β α β

Mercury -1.1 0.01 -0.65 0.02 -0.45 0.01 -0.31 0.02 0.22 0.02

Venus 0.05 0.03 0.05 0.03 0.04 0.03 0.03 0.03 0.10 0.03

Earth 4.1 0.02 10.2 0.02 10.2 0.02 0.03 0.01 0.02 0.01

Moon · · · · · · · · · · · · · · · · · · -7000 1200 -7000 1200

Mars 1.0 0.00 1.0 0.00 0.6 0.00 0.6 0.00 1.0 0.00

Jupiter -0.12 -0.02 -0.12 -0.02 0.01 -0.01 0.01 -0.01 -0.12 -0.01

Saturn -0.06 0.00 -0.06 0.00 0.002 0.00 0.002 0.00 -0.06 0.00

Uranus 0.005 0.00 0.005 0.00 0.003 0.00 0.003 0.00 0.004 0.00

Neptune -0.03 0.00 -0.03 0.00 -0.002 0.00 -0.002 0.00 -0.03 0.00

Pluto 0.005 0.003 0.005 0.003 0.001 0.000 0.001 0.000 0.005 0.003

aPositional accuracy relative to the DE 406 ephemeris over the interval 3000 B.C. to

3000 A.D. Planet positions refer to the barycenter of the planet and its satellites (if any);

the Moon’s position is geocentric.

bParameters α (given in 10−3 ′′ yr−1) and β (given in 10−6 ′′ yr−2) are defined by the

relation sign(δX ·V) |δX/X| ≈ α(t− t0) + β(t− t0)
2, where δX = X−X406 is the error in

position compared to DE 406, t is the epoch of observation, and t0 = JD 2440400.5 is the

initial epoch. See text for details.


