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ABSTRACT

We present numerical three-body experiments that include the effects of gravita-
tional radiation reaction by using equations of motion that include the 2.5-order post-
Newtonian force terms, which are the leading order terms of energy loss from gravi-
tational waves. We simulate binary-single interactions and show that close approach
cross sections for three 1M� objects are unchanged from the purely Newtonian dy-
namics except for close approaches smaller than 10−5 times the initial semimajor axis
of the binary. We also present cross sections for mergers resulting from gravitational
radiation during three-body encounters for a range of binary semimajor axes and mass
ratios including those of interest for intermediate-mass black holes (IMBHs). Building
on previous work, we simulate sequences of high-mass-ratio three-body encounters
that include the effects of gravitational radiation. The simulations show that the bi-
naries merge with extremely high eccentricity such that when the gravitational waves
are detectable byLISA, most of the binaries will have eccentricitiese> 0.9 though all
will have circularized by the time they are detectable by LIGO. We also investigate
the implications for the formation and growth of IMBHs and find that the inclusion of
gravitational waves during the encounter results in roughly half as many black holes
ejected from the host cluster for each black hole accreted onto the growing IMBH.

Subject headings:stellar dynamics — gravitational waves — black hole physics —
galaxies: star clusters — globular clusters: general — methods:n-body simulations

1. Introduction

With increasing evidence in support of the existence of intermediate-mass black holes (IMBHs),
interest in these objects as gravitational wave sources is growing. With masses∼ 102 to 104 M�,
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IMBHs are black holes that are more massive than stellar-mass black holes yet smaller than su-
permassive black holes found at the centers of galaxies. The primary motivation for IMBHs
comes from observations of ultraluminous X-ray sources (ULXs): extragalactic, non-nuclear, point
sources with inferred bolometric luminositiesL & 3×1039 erg s−1 (seeMiller & Colbert 2004for
a review). Such luminosities are greater than the Eddington luminosity of a 20M� object, which
is the highest mass black hole that can be produced with roughly solar metallicity stellar evolution
(Fryer & Kalogera2001). The ULXs are thought to be powered by black holes because many are
variable, but they cannot be powered by supermassive black holes or they would have sunk to the
center of their host galaxies because of dynamical friction.

If, however, the intrinsic luminosity is much smaller than that inferred from the X-ray flux
because the observed emission originates from a narrow beam directed towards us, then the lower
limit on the mass can fall into stellar-mass black hole range (King et al. 2001). In such a case,
these objects would be stellar-mass analogues of blazars. There is, however, evidence in support of
quasi-isotropic emission from ULXs. First, recent observations of aLX ∼ 1040 erg s−1 ULX in the
Holmberg II dwarf irregular galaxy show HeII emission from gas surrounding the ULX and line
ratios in agreement with photoionization from a quasi-isotropically emitting X-ray source, thus
giving weight to the picture that ULXs are more massive than stellar-mass black holes (Kaaret
et al. 2004; Pakull & Mirioni 2001). Second, observations of ULX spectra that are fit with a
combined power-law and multi-colored disk model indicate disk temperatures much lower than
those found in known stellar-mass black hole X-ray binaries (Miller, Fabian, & Miller 2004). The
temperature should scale asT ∼ M−1/4, and thus the inferred temperatures also favor a larger
mass. Finally,Strohmayer & Mushotzky(2003) discovered a quasi-periodic oscillation (QPO) in
the X-ray brightness of the brightest ULX in M82 (M82 X-1), whose X-ray luminosity isLX ≈
8× 1040 erg s−1. The QPO, which has an rms amplitude of 8.5% at a centroid frequency of
54 mHz, is thought to come from the disk but is too strong to be consistent with a beamed source
that is powered by a stellar-mass black hole. Thus there is strong evidence that at least some
ULXs cannot be beamed stellar-mass X-ray binaries. There has also been theoretical work that
suggests radiation-driven inhomogeneities can allow luminosities up to 10 times the Eddington
limit (Begelman2002; Ruszkowski & Begelman2003), but the most luminous ULXs would still
require a black hole more massive than stellar-mass black holes to power their bright, variable
X-ray luminosity.

A key to understanding ULXs and IMBHs is their environment. ULXs are often found in
starburst galaxies and in associations with stellar and globular clusters. For example, M82 X-
1, one of the most promising IMBH candidates, is spatially coincident with the young stellar
cluster MGG 11 as determined by near infrared observations (McCrady et al.2003). Numerical
simulations of MGG 11 show that due to its short dynamical friction timescale compared to the
main sequence lifetime of the most massive stars, runaway growth by collisions between massive
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stars can cause a star to grow to∼ 3000M�, after which it could evolve into an IMBH (Portegies
Zwart et al.2004). Fabbiano et al.(2001) found a spatial correlation of ULXs with stellar clusters
in the merging Antennae system in excess of that expected from a uniform distribution of ULXs.
A comparison of Chandra and HST images of the CD galaxy NGC 1399 at the center of the
Fornax cluster shows a spatial correlation between many of its X-ray point sources and its globular
clusters (Angelini et al.2001). These X-ray point sources include two of the three sources with
LX & 2×1039 erg s−1, and the globular cluster and X-ray positions agree to within the combined
astrometric uncertainties. In addition, evidence from radial velocities of individual stars in M15 as
well as velocity and velocity dispersion measurements in G1 indicate that these globular clusters
may harbor large dark masses in their cores (∼ 3000M� and 1.7 (±0.3)×104 M�, respectively,
Gebhardt et al.2000, 2002; Gerssen et al.2002; Gebhardt et al.2005). For M15 the data cannot
rule out the absence of dark mass at the 3σ level, but the most recent observations of G1 can rule
out the absence of dark mass at the 97% confidence level (Gebhardt et al.2005). In both cases,
the observations are of special interest because they are the only direct dynamical measurements
of the mass of possible IMBHs. Finally, the Galactic globular cluster NGC 6752 contains two
millisecond pulsars with high, negative spin derivatives in its core as well as two other millisecond
pulsars well into the halo of the cluster at 3.3 and 1.4 times the half mass radius of the globular
cluster (Colpi et al.2003, 2002). The pulsars in the cluster core can be explained by a line-of-sight
acceleration by 103 M� of dark mass in the central 0.08 pc (Ferraro et al.2003). While the pulsars
in the outskirts of the cluster can be explained by exchange interactions with binary stars, the most
likely explanation is that they were kicked from the core in a close interaction with an IMBH,
either a single IMBH or a binary that contains an IMBH (Colpi et al.2003, 2002).

One of the most intriguing questions regarding IMBHs is the method of their formation. They
must form differently than stellar-mass black holes, which are the result of a core-collapse super-
nova and have a maximum mass of 20M�, and they are distinct from supermassive black holes,
which have masses 106 M� to 109 M� and are found at the centers of galaxies. Several studies
have found that IMBHs may form in young stellar clusters where a core collapse leads to direct
collisions of stars (Ebisuzaki et al.2001; Gürkan et al.2004; Portegies Zwart & McMillan2002).
Miller & Hamilton (2002b) proposed that IMBHs form from the mergers of stellar-mass black
holes in a dense globular cluster, andGültekin et al.(2004, hereafter Paper I) expanded this to
include the mergers of stellar-mass black holes with the merger remnant of a young stellar cluster
core collapse.

Of particular interest is the study of IMBHs as sources of detectable gravitational waves (Hop-
man & Portegies Zwart2005; Matsubayashi et al.2004; Miller 2002; Will 2004). Orbiting black
holes are exciting candidates for detectable gravitational waves. At a distanced a massm in a
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Keplerian orbit of sizer around a massM �m the gravitational wave amplitude is
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whereG is the gravitational constant andc is the speed of light. For comparison, with one-year
integrations theLaser Interferometer Space Antenna(LISA) and Advanced LIGO are expected to
reach down to sensitivities of 10−23 at frequencies of 10 mHz and 100 Hz, respectively. Thus
binaries containing IMBHs withM & 100 M� with small separations at favorable distances are
strong individual sources. During inspiral the frequency of gravitational waves increases as the
orbit shrinks until it reaches the innermost stable circular orbit (ISCO) where the orbit plunges
nearly radially towards coalescence. Because of the quadrupolar nature of gravitational waves, the
gravitational wave frequency for circular binaries is twice the orbital frequency. At the ISCO for a
non-spinning black hole withM � m, whererISCO = 6GM/c2 andh∼ Gm/6c2d is independent
of the mass of the primary, the gravitational wave frequency is

fGW = 2 forb = 2
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4π2r3
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Thus a binary with a 100M� black hole will pass throughLISAband (10−4 to 100 Hz Danzmann
2000) and into the bands of ground-based detectors such as LIGO, VIRGO, GEO-600, and TAMA
(101 to 103 Hz, Fidecaro & VIRGO Collaboration1997; Schilling 1998; Barish2000; Ando &
the TAMA collaboration2002) whereas a 1000M� black hole will be detectable byLISAduring
inspiral but will not reach high enough frequencies to be detectable by currently planned ground-
based detectors. After the final inspiral phase, the gravitational wave signal goes through a merger
phase, in which the horizons cross, and a ringdown phase, in which the spacetime relaxes to a
Kerr spacetime (Flanagan & Hughes1998a,b; Cutler & Thorne2002). The merger and ringdown
phases emit gravitational waves at a higher frequency with a characteristic ringdown frequency of
f ∼ 104 Hz(M/M�)−1 so that mergers with more massive IMBHs will still be detectable with
ground-based detectors.

IMBHs in dense stellar systems are a unique source of gravitational waves. Through mass
segregation, the most massive objects will sink to the center of a stellar cluster as dynamical in-
teractions between objects tend towards equipartion of energy. For a cluster that is old enough to
contain compact stellar remnants, the stellar-mass black holes, including those in binary systems,
and IMBHs will congregate at the center and interact more frequently. For any reasonable mass
function, the total mass of black holes in a cluster is large enough that mass segregation is a run-
away process, known as the “mass stratification instability” (e.g.,O’Leary et al.2005). Through
an exchange bias in which the most massive objects tend to end up with a companion after a three-
body encounter, IMBHs will swap into binaries. Thus in a dense stellar system with an IMBH and
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massive binaries, the IMBH is likely to be found in the binary and to be a potential strong source
of gravitational waves. The IMBH-containing binary will continue to interact with objects in the
cluster and to acquire ever more massive companions. In Paper I we found that a binary with an
IMBH that undergoes repeated interactions in a stellar cluster will have a very high eccentricity
after its last encounter before merging, and a significant fraction will retain a measurable eccentric-
ity (0.1 . e. 0.2) when they are most easily detectable withLISA(see alsoO’Leary et al.2005).
Because detection of inspiral requires the comparison of the signal to a pre-computed waveform
template that depends on the orbital properties of the binary, knowing the eccentricity distribution
is useful. Fore. 0.2, circular templates are accurate enough to detect the gravitational wave signal
with LIGO (Martel & Poisson1999), and this is likely to be the case forLISAas well.

If stellar clusters frequently host IMBHs, then currently planned gravitational wave detectors
may detect mergers within a reasonable amount of time. Optimistic estimates put the upper limit to
the Advanced LIGO detection rate of all black holes in dense stellar clusters at∼ 10 yr−1 (O’Leary
et al.2005). TheLISAdetection rate for 1 yr integration and signal-to-noise ratio of S/N = 10 is
(Will 2004)

νdet≈ 10−6
(

H0

70 km s−1Mpc−1

)3( ftot

0.1

)(
µ

10M�

)19/8( Mmax

100M�

)13/4(
ln

Mmax

Mmin

)−1

yr−1,

(3)
whereH0 is the Hubble constant,ftot is the total fraction of globular clusters that contain IMBHs,
µ is the reduced mass of the merging binary, andMmin andMmax denote the range in masses of
IMBHs in clusters. If we assume thatMmax= 103 M�, µ = 10M�, ftot = 0.8 (O’Leary et al.2005),
H0 = 70 km s−1Mpc−1, andMmin = 102 M�, then we get a rate of 0.006 yr−1. This, however,
implies that 103 M� black holes are continuously accreting 10M� black holes, which is unlikely to
be the case. Since the distance out to whichLISAcan detect a given gravitational wave luminosity
DL scales as the square root of the integration timeT, the volume probed scales asV ∼ D3

L ∼
T3/2. This means that a 10 yr integration could yield a rate of 0.2 yr−1, and if IMBHs with mass
M = 104 M� are common, the rate could be much higher. These rates, however, are optimistic
and should be considered as upper limits. A gravitational wave detection of an IMBH with high
signal-to-noise could also yield the spin parameter and thus shed light on the formation mechanism
of the IMBH (Miller 2002). A full understanding of the gravitational wave signals from IMBHs
requires a more detailed study of the complicated dynamics and gravitational radiation of these
systems.

In this paper we present a study of the dynamics of black holes in a stellar cluster using nu-
merical simulations that include the effects of gravitational radiation. We include gravitational
radiation reaction by adding a drag force to the Newtonian gravitational calculation. Our treatment
is similar to that ofLee(1993), but we focus on individual encounters and sequences of encounters
and the resulting mergers instead of ensemble properties of the host cluster. Paper I incorporated
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gravitational radiation by integrating thePeters(1964) orbit-averaged equations for orbital evo-
lution of a binary that is emitting gravitational waves, but in this paper we include the energy
loss from gravitational radiation for arbitrary motion of the masses. Although the vast majority
of three-body interactions do not differ greatly from a purely Newtonian simulation, an important
few involve close approaches in which gravitational waves carry away a dynamically significant
amount of energy such that it may cause the black holes to merge quickly in the middle of the
encounter. This is qualitatively different from the mergers in Paper I which were caused by gravi-
tational waves emitted by isolated binaries between encounters, and this new effect is important in
considering detectable gravitational waves as well as IMBH growth.

In § 2 we describe our method of including gravitational waves as a drag force as well as
numerical tests of its accuracy. We present our simulations and major results in§ 3 and discuss the
implications for IMBH formation and gravitational wave detection in§ 4.

2. Numerical Method

The numerical method we use here is much the same as is described in§ 2 of Paper I. In
order to study the dynamics of a massive binary in a dense stellar environment, we simulate the
encounters between the binary and single objects. We include both individual encounters and
sequences of encounters, all of which include gravitational radiation emission. When simulating
sequences, we allow the properties of the binary to evolve from interactions with singles, and we
follow the binary until a merger occurs. A merger is determined to occur when the separation
between the two masses is less thanG(m0 + m1)/c2. The simulations are run using the same
code as in Paper I with a few exceptions. The integration engine is now HNDrag, which is an
extension of HNBody (K. Rauch & D. Hamilton, in preparation)1. Both HNBody and HNDrag
can include the first-order post-Newtonian corrections responsible for pericenter precession based
on the method ofNewhall et al.(1983). HNDrag also has the ability to include pluggable modules
that can add extra forces or perform separate calculations such as finding the minimum separation
between all pairs of objects. In this paper we ignore the second-order post-Newtonian terms,
which contribute higher-order corrections to the pericenter precession, and we include the effects
of gravitational radiation on the dynamics of the particles through the addition of a force that arises
from the 2.5-order post-Newtonian equation of motion for two point masses. The acceleration on
a massm0 from gravitational waves emitted in orbit around a massm1 can be written as

dv0

dτ
=

4G2

5c5

m0m1

r3

[
r̂ (r̂ ·v)

(
−6

Gm0

r
+

52
3

Gm1

r
+3v2

)
+v
(

2
Gm0

r
−8

Gm1

r
−v2

)]
(4)

1See http://janus.astro.umd.edu/HNBody/.
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wherer = r1− r0 andv = v1− v0 are the relative position and velocity vectors between the two
masses (Damour & Deruelle1981; Damour1982, 1983, for more recent treatments that use dif-
ferent techniques and arrive at the same result, seeItoh, Futamase, & Asada2001andBlanchet,
Faye, & Ponsot1998). Since Equation4 introduces a momentum flux on the center of mass of
the system, we partition the force so that it is equal and opposite and for reasons of computational
efficiency to get an acceleration of

dv0

dt
=

4G2

5c5

m0m1

r3

(
m1

m0 +m1

)[
r̂ (r̂ ·v)

(
34
3

G(m0 +m1)
r

+6v2
)

+v
(
−6

G(m0 +m1)
r

−2v2
)]

.

(5)
This expression is equivalent to Eq. 21 fromLee(1993). When orbit-averaged, Equation5 gives
thePeters(1964) equations for semimajor axis and eccentricity evolution:

da
dt

=−64
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G3m0m1(m0 +m1)

c5a3(1−e2)7/2
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dt

=−304
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c5a4(1−e2)5/2
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304

e3
)

. (7)

We tested the inclusion of this force in the integrator by comparison with direct, numerical inte-
gration of Equations6 and7 for two different binaries with massesm0 = m1 = 10 M� and initial
semimajor axisa0 = 1 AU: one with initial eccentricitye0 = 0 and one with initial eccentricity
e0 = 0.9 (Fig. 1). TheN-body integration of these binaries made use of HNDrag’s enhancement
factor, which artificially augments the magnitude of the drag forces for the purposes of testing or
simulating long-term effects. For this test and all numerical integrations with HNDrag, we used
the fourth-order Runge-Kutta integrator. For both the circular and the high eccentricity cases, the
N-body integrations agree very well with thePeters(1964) equations. Examination of Equation5
reveals that even though physically the emission of gravitational radiation can only remove energy
from the system, the equation impliesĖ > 0 for r̂ · v̂ > 0 in hyperbolic orbits, becoming worse
as the eccentricity increases (Lee1993). Integration of Equation5 over an entire orbit, however,
does lead to the expected energy loss. This is because there is an excess of energy loss at peri-
center, which cancels the energy added to the system (Lee1993). Thus this formulation does not
introduce significant error as long as the integration is calculated accurately at pericenter, which
we achieve by setting HNDrag’s relative accuracy parameter to 10−13, and the two objects are
relatively isolated, which we discuss below.

We also tested theN-body integration with gravitational radiation for unbound orbits against
the maximum periastron separation for two objects in an initially unbound orbit to become bound
to each other (Quinlan & Shapiro1989):

rp,max =

(
85π

√
2G7/2m0m1(m0 +m1)

3/2

12c5v2
∞

)2/7

, (8)
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Fig. 1.— Comparison of HNDrag integration with numerical integration ofPeters(1964) equations
for an eccentric binary. Lines are numerical integration of Eq.6 for semimajor axis (solid line)
and of Eq.7 for eccentricity (dashed line). The symbols are results from HNDrag integration
with gravitational radiation for semimajor axis (diamonds) and eccentricity (squares). The binary
shown hasm0 = m1 = 10M� with an initial orbit ofa0 = 1 AU ande0 = 0.9. The evolution of the
binary’s orbital elements is in very close agreement for the entire life of the binary.
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wherev∞ is the relative velocity at infinity of the two masses. In Figure2 we plot the orbits inte-
grated both with and without gravitational radiation for two different sets of initial conditions that
straddle therp,max threshold. For both sets of initial conditions, the integrations with gravitational
radiation differ from the Newtonian orbits, and the inner orbit loses enough energy to become
bound and ultimately merge. We used a bisection method of multiple integrations to calculate
rp,max, and our value agrees with that ofQuinlan & Shapiro(1989) to a fractional accuracy of
better than 10−5.

For systems of three or more masses, we compute gravitational radiation forces for each pair
of objects and add them linearly. Although this method differs from the full relativistic treatment,
which is nonlinear, the force from the closest pair almost always dominates. We may estimate
the probability of a third object coming within the same distance by examining the timescales for
an example system. A binary black hole system withm0 = 1000M� andm1 = 10 M� with a
separationa = 10−2 AU (∼ 1000M) will merge within (Peters1964)

τmerge≈ 6×1017 (1 M�)3

m0m1(m0 +m1)

( a
1 AU

)4(
1−e2)7/2

yr≈ 600 yr. (9)

The expression for merger time in Equation9 is valid for the high eccentricities (e→ 1) of interest
to this paper. The rate of gravitationally focused encounters with a third massm2 within a distance
r from an isotropic distribution is (Paper I)

νenc= 5×10−8
(

10 km s−1

v∞

)(
n

106 pc−3

)( r
1 AU

)(m0 +m1

1 M�

)(
m2

1 M�

)1/2

yr−1. (10)

For a number densityn= 106 pc−3, a relative velocityv∞ = 10 km s−1, and an interloper massm2 =
10 M�, the rate of encounters within the same distancer = a = 10−2 AU is νenc∼ 2×10−6 yr−1.
Thus the probability of an encounter within the same distance isP∼ τmergeνenc≈ 10−3 for this
mildly relativistic case. For a separation of 10−3 AU, the probability drops to 10−8. Thus for most
astrophysical scenarios and for all simulations in this paper, the error incurred from adding the
gravitational radiation force terms linearly is negligible.

3. Simulations and Results

3.1. Individual Binary-Single Encounters

3.1.1. Close Approach

We begin our study of three-body encounters including gravitational radiation by calculating
the minimum distance between any two objects during the binary-single scattering event. This
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Fig. 2.— HNDrag-integrated orbits with and without gravitational radiation inside and outside
of two-body capture pericenter. This plot shows orbits of two 10M� black holes with relative
velocity of 10 km s−1 and pericenter distances ofrp = 0.2rp,max and rp = 1.2rp,max. The lines
show the orbits with gravitational radiation included in the integration, and the diamonds show
the Newtonian orbits for the same initial conditions. The direction of the orbit is indicated by the
arrow. Although it is not apparent for the outer orbit in this plot, both trajectories differ from their
Newtonian counterparts. For the inner orbit, enough energy is radiated away for the black holes to
become bound to each other and eventually merge.
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quantity has been well studied for the Newtonian case, but it is still not completely understood (Hut
& Inagaki1985; Sigurdsson & Phinney1993). We present 105 simulations of a circular binary with
massesm0 = m1 = 1 M� and an initial semimajor axisa0 = 1 AU interacting with an interloper of
massm2 = 1 M� in a hyperbolic orbit with respect to the center of mass of the binary. Throughout
this paper, we refer to the mass ratios of three-body encounters asm0:m1:m2, wherem2 is the
interloper and the binary consists ofm0 andm1 with mbin = m0 + m1 andm0 ≥ m1. The relative
velocity of the binary and the interloper at infinity isv∞ = 0.5 km s−1 with an impact parameter
randomly drawn from a distribution with a probabilityP(b) ∝ b and a maximum valuebmax =
6.621 AU, which corresponds to a two-body pericenter distance ofrp = 5a. The encounters are
integrated until finished as determined in Paper I while tracking the minimum distances between all
pairs of objects. We followHut & Inagaki(1985) andSigurdsson & Phinney(1993) in calculating
a cumulative, normalized cross section for close approach less thanr

σ (r) =
f (r)b2

max

a2
0

(
v∞
vc

)2

, (11)

where

vc≡

√
G

m0m1

am2

(m0 +m1 +m2)
(m0 +m1)

(12)

is the minimum relative velocity required to ionize the system andf (r) is the fraction of encounters
that contain a close approach less thanr. We plot σ (r/a0) for the Newtonian case at several
different time intervals within the encounter in Figure3. Our results for the total cross section
are in almost exact agreement withSigurdsson & Phinney(1993) over the domain of overlap, but
with the advantage of ten years of computing advances, we were able to probe down to values
of r/a0 that are 102 times smaller. In addition we examine how the total cross section evolves
from the initial close approach of the binary until the end of the interaction through subsequent
near passes during long-lived resonant encounters. At the time of the interloper’s initial close
approach with the binary, the cross section is dominated by gravitational focusing, and thus the
first two curves in Figure3 are well fit by power laws with slope of 1. As the interactions continue,
resonant encounters with multiple close approaches are possible, and the cross section for small
values ofr/a0 increases. Each successive, intermediate curve approaches the final cross section by
a smaller amount because there are fewer encounters that last into the next time bin. A fit of two
contiguous power laws to the final curve yields a break atr/a0 = 0.0102 with slopes of 0.85 and
0.35 for the lower and upper portions, respectively. These values are very close to those obtained
by earlier studies (Hut & Inagaki1985; Sigurdsson & Phinney1993). There is, however, no reason
for a preferred scale for a Newtonian system, and simple models that assume close approaches
are dominated by pericenter passage after an eccentricity kick cannot explain the lower slope. We
numerically calculated(logσ)/d(logr) by fitting multiple lines toσ (r) in logarithmic space and
plot the results in Figure4. The derivatived(logσ)/d(logr) appears to approach unity for very
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small values ofr/a0 where the close approach can be thought of as a gravitationally focused two-
body encounter within the entire system (Hut & Inagaki1985). It is surprising that this does not
happen untilr/a0 < 10−5.

In order to test the effects of gravitational radiation on the close approach as well as to test
the sensitivity of the results to the phase of the binary, we ran the same simulations (1) with
gravitational radiation, (2) with gravitational radiation and first-order post-Newtonian corrections,
and (3) with just first-order post-Newtonian corrections. The three new cross sections are plotted
with the Newtonian results in Figure5. A K-S test shows the differences between the three curves
to be statistically insignificant (P≥ 0.4). Although not statistically significant, the curves with
gravitational radiation appear to drop below the Newtonian curve for smallr/a0 and then climb
above for very smallr/a0. Gravitational radiation causes this effect by driving objects that become
very close to each other closer still and, in some cases, causing them to merge. For larger masses,
the gravitational radiation is stronger, and the gravitational radiation curve will differ from the
Newtonian curve at largerr/a0 for a fixed value ofa0.

3.1.2. Merger Cross Section

The most interesting new consequence from adding the effects of gravitational radiation to
the three-body problem is the possibility of a merger between two objects. Though the two-body
cross section for merger can be calculated from Equation8, the dynamics of three-body systems
increases this cross section in a nontrivial manner. We present simulations of individual binary-
single encounters for a variety of masses. As in Paper I, the interactions were set up in hyperbolic
encounters with a relative velocity at infinity ofv∞ = 10 km s−1 with an impact parameter distri-
bution such thatP(b) ∝ b with bmin = 0 andbmax such that the maximum pericenter separation
would berp = 5a. The binaries were initially circular with semimajor axes ranging from 10−6 AU
to 102 AU, depending on the mass. The masses were picked such that one of the three mass ratios
was unity with all masses ranging from 10M� to 103M� with roughly half-logarithmic steps. For
each mass and semimajor axis combination, we run 104 encounters. We calculate the merger cross
section asσm = f πb2

max where f is the fraction of encounters that resulted in a merger while all
three objects were interacting. In Figures6-9 we plot, as a function of the semimajor axis scaled to
the gravitational radius of the binaryξ ≡ a/(Gmbin/c2), the cross section normalized to the phys-
ical cross section of the Schwarzschild radius of the mass of the entire system taking gravitational
focusing into account:

σ̄m = σm

[
4π

GMtot

v2
∞

GMtot

c2

]−1

. (13)



– 13 –

Fig. 3.— Cross section for close approach during binary-single encounters as a function ofrmin/a0.
The thick, upper curve is the cross section for the entire encounter. The remaining curves are the
cross section at intermediate, equally-spaced times during the encounter starting from the bottom
near the time of initial close approach. Because we only include 20 intermediate curves, there
is a gap between the last intermediate curve and the final curve. The first two curves have a
slope of 1, consistent with close approach dominated by gravitational focusing. As the encounters
progress, resonant encounters with multiple passes are more likely to have a close approach at
smallerrmin/a0, and the curves gradually evolve to the total cross section for the entire encounter.
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Fig. 4.— Derivative of close approach cross section curve for the entire encounter. Each symbol is
the slope for a line segment fit to the top curve from Fig.3 plotted as a function of the midpoint of
the range. Because of the small number of encounters that result in very small close approaches,
the multiple line segments used in the fits cover different ranges in log(r/a0). They were selected
so that each of the 100 line segments covers an additional 1000 encounters that make up the cu-
mulative cross section curve. The scatter in the points is indicative of the statistical uncertainty.
For smaller close approaches,d(logσ)/d(logr) appears to approach unity. The rise at the right
occurs because the cross section is formally infinite atrmin/a0 = 1.
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Fig. 5.— Cross section for close approach like Fig.3 including different orders of Post-Newtonian
corrections. The curves are purely Newtonian (solid), Newtonian plus 2.5-order PN (dotted), New-
tonian plus 1-order PN (dashed), and Newtonian plus 1-order and 2.5-order PN (dash-dotted). The
purely Newtonian and the Newtonian plus 2.5-order PN curves come from 105 encounters each.
The other two curves come from 104 encounters each and show more statistical fluctuations. The
differences between the curves are not statistically significant.
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For all mass ratios̄σm increases withξ because hard binaries with wide separations sweep out
larger targets where the interloper can interact with and merge with the binary components. Asξ

increases to the point that the binary is no longer hard,σ̄m will approach the value expected from
Equation8. The curves flatten out forξ . 100 as the cross section is dominated by the mergers of
binary members with each other because of hardening interactions and eccentricity kicks that bring
the two masses together. For sufficiently smallξ , the merger cross section would be formally infi-
nite since all binaries would merge quickly. For all mass series, as the mass ratios approach unity,
the cross section increases because complicated resonant encounters, which produce more numer-
ous and smaller close approaches, are more likely when all three objects are equally important
dynamically.

We note some interesting trends that can be seen in the plots. Note that for the scalings
given, it is only the mass ratios that matter and not the absolute mass so that the 10:10:10 and
1000:1000:1000 cases only differ because of statistical fluctuations (Figs.6and7). Thus our results
can be scaled to others, e.g., 1000:100:100 would be the same as 100:10:10. For the 10:10:X mass
series (Fig.6), the normalized cross section decreases with increasing interloper mass, roughly as
σ̄m∼ (m2/mbin)−1. This happens because as the interloper dominates the total mass of the system,
complicated resonant interactions with more chances for close approach are less likely. Thus for
the 10:10:1000 case, there are far fewer chances for a close approach that results in merger. The
1000:1000:X series (Fig.7) shows a distinct break aroundξ ∼ 100. Since the binary mass is
the same for all curves, they all approach the same value forξ . 100 where the binary members
merge with each other because of their small separation. Forξ & 100, the higher mass interlopers
are dynamically more important and cause more mergers. The X:10:10 series curves (Fig.8) all
approach the 10:10:10 curve forξ & 105 where the dominant object in the binary has less influence
over its companion.

3.2. Sequences of Encounters

Because a tight binary in a dense stellar environment will suffer repeated encounters until it
merges from gravitational radiation, we simulate a binary undergoing repeated interactions through
sequences of encounters including gravitational radiation reaction. As in Paper I, we start with
a circular binary with initial semimajor axisa0 = 10 AU and a primary of massm0 = 10, 20,
30, 50, 100, 200, 300, 500, or 1000M� and a secondary of massm1 = 10 M�. We simulate
encounters with interloping black holes with massm2 = 10M�. After each encounter, we integrate
Equations6 and7 to get the initial semimajor axis and eccentricity for the next encounter. This
procedure continues until the binary merges from gravitational radiation or there is a merger during
the encounter. Throughout our simulations we use an encounter velocity ofv∞ = 10 km s−1, an
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Fig. 6.— Normalized merger cross sections (Eq.13) for individual binary-single encounters as a
function ofξ for the 10:10:X mass series. The normalization is explained in the text. Each symbol
represents 104 binary-single encounters. Error bars given for the top curve are representative for
all merger cross section curves in Figures6 through9.
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Fig. 7.— Normalized merger cross sections like Fig.6 for 1000:1000:X series. The error bars
from Figure6 are representative for the curves in this figure.
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Fig. 8.— Normalized merger cross section like Fig.6 for X:10:10 series. The error bars from
Figure6 are representative for the curves in this figure.
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Fig. 9.— Normalized merger cross section like Fig.6 for 1000:X:1000 series. The error bars from
Figure6 are representative for the curves in this figure.
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isotropic impact parameter such that the hyperbolic pericenter would range fromrp = 0 to 5a,
and a black hole number density in the coren = 105 pc−3 (See Paper I for an explanation of
these choices.). For each mass ratio we simulate 1000 sequences of encounters with gravitational
radiation reaction.

Our results are summarized in Table1. The inclusion of gravitational waves during the en-
counter makes a significant difference from the results reported in Paper I. The fraction of se-
quences that result in a merger during an encounterfm is a good indicator of the importance of
gravitational waves. Even form0 = 10 M�, a significant fraction (fm > 0.1) of the sequences
merge this way, and form0 > 300 M� this type of merger is more likely to occur than merg-
ers between encounters, and thus this effect shortens the sequence significantly. In particular, for
m0 = 1000M� compared to the values from Paper I, the average number of encounters per se-
quence〈nenc〉 is decreased by 42%; the average number of black holes ejected from the cluster〈
nej
〉

is reduced by 56%; and the average sequence length
〈
tseq
〉

is 67% shorter. One caveat for
the study of sequences of encounters is that an IMBH in a cluster of much lower mass objects will
gather a large number of companions in elongated orbits through binary disruptions, and thus the
picture of an isolated binary encountering individual black holes may not hold when the IMBH
becomes very massive (Pfahl2005).

4. Discussion

4.1. Implications for IMBH Formation and Growth

Our simulations provide a useful look into the merger history of an IMBH or its progenitor
in a dense stellar cluster. As an IMBH grows through mergers with stellar-mass black holes, it
will progress through the different masses that we included in our simulations of sequences. We
interpolate the results in Table1 to calculate the time it takes to reach 1000M�, the number of
cluster black holes ejected while building up to 1000M�, and the probability of retaining the
IMBH progenitor in the cluster for different seed masses and escape velocities of the cluster.

The time to build up to 1000M� is dominated by
〈
tseq
〉

at high masses. Although each
individual sequence is short, far more mergers are required for the same fractional growth in mass.
In Figure10 we plot the mass of the IMBH as a function of time for an initial mass ofm0 = 10,
50, and 200M�, for which total times to reach 1000M� are 600, 400, and 250 Myr, respectively.
Because we assume a constant core density throughout the simulations, the times are unaffected
by changing the cluster’s escape velocity. Without gravitational radiation, the times are roughly
twice as long (Paper I) because the length of each sequence is dominated by the time it spends
between encounters at smalla when encounters are rarer. With gravitational radiation included,
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Table 1. Sequence Statistics

m0/M� 〈nenc〉
〈
nej
〉

fbinej
〈
tseq
〉
/106 yr

〈
af
〉
/AU

〈
ef
〉

fm

10 46.4 3.2 0.652 54.10 0.174 0.904 0.134
20 46.7 5.1 0.515 40.86 0.224 0.900 0.130
30 52.4 7.3 0.457 29.47 0.290 0.898 0.156
50 62.3 10.8 0.329 19.17 0.291 0.897 0.190

100 83.9 16.6 0.103 11.65 0.401 0.893 0.275
200 123.0 24.3 0.011 7.26 0.411 0.885 0.387
300 147.8 26.9 0.002 4.74 0.543 0.881 0.492
500 197.5 33.1 - 3.03 0.611 0.879 0.627

1000 284.2 38.8 - 1.47 0.878 0.914 0.754

Note. — Main results of simulations of sequences of encounters with gravitational radiation
included during the encounter. The columns are: the mass of the dominant black holem0, the
average number of encounters per sequence〈nenc〉, the average number per sequence of stellar-
mass black holes ejected from a stellar cluster with escape velocity 50 km s−1

〈
nej
〉
, the fraction of

sequences in which the binary is ejectedfbinej from a stellar cluster with escape velocity 50 km s−1,
the average time per sequence

〈
tseq
〉
, the average final semimajor axis of the binaries after the last

encounter
〈
af
〉
, the average final eccentricity of the binaries after the last encounter

〈
ef
〉
, and the

fraction of sequences that end with a merger during the encounterfm. Note that
〈
af
〉

and
〈
ef
〉

only refer to the binaries that do not merge during the encounter; these comprise 1− fm of the
sequences.
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mergers that occur during an encounter are more likely at small separations, and the length of the
sequence is shortened. These times are much shorter than the age of the globular cluster and are
smaller than or comparable to timescales for ejection of black holes from the cluster, which we
discuss below (see alsoPortegies Zwart & McMillan2000; O’Leary et al.2005). Thus time is not
a limiting factor in reaching 1000M� for an IMBH progenitor that can remain in a dense cluster
with a sufficiently large population of stellar mass black holes.

Each time that an encounter tightens the binary, energy is transfered to the interloper, which
leaves with a higher velocity. If energetic enough, this interaction will kick the interloper out
of the cluster. If the interactions kick all of the interacting black holes out of the cluster, the
IMBH cannot continue to grow. In a dense cluster, there are roughly 103 black holes (Paper I).
With gravitational radiation included during the encounters, the number of black holes ejected is
roughly halved (Fig.11), but the total number ejected while building up to 1000M� is still a few
times the number of black holes available even for an escape velocity ofvesc= 70 km s−1. Thus
a black hole smaller thanm0 . 600M� cannot reach 1000M� by this method without additional
processes such as Kozai resonances (Gültekin et al.2004; Miller & Hamilton 2002a; Wen2003,
thoughO’Leary et al.2005find that Kozai-resonance induced mergers will only increase the total
number of mergers by∼ 10%). There is still the potential for significant growth in a short period of
time. If we consider the point at which half of the black holes have been ejected from the cluster as
the end of growth, then a black hole with initial mass of 50M� will grow to 290M� in 120 Myr,
and a black hole of 200M� will grow to 390M� in less than 100 Myr. In addition, this ejection
of stellar-mass black holes by a binary with a large black hole is faster than by self-ejection from
interactions among stellar-mass black holes calculated byPortegies Zwart & McMillan(2000),
who find that∼ 90% of black holes are ejected in a few Gyr.O’Leary et al.(2005), however, find
that the inclusion of a mass spectrum of black holes further speeds up the ejection of stellar-mass
black holes.

For every kick imparted on an interloper, conservation of momentum ensures a kick on the
binary. Even with a large black hole, extremely large kicks can eject the binary from the cluster,
at which point the IMBH progenitor can no longer grow. We can calculate the probability of
IMBH retention for an individual sequence as 1− fbinej, from which we interpolate the probability
of remaining in the cluster while growing to 300M� when the binary is essentially guaranteed
to remain in the cluster. We plot this probability as a function of seed mass for several different
escape velocities in Figure12. The inclusion of gravitational waves during the encounter increases
the retention probability for small masses. Form0 = 50M� the cluster retains the binary more than
12% of the time, and 49% of the time form0 = 100M�. Because the energy that an interloper can
carry away from the system scales as

∆E ∼ m1

m0 +m1
|EB|=

m1

m0 +m1

Gm0m1

2a
, (14)
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Fig. 10.— Mass of progenitor IMBH as a function of time as it grows through mergers with
10 M� black holes in a dense stellar cluster. Solid curves show results from this work in which
gravitational radiation is included, and dashed curves show results from Paper I in which this effect
is ignored. From bottom to top the curves show the growth of black holes with initial massm0 = 10,
50, and 200M�. The IMBH progenitors all reach 1000M� in less than 600 Myr, and the inclusion
of gravitational radiation significantly speeds up the growth of the black hole.
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Fig. 11.— Number of black holes ejected in building up to 1000M� (solid curves) and to 500M�
(dashed curves) as a function of seed mass for different cluster core escape velocities, given in
units of km s−1. The dotted line indicates the expected number of black holes in a dense globular
cluster. The dot-dashed curve from Paper I shows the number of black holes ejected from the
cluster in building up to 1000M� for a cluster escape velocity of 50 km s−1 without the effects of
gravitational waves during the encounter. For all but the largest seed masses, the globular cluster
does not contain enough black holes for the IMBH to reach 1000M�. There are, however, a
sufficient number of black holes to build up to 500M� for a seed mass greater than 225M� or an
escape velocity of at least 60 km s−1. The inclusion of gravitational radiation during the encounter
roughly halves the number of ejections.
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the encounters at the end of the sequence, whena is smallest, are the most likely to impart a
kick large enough to eject the binary from the cluster. This is also the point at which effects
from gravitational radiation are strongest and at which close encounters are most likely to cause a
merger. When the encounter ends in a merger, there can be no more ejections. The mergers from
gravitational radiation decrease the number of ejections by decreasing the number of encounters
and thus the number of possible ejections as well as cutting off what would otherwise be the end
of the sequence, in which ejections are more likely to occur.

Our analysis of the ejection of stellar-mass black holes as well as of IMBH progenitors does
not include the effects of gravitational radiation recoil. As two objects with unequal masses or
with misaligned spins spiral in towards each other, asymmetric emission of gravitational radiation
produces a recoil velocity on the center of mass of the binary. Most of the recoil comes from
contributions after the masses are inside of the ISCO, where post-Newtonian analysis becomes
difficult (Favata et al.2004). For non-spinning black holes, the velocity kick from the recoil up to
the ISCO is (Favata et al.2004)

vr = 15.6 km s−1 f (q)
fmax

(15)

whereq= m1/m0 < 1, f (q) = q2(1−q)/(1+q)5, and fmax≈ f (0.38) = .018.Favata et al.(2004)
bounded the total recoil to between 20 km s−1 ≤ vr ≤ 200 km s−1 for non-spinning black holes
with q = 0.127. Since the recoil velocity scales asq2 for q� 1, this may be scaled to other mass
ratios. More recently,Blanchet et al.(2005) argued from high order post-Newtonian expansions
that the kick speed for very small mass ratiosq� 1 wasvr/c = 0.043q2, with an uncertainty
of roughly 20%. This is consistent with the results ofFavata et al.(2004), but as most of the
recoil originates well inside the ISCO,Blanchet et al.(2005) caution that numerical results may
be required for definitive answers. In both cases, a seed mass ofm0 = 150 M� merging with
m1 = 10 M� companions will produce a recoil velocityvr . 50 km s−1. A seed mass greater than
150M�will then avoid ejection both from dynamical interactions and from gravitational radiation
recoil.

4.2. Implications for Gravitational Wave Detection

In addition to the likelihoods and rates of growth of black holes in dense stellar systems, our
simulations shed light on the gravitational wave signals that come from the mergers of these black
holes. Making optimistic assumptions,O’Leary et al.(2005) calculate upper limits for Advanced
LIGO detection rates of all black hole mergers in stellar clusters formed at a redshiftz = 7.8.
For their wide range of cluster properties, they find detection rates ranging fromνLIGO ≈ 0.6 to
10 yr−1. For cluster parameters that most closely resemble those used in Paper I and in this work
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Fig. 12.— Probability for a binary with an IMBH to remain in the cluster until building up to
300 M� as a function of seed mass for different cluster core escape velocities given in units of
kms−1. Solid curves are results from this work, and the dashed curve is from Paper I for an escape
velocity of 50 km s−1. The inclusion of gravitational radiation significantly increases the retention
probability.
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(GMH model series), they findνLIGO ≈ 2 to 4 yr−1. Our simulations show that when gravitational
radiation is included in the integration the number of black holes ejected per merger decreases
for all mass ratios. With fewer black holes ejected from the cluster, the overall rate of black hole
mergers increases. For the 10:10:10 case, the number of ejections per merger decreases by∼ 10%,
and for the 1000:10:10 case the number decreases by more than a factor of 2, thus increasing the
rates found byO’Leary et al.(2005). The exact increase in rate is difficult to estimate because the
total number of mergers is dominated by mergers between stellar-mass black holes yet the most
easily detected mergers involve black holes with larger masses.

Because dynamical interactions strongly affect the eccentricity of a binary and because the
timescale for merger is a such a strong function of eccentricity, binaries in a cluster tend to have
very high eccentricities after their last encounter (Paper I,O’Leary et al.2005). With the addition
of gravitational radiation during the encounter, we find that the merging binaries become more
eccentric because a significant fraction of the mergers (fm in Table1) occur during the encounter.
These mergers typically happen between two black holes that are not bound to each other until
they come close to each other and emit a significant amount of gravitational radiation, after which
the two black holes are in an extremely high eccentricity orbit (1−e. 10−3).

To see how these high eccentricities affect the detectability of the gravitational wave signal,
we integrate Equations6 and7 until the binaries are detectable byLISAand then Advanced LIGO.
For circular orbits, the frequency of gravitational wave emission is twice the orbital frequency, but
masses in eccentric orbits emit at all harmonics:fGW = nΩ/2π, wheren is the harmonic number
and

Ω =
[

G(m0 +m1)
a3

]1/2

(16)

with peak harmonic fore> 0.5 at approximatelyn = 2.16(1−e)−3/2 (Farmer & Phinney2003).
We consider the binary to be detectable byLISA when the peak harmonic frequency is between
2 mHz and 10 mHz. We plot the distribution of eccentricities in Figure13. The distributions are
essentially a combination of those from Figure 9 of Paper I and a sharp peak neare= 1, which
comes from the mergers during the encounter. The number in the sharp peak increases with mass
as fm increases such that for 1000:10:10 more than 75% of the merging binaries detectable by
LISA have an eccentricity greater than 0.9. Between 15% and 25% of all of the merging binaries
have eccentricities so high that the peak harmonic frequency is above the most sensitive region
of the LISA band, but they should still be emitting strongly enough at other harmonics to be
detectable. Such high eccentricity presents challenges for the detection of these signals from the
data of space-based gravitational wave detectors because (1) it requires a more computationally
expensive template matching that includes non-circular binaries and (2) the binaries only emit a
strong amount of gravitational radiation during the short time near periapse as they merge. For a
given semimajor axis, these extremely high eccentricities will also increase the gravitational wave
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flux emitted and thus increase the distance out to whichLISAcan detect them, but the detection rate
may be compensated by the fact that more parameters are required (Will 2004). We also integrate
the orbital elements of the binaries until they are in the Advanced LIGO band (40 Hz< fGW <

fISCO) or within a factor of 2 of their ISCO frequency form0 > 100M�. We find that they have
almost completely circularized (Fig.14). A tiny fraction (< 0.5%) of the runs withm0 = 500 and
1000M� have merging binaries with eccentricities such that 1−e. 10−6.

5. Conclusions

1. Gravitational radiation inN-body.We present results of numerical simulations of binary-
single scattering events including the effects of gravitational radiation during the encounter. We
include gravitational radiation by adding the 2.5-order post-Newtonian force term (Eq.5) to the
equation of motion within the HNDrag framework. The code reproduces the expected semimajor
axis and eccentricity evolution, and it gives the expected two-body capture radius.

2. Close approach and merger cross sections.We use the new code to test the effects of
gravitational radiation on a standard numerical experiment of binary-single encounters. We probe
the close approach cross section to smaller separations than has been simulated previously and
find that the inclusion of gravitational radiation makes little difference except for extremely close
encounters (rp < 10−5a), at which point gravitational radiation drives the objects closer together.
We also present the cross section for merger during binary-single scattering events for a variety of
mass ratios and semimajor axes.

3. IMBH growth in dense stellar clusters.We simulate sequences of binary-single black hole
encounters to test for the effects of gravitational radiation and to test formation and growth models
for intermediate-mass black holes in stellar clusters. We find that the inclusion of gravitational
radiation speeds up the growth of black holes by a factor of 2, increases the retention of IMBH
progenitors by a factor of 2, and decreases the ejection of stellar-mass black holes by a factor of 2.
All of these effects act to enhance the prospects for IMBH growth.

4. Detectability of gravitational waves.We analyzed the merging binaries from the simula-
tions of black holes in dense stellar clusters to look at the detectability of the gravitational wave
signals from these sources. We find that the mergers that occur rapidly during the encounter as
opposed to those that occur after the final encounter are an important source of black hole mergers,
becoming the dominant source of mergers at the higher mass ratios. The mergers that do occur
during the encounter tend to have extremely high eccentricity (e> 0.9) while in theLISA band,
presenting challenges for their detection. When the gravitational wave signal from the merging
black holes is in the Advanced LIGO band, the orbit will have completely circularized.
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Fig. 13.— Histogram of eccentricities of merging binary while in theLISAband (fGW = 2 mHz to
10 mHz) out of a total of 1000 sequences. The histograms show a combination of the binaries that
merged after the last encounter with eccentricities concentrated around 0< e. 0.3 and the black
holes that merged quickly during the encounter with eccentricities very close to unity. The peaks
in the rightmost bin in all plots lie above the range of the plots.
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Fig. 14.— Histogram of eccentricities of merging binary while the gravitational wave frequency
is detectable from current and future ground-based detectors. The upper limit of the frequency
range is the ISCO frequency. We used a lower limit for frequency range of 100 Hz form0 = 10,
and 20M�; 35 Hz for m0 = 30, 50, and 100M�; and half the ISCO frequency for the higher
mass binaries. The binaries are very close to circular once they are in the frequency range of
ground-based detectors.The peaks in the rightmost bin in all plots lie above the range of the plots.
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