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ABSTRACTMiron-sized irumplanetary dust partiles are subjet to various non-gravitational perturbations,prinipally solar radiation pressure and eletromagneti fores, whih are typially a few perent asstrong as the planetary gravity. Individually, these perturbations an ause some orbital evolution,but when the perturbations at in onert the exursions an be muh larger. We demonstratethis e�et for a single example, the oupling between resonanes and drag fores. Throughoutthis work, we emphasize the parallels between satellite-satellite gravitational resonanes and theireletromagneti ounterparts (Lorentz resonanes).INTRODUCTIONA dynamial system typially has a set of natural frequenies at whih it an rotate or vibrate.When suh a system is fored at one of these natural frequenies (or a multiple of it), the amplitudeof osillations grows as a result of the umulative e�et of in-phase perturbations; the system is saidto be in resonane. A hild on a swing provides a familiar example of a resonant system. If the swing(initially at rest) is pushed at an arbitrary frequeny or at random times, the amplitude of osillationis likely to remain small; if, however, the swing is pushed one per period, the osillation amplitudewill grow quite large. In an entirely similar manner, harged dust grains osillate wildly near theloations of \Lorentz resonanes" whih our at those positions where the eletromagneti foresensed by an orbiting partile (and arising from a planet's spinning magneti �eld) has a omponentthat mathes a natural frequeny of the orbit /1/. The abrupt vertial expansion of the jovian ringinto its halo and the disappearane of the halo itself /1,2/ have been asribed to the ation of theseLorentz resonanes on orbiting dust grains.Gravitational resonanes our when the orbital periods of two objets are nearly a simple ratioof integers. Many features in the main saturnian ring system have been suessfully attributedto gravitational resonanes with exterior satellites. For example, the 2:1 resonane with Mimasde�nes the inner edge of the Cassini division, whih divides the A and B rings, while the sharpouter edge of the A ring ours at a 7:6 resonane with the moon Janus. Satellites themselves areoften found in resonanes with one another; examples inlude the saturnian pairs Eneladus/Dione,Titan/Hyperion and Mimas/Tethys, as well as the jovian triple Io/Europa/Ganymede (see /3/ fora qualitative physial desription of these gravitational resonanes).In this paper we wish to illustrate how resonanes ouple with drag fores. This idea is not new;indeed it has been extensively studied in the ontext of satellite evolution where tidal e�ets from theentral body reate small drags on satellite orbits. This problem has been thoroughly treated usingHamiltonian mehanis (see e.g., /4/). The purpose of the urrent paper is twofold. First, we wish todraw parallels between the extensively studied satellite (gravitational) resonanes and their less wellknown relatives, Lorentz resonanes. Seondly, we will reprodue some results of the Hamiltoniantheory using the Lagrangian orbital perturbation equations /5/, whih are written in terms of theorbital elements. The latter quantities provide a physially meaningful desription of an orbit; fororbits on�ned to a partiular plane, the semimajor axis a, the eentriity e, and the longitude



of perienter ~! are suÆient. These three elements, respetively, desribe the instantaneous size,shape, and orientation of an elliptial orbit; the Lagrangian equations that desribe the time rateof hange of suh orbital elements are well suited to visualizing the results of orbital perturbations.The advantage of our approah is its simpliity: many non-intuitive e�ets of resonanes, suh asresonant trapping and jumps, will be eluidated.RESONANCE EQUATIONSThe problem of determining the perturbing e�ets of one satellite on another is fundamental toelestial mehanis and has been studied for enturies. It is not solvable in losed form, but anapproximate solution an be developed as a power series of small quantities. The typial proedure(f. /5/, p. 339) is as follows. First, one evaluates the disturbing funtion, de�ned as the negative ofthe perturbing satellite's potential, at the position of the perturbed partile. Next, the disturbingfuntion is written in terms of the orbital elements; this step requires ompliated power seriesexpansions in eentriities, inlinations, and the semimajor axis ratio. Finally the hanges to theorbital elements an be alulated with the potential form of Lagrange's planetary equations (/5/,p. 336) whih relate the time rates of hange of the orbital elements to derivatives of the disturbingfuntion and to instantaneous values of the elements themselves.We proeed in a similar manner for Lorentz resonanes. Beause the Lorentz fore due to a magneti�eld annot be derived from a potential, we must alulate the eletromagneti fore arising froman arbitrary magneti �eld and express it in terms of orbital elements, an arduous task whihrequires power series expansions in the partile's eentriity and inlination. These fores are theninserted into an alternate form of Lagrange's planetary equations (/5/, p. 327). The results ofthis alulation yield, as above, expressions for time derivatives of the orbital elements whih arefuntions of the instantaneous values of these elements. We plan to submit the details of thisalulation for publiation in Iarus.In both of the above derivations, seular terms (i.e., those that do not depend on satellite longitudes)as well as periodi terms (with longitude dependene) appear. Seular terms are ubiquitous, whereasperiodi terms, over long times, average to zero at all but a few resonant loations. In this paperwe fous on one of these loations as an example: the 2:1 (�rst-order) eentriity resonane. Nearthis loation, the resonant argument � is given by:
� = �� 2�0 + ~!; (1)

where � and �0 are the longitudes of the perturbee and perturber, respetively. At the resonantloation (de�ned by _� = 0 - see �gure 1), the perturbed body ompletes approximately two orbitsfor every one yle of the perturbing fore (the period of an exterior satellite in the gravitationalase or the planetary spin period for Lorentz resonanes). We ignore all periodi terms with di�erentfrequeny dependenies (sine they average to zero), and the seular perturbations (whih are smallompared to the strong 2:1 resonant terms).The orbital elements most strongly a�eted by suh a resonane are the abovementioned a, e, and~!. Instead of the semimajor axis a, we use the unperturbed orbital mean motion n � _�, whih isrelated to the semimajor axis via n2a3 = GMp, where G is the gravitational onstant and Mp is theplanetary mass (/5/, p. 131). Writing out the Lagrange perturbation equations to lowest order ineentriity and inlination, we �nd that the e�ets of both the gravitational and Lorentz versionsof the 2:1 �rst-order eentriity resonane an be represented by a set of equations of the followingform:
dndt = �3en2� sin� (2a)



dedt = �nA1� sin� (2b)
d~!dt = �nA2�e os�: (2)

Here t is time, � (always positive) measures the appropriate resonane strength and the Ai are on-stants. The quantity � is a ompliated funtion of the semimajor axis ratio whih must be expandedas a power series; aross the small distane over whih the resonane exerts its inuene, however,� an be treated as a onstant. In the gravitational ase, � is �rst order in the satellite/planet massratio and A1 = A2 = 1. In the Lorentz ase, � depends on the partile's harge-to-mass ratio, dis-tane from the planet, and the magneti �eld strength. For �rst-order eletromagneti resonanes,A1 = A2 = n=n0 � 1, so the 2:1 resonane, like gravity, has A1 = A2 � 1. The dominant ontributionto this resonane omes from the g32 omponent of the magneti �eld (a non-symmetri otupoleterm - see /2/ whih gives values for the giant planets).Although we have speialized equations (2a-) to the 2:1 eentriity resonane, the form of theequations for other �rst-order eentriity resonanes (2:3, 3:4, 1:2 et.) is entirely similar - onlythe parameters � and the Ai need to be hanged. First-order inlination resonanes (whih exist forLorentz fores but not for satellite gravity) and higher-order resonanes are also not too di�erent.Aordingly, the general behavior disussed below for the 2:1 eentriity resonane atually appliesto a wide variety of other types of resonanes as well; that is to say, the trapping and jumps disussedbelow are general phenomena.

Fig. 1. Shemati diagram showing the entral planet, the orbiting dust grain, and the 2:1 resonane.The outermost line represents the loation of the perturbing satellite (for a gravitational resonane)or of synhronous orbit (for a Lorentz resonane). A grain drifting through a �rst-order resonanetoward this loation may beome trapped while one drifting away from it will experiene a jump.



DRAG FORCESSeveral drag fores operate in the magnetospheres of the giant planets. Most large satellites aredriven slowly outward by tidal fores from the primary while small partiles are a�eted by a host ofproesses /6/ inluding plasma, atmospheri, and Poynting-Robertson drags whih, for dust grains,operate muh more rapidly than tidal evolution. Beause drag fores are typially muh smaller thanmany other orbital perturbations, their e�ets on most orbital elements an often be ignored. Unlikemost other perturbations, however, drag fores systematially a�et an orbit's energy and thereforeits size and mean motion. Furthermore, beause of the limited radial extent of the resonane zone,we an approximate the funtional form of the drag rate in this region by a simple onstant _ndrag.The inlusion of drag fores requires that we replae equation (2a) with
dndt = �3en2� sin�+ _ndrag: (3)

RESONANCE TRAPPINGWhen _ndrag < 0, orbits evolve outward: near the 2:1 resonane, this evolution is toward the perturb-ing satellite (in the ase of gravity) or toward synhronous orbit (in the Lorentz ase). For this typeof evolution, resonane trapping, in whih the evolution in mean motion eases, is possible (�gure1). Clearly trapping an our only if the �rst term in equation (3) is equal and opposite to theseond for some �. Solving equation (3) for sin� in this ase and substituting into equation (2b),we �nd
dedt ����trapped = � _ndragA13ne ; (4)

whih is easily integrated yielding:
e = �e20 � 2 _ndragtA13n �1=2: (5)

Linearizing equations (2a-) around this solution, we �nd that it is stable against small perturba-tions. Note the remarkable fat that the rate of growth of the eentriity given by equation (5) isindependent of the resonane strength �. This result an also be obtained from equation (7) below,whih expresses the onservation of energy in a rotating referene frame (see /2/). Thus the \squareroot growth" in time (equation 5) is a property shared by gravitational and Lorentz resonanes of alltypes and orders. An example of resonant trapping and the assoiated eentriity growth is shownin �gure 2; for the parameters given in the �gure aption, equation (5) redues to e � 0:00145N1=2(N is the number of perturber orbits) in rough agreement with the �gure. This behavior holds untile � 0:5 at whih time higher-order e�ets beome important.JUMPS AT RESONANCEWhen _ndrag > 0, inner orbits evolve away from the perturbing satellite (or from synhronous orbit).In this ase trapping for low eentriities is not possible as an be seen from equation (5) whih im-plies that eentriity beomes imaginary! Instead we shall �nd a di�erent behavior at the resonantloation.Beause drag fores are so small, the �rst term in equation (3) is usually far greater than the seond;this fat allows us to obtain an adiabati invariant. Ignoring the drag term for the moment, we divideequation (2a) by equation (2b) and �nd



dnde = 3enA1 ; (6)
whih an be integrated to yield

ln� nn�� = 3e22A2 (7)
where n� is an integration onstant. Realling that equation (2a-) are aurate to only �rst orderin eentriity, we solve this equation to lowest order in e and �nd that

n� = n�1� 3e22A1 � (8)
is a onserved onstant of the motion (see /7/). Sine the resonane zone is traversed quikly,equation (8) remains approximately onstant during the passage. The half-width of the libratingzone, dn=2, an be rudely estimated by setting the derivative of equation (1) equal to zero, takingn = 2n0 + dn=2 and os� = 1, and solving for dn. We �nd dn � 2n�A2=e. Inserting this into equation(6), and negleting the di�erene between de and e, we �nd:

de =�2A1A2�3 �1=3: (9)
This ase is displayed in �gure 3; using the parameters from the �gure aption, we alulate thejump amplitudes from equations (9) and (6) and obtain de � 0:04 and dn � 0:012 - values smallerthan, but in rough agreement with, the �gure.DISCUSSIONLorentz and gravitational resonanes di�er primarily in the magnitudes of the resonant strength�. For miron-sized dust grains around the jovian planets, � is orders of magnitude larger in theLorentz ase; thus Lorentz resonanes are more e�etive at trapping dust partiles and are able toindue larger orbital jumps than resonanes due to a satellite's gravity. Slight additional di�erenesarise when Ai 6= 1; most �rst-order Lorentz resonanes have Ai < 1 whih redues the trapped growthrate (equation 5) and jump amplitude (equation 9). Despite this small di�erene between the twotypes of resonanes, the equations that govern them are remarkably similar and, onsequently, it isnot surprising that orbital behavior at Lorentz and gravitational resonanes is so alike.REFERENCES1. J.A. Burns, L.E. Sha�er, R.J. Greenberg and M.R. Showalter, Lorentz resonanes and thestruture of the jovian ring, Nature 31, 115-119 (1984).2. L.E. Sha�er and J.A. Burns, Lorentz resonanes and the vertial struture of dusty rings:Analytial and numerial results, Iarus 96, 65-84 (1992).3. R. Greenberg, Orbit-orbit resonanes among natural satellites, in: Planetary Satellites, ed. J. A.Burns, Univ. Arizona, Tuson 1977, p. 157-168.4. R. Malhotra, Some Aspets of the Dynamis of Orbit-Orbit Resonanes in the Uranian Satellite System,Ph.D. Thesis (Cornell University), 1988.5. J.M.A. Danby, Fundamentals of Celestial Mehanis (2nd ed.), Willmann-Bell, Rihmond, VA, 1984.
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Fig. 2. RESONANCE TRAPPING: A plot of the orbital evolution determined by equations (2b,and 3) for physially realisti parameters � = 10�4;A1 = A2 = 1; _ndrag = 10�6n02. Plotted againsttime are the mean motion ratio n=n0, the eentriity e, and the resonant angle �. Initial onditionsare n = 2:03n0; e = 0, and � = 0. Notie that the mean motion is dereasing as the orbit evolvesaway from the planet either toward the perturbing satellite (gravitational resonane) or towardsynhronous orbit (Lorentz resonane). The e�et of the 2:1 resonane is to hange the seularredution of the orbit's mean motion into a seular inrease in its eentriity. The resonant angle� librates with small amplitude around a slightly negative value whih an be found by settingequation (3) to zero and solving for �.
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Fig. 3. JUMPS AT RESONANCE: A plot of the orbital evolution determined by equations(2b, and 3) with the parameters � = 10�4;A1 = A2 = 1; _ndrag = �10�6n02. Initial onditionsare n = 1:97n0; e = 0, and � = 0. Notie that the jumps in semimajor axis and eentriity oursimultaneously near n � 2n0 as required by equations (6) and (9). The resonant argument � libratesaround a value near 180Æ until the jumps our after whih it irulates.


