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ABSTRACT

We argue that the gas giants Jupiter and Saturn were both formed with their rotation axes nearly perpendicular
to their orbital planes, and that the large current tilt of the ringed planet was acquired in a post-formation event.
We identify the responsible mechanism as trapping into a secular spin-orbit resonance that couples the angular
momentum of Saturn’s rotation to that of Neptune’s orbit. Strong support for this model comes from (1) a near-
match between the precession frequencies of Saturn’s pole and the orbital pole of Neptune, and (2) the current
directions that these poles point in space. We show, with direct numerical integrations, that trapping into the spin-
orbit resonance and the associated growth in Saturn’s obliquity are not disrupted by other planetary perturbations.

Key words: planets and satellites: individual (Neptune, Saturn) — solar system: formation —
solar system: general
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1. INTRODUCTION

The formation of the solar system is thought to have be-
gun with a cold interstellar gas cloud that collapsed under its
own self-gravity. Angular momentum was preserved during
the process, so that the young Sun was initially surrounded by
the solar nebula, a spinning disk of gas and dust. From this
disk, planets formed in a sequence of stages whose details are
still not fully understood. One stage that both Jupiter and
Saturn, large planets with nearly solar compositions, must have
undergone, however, is the direct accretion of gas from rotat-
ing subnebulae. In the simplest models, the vast majority of
the gaseous material making up Jupiter and Saturn must have
flowed through these accretion disks, which should have been
coplanar with the solar nebula. Conservation of angular mo-
mentum in this formation scenario predicts spin axes for these
planets that are nearly perpendicular to their orbital planes,
and indeed, Jupiter’s tilt is only 3N1. Saturn, however, has an
obliquity of 26N7, in apparent contradiction to this likely for-
mation scenario.

The cleanest way out of this paradox is to invoke an addi-
tional process to tip Saturn after its accretion was essentially
complete. Two main possibilities have been suggested previ-
ously: giant impacts (Lissauer & Safronov 1991; Parisi &
Brunini 2002) and an external torque on the entire solar system
(Tremaine 1991). The requirements for each of these hypoth-
eses are rather strict, and at present there seems to be no clear
way to test either one. Here and in a companion paper (Ward &
Hamilton 2004, hereafter Paper I), we suggest an alternative
evolutionary process that tilted Saturn subsequent to its for-
mation: a secular spin-orbit resonance with the planet Neptune.
Our preceding paper treated this scenario analytically using
the Cassini state formalism originally developed by Colombo
(1966) and explored by Peale (1969), Ward (1975), and others.
The critical simplifying assumption underlying our analyti-
cal study is that Saturn’s orbit can be treated as being of
constant inclination, precessing at a uniform rate because of

perturbations from Neptune. In reality, Saturn’s inclination
varies, its precession is nonuniform, and the instantaneous
perturbations from Jupiter are larger than those from Neptune.
In order to determine if our assumption is valid for the real
solar system, we have developed a numerical model that
includes the effects of all of the giant planets. And to facilitate a
comparison between the output of our numerical model, our
analytical results, and the real solar system, we have developed
a useful analogy with orbital resonances.

2. CASSINI STATES

Torques imparted by the Sun on the oblate figure of Saturn
cause slow, uniform precession of the planet’s spin axis around
its orbit normal. In the absence of planetary perturbations, all
values of Saturn’s obliquity would be stable solutions, each
with its own precession rate. In reality, however, the gravita-
tional perturbations of the other planets force Saturn’s orbit to
precess about the total angular momentum vector of the solar
system. Orbital precession modulates the solar torque in time
and rules out uniform spin-axis precession at most values of
the obliquity. But if the planet’s orbital precession is uniform,
as would be the case with a single perturbing planet, there
are several solutions that lead to uniform polar precession at
constant obliquity. These are Cassini states, formal obliquity
equilibria in which the precession rate of the planet’s spin axis
exactly matches that of its orbital plane (Colombo 1966; see
also Fig. 1 of Paper I).

In the real solar system, however, Saturn’s orbital preces-
sion rate is not uniform but is, rather, composed of multiple fre-
quencies induced primarily by the other giant planets. Jupiter’s
perturbations dominate, and accordingly, it is not immediately
obvious that the evolution of Saturn’s spin axis due to Neptune
can be treated with the Cassini state formalism, especially since
Neptune’s effects are an order of magnitude weaker than Jupiter’s.

With orbital mean motion and secular resonances, how-
ever, it is often an excellent approximation to ignore all rapidly

A

1 (V128/203558) 9/17/04

The Astronomical Journal, 128:0000–0000, 2004 November

# 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.



varying terms in the perturbation potential while retaining only
the slowly varying, near-resonant ones (see, e.g., Murray &
Dermott 1999, p. 332). The rationale for this approximation is
that the rapidly varying terms tend to average out over time,
while the slowly varying terms can build up large amplitude
changes to an orbit. We proceed in a similar manner here, ne-
glecting all terms that affect Saturn’s orbit but the one due
to the g18 fundamental frequency of the solar system, which is
dominated by Neptune’s nodal precession. This term has a
period of Tg ¼ 1:87 Myr (Applegate et al. 1986; Bretagnon
1974), a close match to the theoretical precession period of
Saturn’s pole at T� � 1:8 Myr (Tremaine 1991; French et al.
1993). While the uncertainty in Tg is only a few tenths of
a percent (Laskar 1988), T� is known only to within several
percent, with the greatest uncertainty coming from Saturn’s
moment of inertia (Paper I). French et al. (1993) combined
Voyagermeasurements and the 1989 July occultation of the star
28 Sgr to actually measure Saturn’s slow polar precession rate.
Their results are consistent with the theoretical expectation,
with estimated errors of approximately 35% dominated by un-
certainties in the trajectories of the Voyager spacecraft. The
poorly constrained value of T� allows the possibility Tg ¼ T�
required by the Cassini state.

How close is Saturn’s pole to a Cassini state if all orbital
perturbations but those due to Neptune’s g18 term are ignored?
In addition to identical precession periods, in a Cassini state the
vectors s (Saturn’s north pole), n (Saturn’s orbit normal), and
k (the unit vector along the total angular momentum of the
solar system about which both s and n precess) must all be
coplanar (Colombo 1966)Q1 . Saturn’s pole direction s is given
by R:A: ¼ 40N5954 and decl: ¼ 83N538 in the Earth equatorial
coordinate system (epoch J2000.0), and in the same system,
the normal to the invariable plane of the solar system k is
given by R:A: ¼ 273N8657 and decl: ¼ 66N9723 (Yoder 1995).
In addition, Neptune’s perturbation on Saturn’s orbital plane
has an amplitude of I ¼ 0N0644 and a phase of � ¼ 23N52
relative to the invariable plane, according to fits to 100 Myr
numerical simulations of the outer solar system by Applegate
et al. (1986). These values agree to better than a percent with
the analytic theories of Bretagnon (1974), Laskar (1988), and
Bretagnon & Francou (1992).

We now rotate s into invariable coordinates so that all three
poles are defined in the same system. The resulting configu-
ration of poles is close to Cassini state 2, depicted in Figure 1
of Paper I. In Cassini state 2, n, k, and s all lie in a single plane
with k between n and s. We project k and s into the plane
perpendicular to n and determine the angle between the pro-
jections as follows:

sin�Saturn ¼
(k < n) < (s < n)

jk < njjs < nj : ð1Þ

With the pole directions given above, we find �Saturn ¼ �31�.
Thus, Saturn’s pole, while not precisely in Cassini state 2, is
close enough that it could be undergoing stable librations.

3. NUMERICAL MODEL

In this section, we describe the development of a self-
consistent numerical model of the dynamics of Saturn’s spin
axis that includes two primary components: a detailed syn-
thetic model for the varying orbits of the outer planets due to
Bretagnon (see, e.g., Bretagnon & Francou 1992), and equa-
tions accurate to fourth order in the orbital elements for the
evolution of the Saturnian spin axis from Ward (1979).

The outer-planet model of Bretagnon can be understood as
large Fourier series fits to the time variations of each of the six
orbital elements of each of the four giant planets. The actual
variations of the orbital elements were obtained from a 1 Myr
full numerical integration of the motions of the giant planets
done in ecliptic coordinates. The allowed frequencies of the
Fourier series were chosen to be all possible linear combina-
tions of the 12 fundamental frequencies of the four giant plan-
ets. Four of these frequencies are simply the planetary mean
motions, which dominate changes in the mean longitudes. The
other eight are longer period secular frequencies that primarily
affect orbital nodes and pericenters. The full outer-planet
model includes 1300 frequencies that determine the motions of
Saturn’s pericenter and 127 that affect its node. Of these, 143
(pericenter) and 64 (node) are fully secular terms that do not
involve planetary orbital frequencies. Inclusion of all terms in
Bretagnon’s full model ensures an accuracy of a few parts in
105 for the time variations of the planetary semimajor axes,
eccentricities, and inclinations over a million years.
To obtain the ecliptic orbital elements of Saturn at any given

time, we simply determine the instantaneous phases of all of
the relevant Fourier terms in Bretagnon’s theory, compute the
instantaneous contributions of these terms to each of Saturn’s
orbital elements, and sum over all of the contributions. These
orbital elements are then used to determine the right-hand side
of the vector equation of motion that governs the evolution
of the unit spin vector as given by Ward (1979, eq. [6]). This
equation is accurate to fourth order in the planetary eccentric-
ity and inclination, which is sufficient since these quantities
remain small throughout Saturn’s orbital evolution. The domi-
nant contribution to changes in Saturn’s spin vector are first-
order in the planet’s inclination. This follows from the fact
that Saturn’s inclination determines the normal to its orbit,
from which the obliquity is measured. By contrast, changes
in Saturn’s eccentricity affect the spin-axis evolution more
weakly by altering the average Saturn–Sun distance, which in
turn slightly affects the spin-axis precession rate.
The equation of motion for Saturn’s spin vector depends

on its instantaneous value, which we transform into ecliptic
coordinates. We then integrate the equation using one of two
fourth-order adaptive step-size integration methods: Bulirsch-
Stoer or Runge-Kutta. We have run these integration schemes
against one another as a basic test of the validity of our code.
The output from our integration scheme is the spin-axis
pointing in ecliptic coordinates as a function of time. Finally,
we convert the spin-axis pointing into a coordinate system with
Saturn’s instantaneous orbit as the reference plane.
The speed of the numerical integrations is strongly affected

by the large number of terms needed to calculate the instanta-
neous orbital elements and especially by the frequencies of the
strongest rapidly varying terms. To maintain a given accuracy,
the integration step size is automatically chosen to resolve these
terms. A significant speedup in integration time is realized by
working with only secular terms with characteristic timescales
of tens of thousands of years, as opposed to terms involving
mean motions, which vary on the orbital timescales of decades.
Our neglect of these rapidly varying terms is justified by the
long timescales, T� � 1:8 Myr, that we are primarily interested
in. Furthermore, we find that we still obtain inclinations accu-
rate to a few parts in 103 and eccentricities accurate to a few
percent by summing over only the secular terms. In fact, even
limiting the frequencies to the 10 dominant ones comprised by
the secular theory of Brouwer & van Woerkom (1950) does
not degrade the solution significantly.
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Brouwer & van Woerkom’s secular model is reprinted by
Murray & Dermott (1999, p. 303). There are three periodic
terms that affect planetary nodes: g16, arising primarily from
the mutual Jupiter-Saturn perturbation; g17, due mainly to
Uranus; and g18, dominated by Neptune. An additional term
with zero frequency accounts for the tilt of the ecliptic relative
to the invariable plane of the solar system. The Brouwer &
van Woerkom model also includes six frequencies that affect
orbital pericenters, a fundamental mode dominated by each of
the giant planets, and two long-period terms whose amplitudes
are enhanced by the near-5:2 resonance between Jupiter and
Saturn.

In each of the simulations presented in x 5, we use just the
10 Brouwer & van Woerkom frequencies to compute Saturn’s
orbital elements, although we have also run each of them with
all of the 207 secular frequencies, with no differences that are
discernible on a plot. In most tests, final obliquities and reso-
nant angles differ by less than 1 part in 104.

4. RESONANCES

In this section we derive some basic analytic results that will
provide a straightforward way of interpreting our numerical
simulations.

4.1. Equations of Motion

The vector equation of motion that governs the evolution
of the spin-axis direction in a reference frame that precesses
uniformly about k is given by Colombo (1966, eq. [12]) and
also in Paper I. We resolve this equation into spherical coor-
dinates in a reference frame with z along n as in x 2. We define
the resonance angle by

�¼ ��� �g; ð2Þ

where �� and �g are angles measured positively from a ref-
erence direction to the projections of s and k into the x-y
plane, respectively. We define cos I = n = k and cos � = s = n,
where I is the strength of Neptune’s perturbation on Saturn’s
orbital plane and � is Saturn’s obliquity, the instantaneous tilt
of Saturn’s pole vector from its orbital pole. Making the
approximation �3 I , which is satisfied for Cassini states 2
and 4 (but not state 1), we find the following simple ex-
pressions for the time evolution of the resonant angle and
obliquity:

d�

dt
¼ �� cos �� g cos I ; ð3Þ

d�

dt
¼ g sin I sin� ð4Þ

(compare with the more general expressions in Ward 1974).
Here t is time, �> 0 is the precessional constant, which de-
pends on Saturn’s spin rate and oblate shape and the Sun’s
mass and distance (see eq. [1] of Paper I), and g ¼ g18 < 0 is
the nodal precession rate of Saturn’s orbit induced by Neptune.
To this level of approximation cos I � 1, but we have retained
the cos I term to preserve the symmetric appearance of the two
equations. In the limit g ¼ 0, Neptune’s perturbations vanish,
Saturn’s orbit plane becomes fixed in space, and we recover
simple precession of the pole vector at a constant obliquity

with period T� ¼ 2�=(� cos �). Note that since �> 0, Saturn’s
pole precession rate is negative.1

A familiar application of equations (3) and (4) is to the tilt of
Earth, with Tg ¼ 2�=jgj equal to the 18.6 yr regression of the
lunar orbit due to solar perturbations and cos I representing the
strength of this perturbation to the motion of Earth’s spin axis.
The lunar torques affect Earth’s obliquity through equation (4)
and induce a rapid 18.6 yr nodding of Earth’s spin axis (nu-
tation) superposed on its more stately 25,800 yr precession.

For Neptune’s perturbations on Saturn, the two terms on
the right-hand side of equation (3) nearly cancel (�g�� cos �)—
this can be thought of as a commensurability (or near-resonance)
between the precession and nutation periods. In this case,
equation (3) shows that � will vary slowly in time, which in
turn allows large obliquities to build up via equation (4). This
pair of equations is strongly reminiscent of the equations gov-
erning a first-order meanmotion resonance between two planets
(e.g., Hamilton 1994, eq. [29]), with the obliquity � taking the
place of either the orbital eccentricity or inclination. As with
orbital mean motion resonances, here a single forcing fre-
quency (�g) dominates the motion of Saturn’s pole because of
its near-match to the system’s natural frequency (� cos �).

Taking the time derivative of equation (3) and using
equation (4) to eliminate d�=dt, we find

d2�

dt2
¼ (�g sin � sin I) sin�� (�̇ cos �þ ġ cos I ); ð5Þ

which is qualitatively similar to a pendulum equation for �.
Here we have explicitly left in �̇ and ġ, the slow tuning of the
frequencies � and g that took place during the early evolution
of the solar system. Although � cos � ��g today, this was not
always the case. The precessional constant � , which parame-
terizes the strength of the solar torque on Saturn’s oblate figure
and its regular satellites, decreased in the early solar system
(�̇ < 0) for several reasons: (1) the Kelvin-Helmholtz contrac-
tion of Saturn as it cooled, (2) the dissipation of the disk out of
which Saturn’s satellites condensed, and (3) the small outward
migration of Saturn that accompanied the clearing of the plan-
etesimal disk. Similarly, the magnitude of Neptune’s frequency
|g| has also diminished in time, as many Earth masses of mate-
rial in the outer solar system were expelled from the solar sys-
tem and the planetary orbits diverged as a consequence (Hahn
&Malhotra 1999). More mass in the early solar system, as well
as smaller distances between planets, results in shorter orbital
precession timescales than prevail today. These slow evolution-
ary processes, acting in combination, brought the two preces-
sion periods (T� and Tg) together from initially disparate values.

Equation (5) supports orbits in which � circulates through
a full 2� (these have initial conditions with large positive or
negative d�=dt). These regions are divided from librating
orbits, in which � oscillates through a more limited range of
values, by a separatrix orbit with an infinite orbital period
that traverses an unstable equilibrium point. Crossing the
separatrix—resonance passage—can occur when parameters of
the pendulum equation are changed, either slowly or abruptly;
this can lead to trapping of � into libration or a jump across
the libration region with accompanying strong kicks to the

1 There is an interesting parallel between the negative precession rates of
planetary pole vectors (d�=dt ¼ �� cos �) and satellite orbit planes (d�=dt ¼
�X cos i), where � is the ascending node, X is a strength constant, and i is the
orbital inclination. This parallel arises because both the planet and the satellite
orbit may be treated as oblate objects subject to external torques.
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obliquity. Similar behavior is displayed by orbital mean motion
resonances that also obey pendulum-like equations.

Equation (5) admits two equilibrium points, a stable one
located at�eq and an unstable one at�eq þ �, where, assuming
small �̇ and ġ,

�eq ¼
�̇ cos �þ ġ cos I

�g sin � sin I
: ð6Þ

When g and � are constant, �eq ¼ 0, and the stable and un-
stable equilibrium points are identified with Cassini states 2
and 4, respectively. Treating �, �̇ , and ġ as constants and as-
suming small-amplitude oscillations ( sin�� �), the solution
to equation (5) is

� ¼ A cos (wlibt þ �)þ�eq; ð7Þ

where A is the libration amplitude, � is a phase, and wlib is the
libration frequency, given by

wlib ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��g sin � sin I

p
ð8Þ

(recall that g < 0). For small-angle oscillations, the libration
frequency is nearly constant and its value depends on prop-
erties of both the precessing planet and the perturbing term.
In particular, just as for a simple pendulum, the libration fre-
quency scales with the square root of the amplitude of the
applied force, here sin I. Furthermore, the libration frequency
depends on

ffiffiffi
�

p
for small � in just the same way that the li-

bration amplitude for first-order mean motion resonances
depends on

ffiffiffi
e

p
. For current Saturn parameters, the period of

these librations is 2�=wlib ¼ 83 Myr, which is much longer
than the pole precession period.

5. NUMERICAL RESULTS

Processes active in the early solar system caused Saturn’s
pole precession rate to slow with time so that �̇ < 0. If the

frequency changed enough so that ���g at some point, then
a resonance passage should have occurred as discussed above.
We simulate this scenario in Figure 1 by starting Saturn’s pole
precessing faster than Neptune’s orbit (j�=gj> 1 Q2) and allowing
the pole precession rate to slow so that the ratio of precession
periods approaches unity. As |�=g| approaches 1 the obliquity
oscillations grow, and in a single libration period, the reso-
nance imparts a 10

�
kick to the obliquity. Although this sharp

change in the obliquity affects the pole precession period some-
what, the period ratio Tg=T� continues to decrease after the
obliquity kick.
A tilt of 10� is significantly smaller than Saturn’s current

obliquity and also less than the maximum possible obliquity
kick of 14N5 from Paper I’s equation (16). Note that the kick
occurs when���110

�
(Fig. 1, right), a value for which equa-

tion (4) predicts nearly the maximum effect on the obliquity.
The kick is smaller than the maximum because |�=g| changes
significantly over the libration period of the resonance, which
violates the adiabatic condition and leads to smaller kick am-
plitudes as described by Paper I’s equation (A4). Q3

The apparent thickness of the � versus time plot is due to
rapid variations about an equilibrium value with an amplitude
of around 1�. The perturbations of Jupiter on Saturn’s orbital
plane with 2�=g16 � 50; 000 yr and amplitude 0N9 account for
almost all of the observed oscillation. These rapid changes are
not retained in our simple analytic model. They affect the nu-
merical runs by smearing � by about 2� throughout its evo-
lution (Fig. 1, left); this term also accounts for much of the
thickness of the circular ring in the right panel of Figure 1.
Despite their presence, Jovian perturbations do not strongly
affect the kick to the obliquity imparted by the secular reso-
nance with Neptune.
An additional feature of our analytic approximations is ap-

parent in Figure 1—note that the period of the obliquity os-
cillation lengthens as the resonance location is approached, and
then shortens afterward in agreement with equation (3). The

Fig. 1.—Resonant kick. Left: The obliquity �, the ratio of Neptune’s orbital precession period Tg to Saturn’s spin precession period T� , and the absolute value of �=g
vs. time. Right: Evolution of the resonant angle� (angle from the x-axis) and the obliquity � (distance from the origin). Saturn’s current pole position (�Saturn ¼ �31N0
and �Saturn ¼ 26N7; see x 2.1) is indicated with a large dot. In these simulations, we impose the time history of |�=g| and study the response of the other variables. Here
we have set g constant, � ¼ �0:64g(1þ e�t=� ) with � ¼ 5 ; 108 yr, and the initial condition �0 ¼ 2N5.
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expression predicts that circulation of � in Figure 1b is in the
clockwise direction before the resonance obliquity is kicked
(large |�=g|) and counterclockwise afterward (small |�=g|).
This is just like a planar pendulum circulating in one direction
that is slowed continuously until its motion reverses.

We have run a number of simulations, changing |�=g| at
different rates and adjusting initial conditions so that the
separatrix is met at different values of the resonance angle�. In
all cases, resonance kicks to the obliquity are limited to less
than about 15

�
. Thus, an obliquity kick from Neptune’s orbit

is insufficient to explain the high obliquity of Saturn if the
planet started close to an untilted state. Furthermore, as can be
seen in Figure 1, after resonance passage the period ratio does
not tend toward any particular value, nor is there a preferred
value for the resonant angle. Even if the obliquity could reach
26N7, the near-commensurability of the precession frequencies
and the proximity of the observed resonant angle �Saturn ¼
�31N0 to the stable equilibrium point�eq � 0 would have to be
attributed to chance. For all of these reasons, a simple kick to
the obliquity is unable to explain the current state of Saturn’s
pole.

We turn now to investigate resonance trapping, which was
possible during the clearing of the planetesimals from the outer
solar system. Accordingly we take ġ > 0 so that the ratio |�=g|
increases with time. In Figure 2, we present a simulation in
which we have tuned Neptune’s precession frequency so that
it ends with its current value, j�=gj� cos 26N7. The obliquity
starts small as in Figure 1, with the small-amplitude oscil-
lations due to Jupiter’s g16 frequency. As the resonance with
Neptune’s orbital precession frequency is approached, equa-
tions (3) and (4) dominate the dynamics and resonance trap-
ping occurs. The growth of the obliquity scales nearly as the
square root of time for the portions of the evolution in which
|�=g| is varying linearly. The growth of obliquity after capture
is also apparent in the right panel; the banana-shaped libration
region expands outward and shifts slightly in the counter-
clockwise direction. The shift is due to the fact that �eq ! 0 as

� increases and ġ ! 0 (eq. [6]). Small oscillations in the
obliquity occur at the libration period. Near the final obliquity,
� ¼ 26N7, we measure 12.5 oscillations per 109 years, for a
libration period of 80 Myr. This is in good agreement with
equation (8), which predicts an 83 Myr period.

The small offset of the stable equilibrium point �eq from
zero when dissipation is present is the direct cause of the
growth of the obliquity during resonance trapping. If �eq < 0,
as equation (6) and the right panel of Figure 1 show, then over
1 libration period the resonant angle spends more time at neg-
ative values than at positive ones, allowing the obliquity to in-
crease irreversibly via equation (4). The characteristic growth
timescale can be obtained by averaging over the libration pe-
riod and inserting equation (6) into equation (4). If we assume
low obliquity and slow linear changes of � and g with time, we
find that, in resonance, the obliquity varies with time in the
following manner:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 þ 2(�̇þ ġ)t=�

q
; ð9Þ

where �0 is the obliquity at t ¼ 0. This expression is identical in
form to Hamilton’s (1994) equation (33), which was derived
under similar approximations for orbital mean motion reso-
nances. Equation (9) predicts the characteristic square-root-
in-time growth of the obliquity for �̇þ ġ > 0. If the current
26N7 obliquity of Saturn arose from resonance trapping, then
the required frequency shift is �g ¼ (1� cos 26N7)g � ġt �
0:11g, a change in the fundamental frequency of just over 10%.

Although this simulation nicely reproduces Saturn’s current
tilt, it is not consistent with the planet’s current pole vector. The
libration of the resonant angle displayed in the right panel of
Figure 2 is too small to encompass the current pole vector of
Saturn; a larger libration amplitude is needed. We have run
many numerical experiments to see how the magnitude of
the libration amplitude depends on various initial conditions.
For a slow transition into resonance, an adiabatic invariant

Fig. 2.—Trapping into resonance. Plotted quantities are as in Fig. 1. Here we have imposed g ¼ �� (0:89þ 0:23e�t=� ). Trapping into resonance occurs when the
resonance angle librates through a limited range rather than circulating through a full 2�. The ratio of precession periods pins to 1.
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determines the final libration amplitude from the obliquity
immediately prior to resonance capture (Paper I). Crudely, the
area inside the circular region before trapping is preserved in the
area swept out by the banana-shaped libration after trapping.
Thus, in the adiabatic limit small initial obliquities necessitate
small resonance libration amplitudes. There are two ways out of
this dilemma. The first is simply to have the relevant frequency,
here g, change rapidly enough that it changes its value signifi-
cantly in 1 libration period, the characteristic timescale in res-
onance. A rapid change destroys the adiabatic invariant.

Figure 3 is an example of resonance trapping, but this time
with a much faster change in |�=g|. In this case, most of the
growth of the obliquity occurs over a single libration period.
Despite starting with a low obliquity of only a few degrees as
in Figure 1, the final libration amplitude is quite large. The
libration amplitude is directly related to the obliquity oscilla-
tions, as can be shown by considering the integral of the mo-
tion obtained by solving equations (3) and (4) for d�=d� and
integrating. The result is

K ¼ g sin I cos�� g� cos I � � sin �; ð10Þ

where we have assumed that � and g are constants. This ex-
pression is valid instantaneously for small adiabatic changes to
g and � . It can be used to relate the maximum excursions in �
and � over one libration period. For small libration amplitudes,
we find

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan �= sin I

p
��; ð11Þ

which, for the current values of � and I, yields �� � 21��.
This predicts that the 4

�
obliquity oscillations in the left panel

of Figure 2 should lead to 84
�
oscillations in � in the right

panel—not a bad match, given the small libration amplitude

approximation made in deriving equation (11). The fact that
Saturn’s pole does not lie on the final path of libration is not a
concern—a slight change to the final value of |�=g| (within
actual uncertainties) moves the banana-shaped libration region
either inward or outward so that it crosses the current pole
position of Saturn. Thus this simulation is one possible past
history of Saturn’s pole—a fast passage through the resonance.
A fast resonance passage can simultaneously account for the
current tilt of Saturn and the �Saturn ¼ �31N0 offset of Saturn’s
pole vector from Cassini state 2.
Our numerical experiments show that it requires a fast res-

onance encounter, as well as a fortuitous phase � at the time of
the encounter, to induce a large libration amplitude. The ex-
ample in Figure 3 is near the limit of the fastest possible res-
onance capture. That such a limit must occur can be seen from
equation (5) if the second term on the right dominates the first
term for all �. In this case, the equilibrium points given by
equation (6) no longer exist. For changes to Neptune’s orbital
precession rate, trapping is no longer possible when ġ � w2

lib.
We find that Saturn’s pole can be trapped with a libration
amplitude larger than �30� for all rates from about a factor of
2 slower than in Figure 3 to just slightly faster.
An alternative path to large libration amplitudes involves

a slower scanning rate of the frequencies and a larger initial
obliquity. One way that Saturn might have had a larger obliq-
uity before becoming trapped in the g18 resonance is if it were
kicked by other resonances or by the g18 earlier in its history. In
Figure 4, we impose a model that includes both Saturn’s con-
traction on a rapid timescale and clearing of the planetesimal
swarm on a slower timescale Q4. The frequencies are brought
together twice, first in the direction that leads to an obliquity
kick as in Figure 1 and then in the direction that leads to res-
onance capture as in Figure 2. The planet attains a large
obliquity, which it maintains until meeting the resonance for the
second time. The adiabatic invariant ensures that this initial

Fig. 3.—Rapid trapping into resonance. Plotted quantities are as in Fig. 1. The libration period is measured to be 83.3 Myr. Large libration amplitudes such as
this are possible when the timescale for a characteristic change to the system is comparable to the libration period. Such rapid changes violate the adiabatic
condition.
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obliquity translates into a large libration amplitude (note that
the areas inside the circle and inside the banana shape are
similar).

Several additional features of Figure 4 warrant discussion.
First note that the libration period near t ¼ 109 yr, when � � 12�

is clearly longer than the libration period at � � 27�. More
careful measurements of the libration period show that it short-
ens by a factor of about 1.5, in agreement with the �-dependence
of the libration amplitude predicted by equation (8). The dis-
tribution of points plotted between the circle and banana shape
is offset slightly in the clockwise direction as required by
equation (6) during obliquity growth. Finally, the observed
�� � 3N5 and �� � 60� are reasonably consistent with the
predictions of equation (11).

6. CONSTRAINTS ON THE EARLY EVOLUTION
OF THE SOLAR SYSTEM

We have investigated the conditions under which trapping
into the g18 secular spin-orbit resonance is possible and shown
that both (1) the observed near-match between the precession
periods of Saturn’s pole and Neptune’s orbit and (2) the current
pointing of Saturn’s pole vector can be simultaneously ex-
plained by this mechanism. We believe that these successes
make resonance capture the most likely explanation of Saturn’s
large obliquity. Trapping can be achieved by either (a) fast
resonance passage or (b) a precapture obliquity of at least 4�

(Paper I).
Can the resonance-capture model place constraints on the

processes active in the early solar system? Since Saturn first
encountered the secular spin-orbit resonance with Neptune, the
frequency ratio �=g has changed by about 10%, with the exact
amount dependent on the initial obliquity as described by
equation (9). This sets a lower limit on the amount of material
that was swept from the outer solar system; Paper I estimates
that removing about 10 Earth masses of material from the

Kuiper belt would change g by about 10%. Less material is
required if the material is located between the planets, and if
the changes to the planetary orbits due to the ejection of this
mass are also considered.

The origin of Saturn’s tilt also sets a lower limit on the
amount of time required to remove the planetesimals, as a too-
rapid change to the g18 precession frequency precludes reso-
nance trapping. The material must be removed over a time
period exceeding about 150 million years, as seen in Figure 3.
When did Saturn gain its large obliquity? First, solar system
evolution must have slowed to the point where subsequent
changes to the g18 frequency were of order 10%. Processes that
affect the solar system so drastically probably only occurred in
the first 109 or so years of its history. So Saturn was probably
tilted to near its current obliquity sometime between 200 Mry
and 1 Gyr after the formation of the solar system.

Because of the long libration period of the g18 secular res-
onance, Saturn has undergone at most about 50 full librations
over the age of the solar system. Accordingly, it is unlikely that
dissipative processes internal to Saturn have had enough time
to significantly damp the libration amplitude. Furthermore,
because there are no strong forcing frequencies with extremely
long periods (10–100 Myr), the g18 term does not split into a
multiplet of nearby resonances. Hence, resonance overlap and
the associated chaotic evolution of the libration amplitude,
which plays an important role for the Kirkwood gaps in the
asteroid belt (Wisdom 1987), are unlikely to be important for
Saturn’s pole. Thus, the current libration amplitude could date
back thousands of millions of years and might be determined
by an improved measurement of Saturn’s pole precession rate
or an improved model of the precession rate, whose largest
uncertainty is in Saturn’s moment of inertia. An accurately
determined current libration amplitude would put potentially
interesting additional constraints on the early history of the
solar system.

Fig. 4.—Kick followed by trapping into resonance. Plotted quantities are as in Fig. 1. Another way to achieve large libration amplitudes is to start with a large
obliquity. Here we first impose a model of Saturn to bring |�=g| across the resonance in the direction that yields obliquity kicks. When the resonance is approached
from the opposite direction with a larger obliquity, trapping with large libration amplitude ensues.
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AUTHOR QUERIES
Q1 Au: Deleted carets from unit vectors for consistency with Paper I OK?
Q2 Au: Please correct reference to ‘‘x 2.1’’ in Figure 1 legend.
Q3 Au: Change from equation (27) to (A4) correct?
Q4 Au: Change from just ‘‘impose of Saturn,’’ Figure 4 legend, correct?
Q5 Au: Press et al. (1989) is not cited in the text; please either cite or delete.
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