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Abstract

The D68 ringlet is the innermost feature in Saturn’s rings. Four clumps that appeared in D68 around 2014 remained
evenly spaced about 30° apart and moved very slowly relative to each other from 2014 up until the last
measurements were taken in 2017. D68ʼs narrowness and the distribution of clumps could either indicate that we
have a collection of source bodies in a co-orbital configuration or imply that an outside force confines the observed
dust and any source bodies. In this paper we explore the possibility that these four clumps arose from four source
bodies in a co-orbital configuration. We find that there are no solutions with four masses that produce the observed
spacings. We therefore consider whether an unseen fifth co-orbital object could account for the discrepancies in the
angular separations and approach a stable stationary configuration. We find a range of solutions for five co-orbital
objects where their mass ratios depend on the assumed location of the fifth mass. Numerical simulations of five co-
orbitals are highly sensitive to initial conditions, especially for the range of masses we would expect the D68
clumps to have. The fragility of our D68 co-orbital system model implies that there is probably some outside force
confining the material in this ringlet.

Unified Astronomy Thesaurus concepts: Planetary rings (1254); Orbits (1184); Dynamical evolution (421)

1. Introduction: Four Long-lived Bright Clumps in the
D Ring

A narrow ringlet referred to as D68 lies near the inner edge
of Saturn’s D ring, about 67,630 km from Saturn’s center.
From its discovery in Voyager images (Showalter 1996)
through much of the Cassini mission, investigation of D68
focused on its radial profile and phase angle properties
(Hedman et al. 2007). Later studies brought attention to its
longitudinal brightness variations (Hedman et al. 2014). In
2014–2015, four bright clumps formed and remained relatively
evenly spaced with small longitudinal variations about mean
separations of 26°, 32°, and 29° (Hedman 2019). Hedman
(2019) investigated these clumps in depth and designated them
T (trailing), M (middle), L (leading), and LL (leading leading).
The most likely explanation for the sudden increase in
brightness in the four clump regions of the ringlet is that fine
material was released by collisions into or among larger objects
located near or within D68. These hypothetical larger objects
are called source bodies, whose minimum sizes can be
constrained by estimating the amount of material associated
with each clump from phase-corrected normal equivalent area
values, and whose maximum sizes can be constrained by the
fact that they have not been observed directly. The range of
masses that would correspond to these size constraints is
105–1010 kg. The narrowness of the D68 ringlet and the
distribution of clumps could either indicate that there is a
collection of source bodies in a co-orbital configuration or
imply that there is some outside force confining this material.
In this paper we test the first idea by modeling the D68 clumps
as a co-orbital satellite system.

The study of the dynamics of co-orbital systems is motivated
by the many cases of co-orbital systems we find in our solar

system. We are especially interested here in systems in which
the co-orbitals have comparable masses. The best known of
such systems are the horseshoe orbits of Janus and Epimetheus
(Dermott & Murray 1981). Co-orbital asteroids have been
suggested as the source of Venus’s zodiacal dust ring (Pokorný
& Kuchner 2019). Finally, the ring arcs in the Neptunian
system have been proposed to be confined by either a
corotation resonance with a moon on a separate orbit (Gold-
reich et al. 1986; Porco 1991; Salo & Hanninen 1998; Namouni
& Porco 2002) or a co-orbital resonance with an undetected
moon or even multiple moons sharing the same orbit
(Lissauer 1985; Sicardy & Lissauer 1992; Renner et al. 2014).
In Section 2, we analyze potential stable configurations. In

Section 3, we describe how we use numerical simulations to
investigate these scenarios. In Section 4, we discuss some
remarks for co-orbital systems as well as the possibilities
for D68.

2. Analysis of Potential Stable Configurations

Here we first review the theory of stable co-orbital objects
and then apply the theory to the D68 clumps.

2.1. Theory

Salo & Yoder (1988) originally examined stationary
configurations of equal-mass co-orbital satellites for small N
(N� 9) using a simple first-order theory, neglecting terms of
the order m M 3 2( ) , where m and M are the masses of the
satellite and the primary, respectively. A numerical search
revealed three distinct types of stationary solutions, of which
we are here concerned with only one, labeled Type Ia by Salo
& Yoder (1988): an equilibrium where all the N satellites are
most concentrated on the same side of the common orbit. The
case where N= 2 is the well known Trojan configuration, with
an angular separation of 60°. Type Ia configurations are stable
for 2� N� 8, but are not found for N� 9 (Salo & Yoder 1988).
This study, motivated by the D68 clumps, focuses on
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configurations with N= 4 and N= 5. Renner & Sicardy (2004)
generalized the work of Salo & Yoder (1988) for similar, but
not necessarily equal masses, which is what we expect for the
D68 clumps.

When we define fi as the longitude of satellite i and
ξi=Δri/r0 as its relative radial excursion with respect to its
average radius r0, the relevant equations of motion become
(Renner & Sicardy 2004)
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For a co-orbital stationary configuration (Renner &
Sicardy 2004),

x = 0 5( )
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Equation (6) can be written in matrix form:
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Because the N× N matrix is antisymmetric and depends only
on the longitudinal separations fi between the bodies, for N� 3
one can always find a set of relative masses that satisfies these
equations for any given set of angular separations. This
solution, however, might not be physical because one or more
of the masses could be negative or zero.

2.2. Results

We first considered the observed configuration with four
masses separated by angles of 29°, 32°, and 26° because these
are the observed separations (Hedman 2019). These separations
are closer than the expected separations for an equal-mass
situation: 41°.498, 37°.356, and 41°.498 (Salo & Yoder 1988).
We therefore solved the above equations for arbitrary masses,
using Gaussian elimination, which involved reordering the
rows, and found that the solution contains a mass ò that is
calculated as either zero or a small negative number on the
order of 10−16

–10−19, depending on the order in which the
rows are solved (most likely a numerical issue involving the

limit of double precision numbers):
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when we normalize the relative masses such that their sum is 1.
Thus, there does not exist a physical solution for the stationary
configuration with four objects that would produce four
comparably bright clumps.
There are two possible ways that the clumps could still

reflect a collection of co-orbital source bodies: the four source
bodies could have been librating around the equilibrium
location or there could be another massive body in the system
that did not produce a visible clump. It is certainly possible for
there to be only four nonstationary clumps and for this to be a
transient phenomenon. In fact, Hedman (2019) identified slow
changes in the clumps’ azimuthal separations over time that
could be evidence for libration. It is unlikely, however, for the
clumps to be on the edge of a libration cycle, due to how
azimuthally compact the whole configuration is. The most
compact state of a configuration of three is in the symmetric
mode when the outer bodies are at their closest approach to the
middle body. A similar symmetric mode in a system of four
bodies would require the outer two bodies to converge at a
faster rate than the middle two bodies. The observed drift rates,
however, show the opposite trend, with the middle two clumps
drifting at a faster rate than the outer clumps (Hedman 2019).
If, however, the dust around four source bodies was stirred

up by an object that passed nearby, it is certainly possible this
object could have missed other source bodies in the D68
ringlet. We therefore consider whether there could be an
unseen fifth object, whose mass could account for the angular
separations we observe between the four known clumps. We
explore the approximately 270° span of longitudes ahead of
Clump LL and behind Clump T. Using the same equations of
motion (Renner & Sicardy 2004), we find physically realistic
solutions in two regions, one centered 33° ahead of Clump LL
and one centered 32° behind Clump T. These regions each span
about 22° in longitude and are mapped out in Figure 1. The
relative masses of the clumps that correspond to these solutions
are plotted in Figure 2. The horizontal axis shows the longitude
of Object 5 in the same longitude reference system used by
Hedman (2019). The left-hand side of the split horizontal axis
corresponds to a configuration in which Object 5 is trailing the
other D68 clumps; the right-hand side corresponds to a
configuration in which Object 5 is leading the other D68
clumps. In more compact configurations (when Object 5 is near
longitudes −80 and 55), the middle and outer masses are
greater than the second and fourth masses. In less compact
configurations (when Object 5 is near longitudes −95 and 75),

Figure 1. Configuration of the four D68 clumps along with the two regions
where a fifth object could be. One region is leading, the other is trailing. The
direction of orbital motion is counterclockwise.
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Object 5ʼs mass would be more than double that of any other
mass, and the clump farthest away from Object 5 becomes the
least massive while the other three would require comparable
masses.

3. Numerical Investigations of the Configurations’ Stability

To further examine the dynamics of a co-orbital system at
the semimajor axis of the D68 ringlet and to investigate
stability limits, we numerically simulated the motion of point
masses at the longitudes of the clump peaks, adding in a fifth
point mass at one of the locations permitted by the methods
found in Renner & Sicardy (2004). For orbital simulations, we
used the hybrid symplectic/Bulirsch–Stoer algorithm in the
Mercury6 package (Chambers 1999). Our orbital simulations
considered Saturn as the central mass and included terms up to
J6 in its gravitational field. The constants used for these
simulations were taken from Jacobson et al. (2006) and
Archinal et al. (2018), converted to the units used in Mercury6,
and are shown in Table 1. We used a time step of 0.02 days,
which for D68 corresponds to about one-tenth of an orbit.

For the sake of simplicity, we focused on one specific stable
solution with the corresponding angular separation of Object 5
to do numerical simulations, though other configurations were
also investigated, both on the leading and trailing sides, to
ensure that our conclusions are general. We focus on a
configuration with Object 5 ahead of Clump LL by 33°, as
specified in Table 2.

We explored perturbations to this configuration in semimajor
axis and longitude, modifying the initial semimajor axis or
longitude for some of the bodies. We also varied their absolute
mass, while keeping their relative masses constant, as
calculated above (Renner & Sicardy 2004). Although the
highest mass range we expect for the clump source bodies is
109–1010 kg because they have not been observed directly
(Hedman 2019), we also consider much more massive
configurations because these evolve more quickly and in this
way clarify how these systems respond to perturbations. Thus,
we consider three different situations: one with extreme masses
of 1020–1021 kg (i.e., similar to Enceladus, Tethys, and Dione),
one with with masses of 1013–1014 kg (i.e., similar to
Polydeuces, Pallene, and Daphnis), and one with masses of
108–109 kg, close to that expected for the D68 source bodies.

In each simulation, we plot the longitudinal evolution of the
bodies with respect to a reference longitude, which is calculated

for each time step as
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where λi is the mean longitude of body i. This equation works
well when the longitudinal oscillations are small. This type of
plot gives a quick sense of stability and of orbital evolution.
We verify that the stationary points found using the method

of Renner & Sicardy (2004) are indeed stable by placing
objects there and finding they do not evolve in 1000 yr
simulations with high masses (1020–1021 kg; see Figure 3).
Here we do not explore perturbations in initial longitude or
semimajor axis for the high-mass case because the larger
masses complicate scalings to the real system.
We consider two types of perturbation, longitudinal and

radial, in the medium-mass case, 1013–1014 kg. The objects are
massive enough that it is easier to demonstrate both stable
libration and more chaotic mutual encounters. First, we

Figure 2. Plot showing the relative masses of the five co-orbitals for each
possible configuration. Compact configurations are characterized by the more
massive bodies in positions 1, 3, and 5. Extended configurations, by contrast,
have the most massive object on one end, with the other masses tending to
decrease with increasing distance.

Table 1
Parameters of Saturn Used for Numerical Simulations (Archinal et al. 2018;

Jacobson et al. 2006)

Parameter Value

R♄ 60,268 km
GM♄ 37931207.7 km3 s−2

J2 1.629071 × 10−2

J4 −9.3583 × 10−4

J6 8.614 × 10−5

Table 2
Initial Parameters of Co-orbitals Used for Numerical Simulations

a 67,627 km

Body Mean Longitude Relative Mass

T 122° 0.129
M 148° 0.069
L 180° 0.322
LL 209° 0.066
5 242° 0.414

Note. Relative mass is normalized such that the sum of all five masses equals 1.

Figure 3. With extremely high masses and no perturbations (initial angular
separations of 33°, 29°, 32°, and 26°), the system is stable, consistent with the
analytic theory.
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consider a longitudinal shift in which the system begins in a
more compact configuration, and we find that the masses
oscillate stably around the solution (see Figure 4).

Second, we consider radial perturbations in which we
modify the initial semimajor axis. We define a critical
semimajor axis separation Δacrit which separates small
oscillatory motion like that shown in Figure 5 from the sort
of motion shown in Figure 6. We explored through simulations
the allowable perturbations to semimajor axis using the mode
in which Clump LL is given a positive Δa and Clump M is
given a negative Δa, just as in Figure 5. We found that, for
these relative masses in this specific perturbation mode, the
critical semimajor axis separation’s relation to absolute mass is
best represented as

Da

a

m

M
1.06 . 10crit clumps

planet

0.49

⎜ ⎟
⎛

⎝

⎞

⎠
( )

For the medium-mass case, Δacrit= 75.8 m, which occurs in
between the cases shown in Figures 5 and 6, namely, 50 and
200 m. Perturbations of Δa= 50 m are small enough that when
two of the bodies approach each other, they exchange energy
and angular momentum in such a way as to begin receding
from each other, similar to the periodic orbital swap of Janus
and Epimetheus. Perturbations ofΔa= 200 m are too much for
a stable configuration, which results in bodies looping around
to approach the other side of the co-orbital system and eventual
spreading into multiple orbits via gravitational interactions with
the other bodies.

To apply our numerical simulations to the D68 clumps,
however, we must also consider the dynamics in a low-mass
case, 108–109 kg. For the low-mass case,Δacrit= 27 cm, which
is confirmed by Figure 7. With only 1 m perturbations (a 2 m
separation in semimajor axis), the point masses drift by each
other, with the three closest approaches between the centers of
any two bodies as 266, 365, and 400 m.3 With a density of
0.5 g cm−3, spherical bodies of these masses would have radii
ranging from 49 to 89 m. Thus, although these closest

approaches would not be collisions, they would still be close
enough gravitational encounters to provide significant pertur-
bations, in a range of 4–6 Hill radii for the largest mass. We
consider such a system to be fragile.

Figure 4. Including an initial perturbation to longitudes to start the system in a
more compact configuration (with initial angular separations of 28°, 24°, 27°,
and 21°), the bodies oscillate around the stable solution, which is indicated by
the dashed lines.

Figure 5. With sufficiently small initial perturbations to semimajor axes (50 m
for Daphnis-scale co-orbitals), the bodies oscillate around a stable solution,
which is indicated by the dashed lines.

Figure 6. With large enough initial perturbations to semimajor axes (200 m for
Daphnis-scale co-orbitals), the system becomes unstable when some of the
bodies encounter each other.

Figure 7. With realistic masses, even semimajor axis perturbations of one
meter result in system instability. Although low-mass co-orbital systems are
fragile, stability could be achieved with the help of an external force.

3 We re-examined with a time step of 2 × 10−4 days any approach of two
bodies within 1 km from each other, which corresponds to about 15 Hill radii
for the largest mass.
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4. Discussion and Implications

To emphasize how fragile the system is, we can estimate the
impulse required to perturb a moonlet’s semimajor axis by 1 m,
similar to what has been done in Hedman & Bridges (2020).
For nearly circular orbits, the standard orbital perturbation
equations can describe the rate of change of semimajor axis
over time as (Burns 1976; Hedman 2018)

d
d

=
a

t
na

F

F
2 , 11

p

G
( )

where the mean motion = n GM a 1 751 .73 day−1, Fp is
the azimuthal component of the perturbing force,
FG=GMm/a2= n2am is the gravitational force on the moonlet
from the planet’s center, M is the planet’s mass, and m is the
moonlet’s mass. The moonlet will thus undergo a semimajor
axis change δa upon receiving an azimuthal impulse
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With the range of masses we use for our low-mass case, the
impulse required to perturb a moonlet’s semimajor axis by 1 m
ranges from 4.2× 104 to 2.7× 105 kg m s−1. For any collision
between a moonlet and interplanetary debris, the impact speed
would be comparable to the D68 orbit speed v= na; 24
km s−1. Dividing the range of impulses by this orbit speed, we
get a range of masses roughly from 2 to 10 kg for the
interplanetary impactor. Assuming a density of 0.5 g cm−3, the
piece of interplanetary debris would need to be 0.1–0.2 m in
radius. The estimated cumulative influx rate Φ for debris of this
size is around 10−17 m−2 s−1 (Tiscareno et al. 2013). Thus the
rough timescale t; 1/ΦA on which we can expect such a
collision, using the cross-sectional area A for moonlets with
radii of 49–89 m, corresponds to a range from 130,000 to
420,000 yr, but this is the impact timescale for just one of the
objects. Because an impact into any of the objects can break the
system, we can adjust the system timescale to about 40,000 yr
by adding their cross-sectional areas together. We therefore
cannot expect a co-orbital configuration at D68 to last longer
than a few tens of thousands of years. For this reason we call
the system fragile and find it unlikely that a co-orbital system
could explain the orbital evolution of the clumps or the ringlet.

Consequently, we look for other resonances that could drive
the orbital evolution of the clumps or the ringlet. It is unlikely
that a corotation resonance with any satellite is responsible for
the clumping of material into ring arcs. A 30° separation
between clumps would be the result of a twelve-fold pattern at
the D68 semimajor axis. A twelve-fold pattern could be caused
by a 13:12 corotation resonance with an external perturber or
an 11:12 corotation resonance with an internal perturber. A
13:12 corotation resonance with an external perturber would
require a perturber at a semimajor axis of 71,300 km, which is
not as far out as D72, the structure closest to D68. An 11:12
corotation resonance with an internal perturber would require a
perturber at a semimajor axis of 63,800 km, which is a few
thousand km away from Saturn’s equatorial radius (60,268
km). There is no evidence for any moons or ringlets in these
regions. Moreover, no results came from a numerical search for
corotation resonances up to fourth-order between D68 and
Janus, Mimas, Enceladus, Tethys, Dione, Rhea, or Titan.

It is possible that a resonance of some sort with Saturn itself
could be responsible for the D68 clumping. The outer Lindblad
resonance of Saturn’s ℓ= 5, m= 3 oscillation mode is located
in the D68 region, reported first at 67,625 km± 550 km
(Marley & Porco 1993) and more recently at roughly 67,550
km (Marley 2014). Although Lindblad resonances do not
confine material, each such resonance can be associated with a
corotation resonance, which can confine material. To locate
these corotation resonances, we computed the radii at which the
mean motion (using the second-order equation from Renner &
Sicardy 2006) matches the pattern speeds associated with the
modes reported in Marley (2014) and Mankovich et al. (2019).
The modes that produce corotation resonances near D68 are
listed in Table 3. Because the pattern speed is dependent on
Saturn’s structure, any of these modes could possibly be
responsible for providing a corotation resonance to confine
D68 material. Mode splitting or mixing could also be involved
(Fuller 2014), allowing the locations of these resonances to fall
at slightly different radii than what we can compute. For a
corotation resonance of one of these modes to explain the D68
clumping, it would require a planet-based angle that moves at a
speed comparable to D68ʼs mean motion. Although the set of
angular separations among the clumps favors a 12-fold pattern,
it is also possible for them to be confined to within the libration
longitude of one or a few stable points of a lower m mode, and
then be spaced out within that external potential. Perhaps there
is a set of co-orbital moonlets that are trapped together and
librating within a larger potential, similar to Renner et al.
(2014)ʼs model of the Neptune ring arcs. Radial oscillations
of±10 km have been observed for the D68 ringlet with an
estimated period of 14–15 yr (Hedman et al. 2014), though the
clumps are drifting more slowly than the rest of the ringlet
(Hedman 2019). These radial oscillations could be evidence for
that libration.
In conclusion, we have tested and ruled out long-term stable

co-orbital configurations as an explanation for the spacing of
the D68 clumps. We therefore predict that either the clumping
is a transient phenomenon, or that an external mechanism is
trapping the clumps in this region.

We are grateful to many individuals for useful discussions,
especially P. Ricker for guiding J. A’Hearn’s initial studies on
co-orbitals; B. Sicardy, M. El Moutamid, and M. Ćuk for
insightful questions and clarifications at the 2019 DDA
meeting; H. Salo and R.G. French for helpful correspondence;
and two anonymous reviewers for their helpful comments that
have improved this paper. We also thank NASA for the support
through the Cassini Data Analysis and Participating Scientist
Program grant NNX15AQ67G.

Table 3
Predicted Corotation Resonance Locations

ℓ m rM14 (km)a rM19 (km)b

8 6 67,852 67,663
3 3 67,732 67,932
2 2 66,132 67,235

Notes.
a Our predictions based on the pattern periods reported in Marley (2014).
b Our predictions based on the pattern speeds according to a representative
model from Mankovich et al. (2019), which gives pattern speeds of 1749.9,
1739.4, and 1766.9 degrees per day, respectively.
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