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The study of the orbital motions of bodies  
that are subject to their mutual gravita-
tional attractions is crucial for under-

standing the movements of moons, planets 
and stars, and for navigating spacecraft to 
distant planets. The central problem is to 
determine the motions of n point masses 
interacting through gravitational forces 
that vary with the inverse square of their 
separation distances. This n-body prob-
lem is famous among astronomers and 
mathematicians, and is known to have 
no general analytical solution (that is, 
no solution that can be written down in 
terms of simple mathematical functions). 
Nevertheless, specific solutions have been 
eagerly sought and occasionally discov-
ered. Writing in Celestial Mechanics and 
Dynamical Astronomy, Érdi and Czirják1 
report analytical solutions for a broad class 
of four-body configurations.

Isaac Newton solved the two-body 
problem in his 1687 masterwork, the  
Principia, but the three-body problem 
proved surprisingly complex and occupied 
many distinguished mathematicians over 
the next two centuries. Leonhard Euler and 
Joseph-Louis Lagrange found all analytical 
solutions to an important subclass of the 
three-body problem known as central con-
figurations, but work by Heinrich Bruns 
and by Henri Poincaré in the late 1880s 
showed that a general arrangement of three 

or more bodies admits no analytical solution. 
Although the set of all possible central con-
figurations of four bodies remains unknown, 
Érdi and Czirják have taken a large stride for-
ward by solving all of those in which two of the  

bodies lie along an axis of symmetry.
In central configurations, each body must 

be subject to an acceleration directed towards 
the centre of mass of the system with a magni-
tude that is proportional to its distance from 
the centre of mass. All orbits of two bodies are 
central configurations, in which the objects 
each orbit their common centre of mass 
along ellipses that have identical shapes and 
orbital periods. Euler’s solutions for linear 
arrangements of three bodies are also central 
configurations, as are Lagrange’s solutions 
in which the three masses are placed at the 
vertices of an equilateral triangle. In the lat-
ter system, Lagrange showed that the vertices 
of the triangle can move in such a way as to 
preserve relative distances between the masses; 
the triangle can rotate around the centre of 
mass, expand or shrink, but must remain in  
its initial plane. 

It is easy to show that equilateral trian-
gles are the only possible planar central 
configuration of a three-body system by 
placing two of the masses (m1 and m2) 
on an x axis,  and considering their accel-
erations in the perpendicular y direction 
(Fig. 1). The y acceleration on m1 is due 
solely to the gravity of the third mass (m3) 
and equals Gm3y3/r13

3 — where G is the 
gravitational constant, y3 is the coordinate 
of m3 along the y axis and r13 is the distance 
between m1 and m3. The corresponding y 
acceleration on m2 is Gm3y3/r23

3. According 
to the definition of central configurations, 
these accelerations must separately equal 
λycm (where ycm is the y coordinate of the 
centre of mass and λ is the common pro-
portionality constant). By cancelling like 
terms in the two y accelerations, it imme-
diately becomes apparent that r13 must be 
the same as r23. 

If the symmetry of the equilateral-trian-
gle system is then exploited by choosing a 
new x axis to run along the line connecting 
m1 and m3, repeating the above argument 
shows that r12 must also be the same as r23, 
and thus all three sides of the triangle must 
be equal in length. This proof extrapolates 
directly to four bodies: the only fully three-
dimensional central configurations for 
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Fresh solutions to the 
four-body problem 
Describing the motion of three or more bodies under the influence of gravity 
is one of the toughest problems in astronomy. The report of solutions to a large 
subclass of the four-body problem is truly remarkable.
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Figure 1 | A subclass of the three-body problem. The 
motions of three bodies with masses m1, m2 and m3 under the 
influence of gravitational forces can be described analytically 
— that is, in terms of simple mathematical functions — for 
the special case in which the bodies are placed at the vertices 
of an equilateral triangle. Proof of this involves considering 
the accelerations in the y direction of two masses placed on 
the x axis. It emerges that the bodies orbit in such a way that 
the triangle rotates, expands or shrinks, and always remains 
in the xy plane. The yellow star represents the centre of mass 
of the three-body system. Distances between the masses are 
represented by the symbol r, with subscripts representing the 
masses; coordinates for masses and for the centres of mass 
are given as (x,y) pairs.  

but also offers ways to control and handle the 
quasi particles characteristic of the various 
states of matter that can be realized in solids.

That said, only a few experimental facili-
ties will have the combination of technolo-
gies required to study quasiparticles that have 
fractional charges, or vortex–antivortex anni-
hilation in two dimensions. But for those that 
do, Langer and colleagues’ approach can be 
readily applied to investigate the properties of 
polarons in strontium titanate or other tran-
sition-metal oxides, or the ‘heavy electrons’ 
that occur in several materials owing to the 
coupling of mobile electrons to fluctuations of 

magnetic polarization8–10. According to some 
schools of thought, the quasiparticle concept 
does not apply in certain materials or under 
special conditions11. Collision experiments 
might therefore help to identify the boundaries 
of the quasiparticle concept. ■
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one of the three masses contains more than 
about 96% of the total mass of the system, but 
unstable if the mass is more evenly distrib-
uted. Thus, Lagrangian configurations for a 
system that incorporates the Sun, Jupiter and 
a suitably placed asteroid are stable, as would 
be those for Earth, the Moon and a modestly 
sized future space station. By contrast, Pluto’s 
massive moon Charon prevents any central 
configurations involving these bodies and 
a smaller moon from being stable. Whether 
the new four-body central configurations are 
stable is an interesting, unexplored question 
and is an inviting direction for future research. 

Érdi and Czirják’s solution to a large  
subclass of the central four-body problem is a 
major advance that encompasses and greatly 
extends many previous four-body results, 
including: arrangements of four2 and three3 
identical masses; kite-shaped configurations 
of diagonally opposite pairs of equal masses4; 
and the limiting case of three bodies plus 
a massless test particle5. Just as three-body 
configurations serve as limiting cases for Érdi 

and Czirják’s four-body configurations, the 
authors’ solutions could, in turn, be used as 
limiting cases for ambitious future extensions 
of the n-body problem: perhaps three masses 
along a line plus two symmetrically placed 
equal masses; a test particle plus planar con-
figurations of the type considered in the pre-
sent work; or even planar arrangements of four  
different masses. ■
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four bodies are those in which the masses are 
placed on the vertices of a tetrahedron such 
that all distances between the masses are equal. 

But two-dimensional central solutions of 
four bodies are much more difficult to iden-
tify. In their seminal work, Érdi and Czirják 
find three examples of such solutions, which 
can be visualized by considering a system of 
three masses distributed on a line. Each solu-
tion is found by splitting one of the masses into 
equal halves and moving the fragments up and 
down so that the resulting distribution of four 
masses is symmetric about the x axis (Fig. 2). 
The four-sided polygon formed by connect-
ing the on-axis masses to the off-axis masses is 
convex when the central mass is split (Fig. 2a), 
and concave when one of the other masses is 
split (Fig. 2b,c). Érdi and Czirják’s two concave 
cases differ according to whether the centre of 
mass of the system excluding m2 is enclosed by 
the polygon or not.

The next step would normally be to specify 
the masses and then to seek all arrangements 
of those masses that satisfy the conditions for a 
central configuration. Érdi and Czirják, how-
ever, chose to tackle the inverse problem: given 
the positions of the bodies, they computed the 
masses that make the configuration central. 
And, rather than working with rectangular 
coordinates for the two off-axis masses, the 
authors chose to recast the problem in terms 
of a pair of angles that fix the position of those 
masses relative to the ones on the x axis (Fig. 2). 
These are both inspired choices that make the 
problem analytically tractable. If one or more of 
the four masses is set to zero, the angles take on 
values that are consistent with straight lines and 
equilateral triangles; in this way the four-body 
edifice of Érdi and Czirják’s work is rooted in 
the three-body bedrock of Euler and Lagrange.

Central configurations are dynamic  
equilibria that can be stable (such as a ball at 
the bottom of a smooth bowl) or unstable (as 
for a ball perched atop a round hill). Euler’s 
straight-line configurations are all unstable 
so that, like the ball on the hill, the configura-
tion cannot persist when tweaked. Lagrange’s  
equilateral-triangle solutions are stable if 
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If presented with a human brain, even the 
most meticulous neuroanatomist would 
be hard-pressed to identify the sex of its 

former owner. There are clearly male–female 
differences in some brain regions, but these 
can be subtle and variable, and their causes 
and consequences remain largely unclear. Over 
the past five years, work in several organisms1–3 
has suggested that altered neural connectivity 

between brain regions might be a hallmark 
of male–female differences. On page 206 of 
this issue, Oren-Suissa et al.4 provide clear 
evidence for sex differences in neural wiring 
in the roundworm Caenorhabditis elegans. 
Moreover, they report that these differences 
arise through sex-specific eradication of neural 
connections and are controlled by the genetic 
sex of the nervous system itself.

In C. elegans, males are males, but females 
are properly called hermaphrodites. They 

Figure 2 | A subclass of the four-body problem. Érdi and Czirják1 solved 
a subclass of the four-body problem derived from systems of three masses 
initially located on the x axis. a–c, In each case, two masses (m1 and m2) are  
left on the x axis; the third mass (original position shown with open circle) is 
split into two equal halves, each of mass m, which are moved symmetrically 
in the y direction (dashed arrows). The centre of mass of each system is at 

(0,0) and the masses form convex (a) or concave (b and c) polygons when 
connected. The centre of mass excluding m2 is shown with a blue star in  
b and c; its location inside or outside the polygon distinguishes the  
two cases. The positions of m1 and m2 were defined using rectangular 
coordinates, whereas those of the two off-axis masses were fixed by the  
angles α and β.
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Wired for sex 
Analysis of a sensory neural circuit in the roundworm Caenorhabditis elegans 
reveals that its wiring is sex-specific, and arises through the elimination of 
connections that are originally formed in both sexes. See Article p.206
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