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The gravitational effects of the Sun on a particle orbiting another 
massive body which itself moves on a circular path around the Sun 
have been studied extensively. Most recently, D. P. Hamilton and 
J. A. Burns (1991, Zcarus 92, 118-131) characterized the size 
and shape of a stability zone around an asteroid on a circular 
heliocentric orbit within which material could remain bound for 
an extended period of time. We now consider two additional effects 
analytically and numerically: the asteroid’s nonzero heliocentric 
eccentricity and solar radiation pressure. In both of these cases, 
our numerical integrations apply directly to a spherical asteroid, 
“Amphitrite,” with semimajor axis 2.55 AU, radiusR, = 100 km, 
and density 2.38 g/cm3. For an asteroid on an eccentric orbit we 
argue, based on numerical integrations and analytical approxima- 
tions, that the stability zone scales roughly as the size of the Hill 
sphere calculated at the asteroid’s pericenter. This scaling holds 
for large values of eccentricity and allows results for one asteroid 
with a given mass, semimajor axis, and eccentricity to be used for 
another with different values of these parameters. We compare 
predictions of the scaling law to numerical integrations for an 
“Amphitrite” with various orbital eccentricities and find good 
agreement for prograde orbits and for those with orbital planes 
nearly normal to the asteroid’s heliocentric path, but not for retro- 
grade orbits. We apply our results to the minor planet 951 Gaspra. 

We also determine that solar radiation pressure is a very efficient 
mechanism for removing relatively small particles from the cir- 
cumasteroidal zone. Radiation pressure acting on an orbiting grain 
can cause large oscillations in the grain’s orbital eccentricity which 
in turn can lead to either escape from the system or impact with 
the asteroid. We find numerically that particles with radius 0.1 
mm started on circular orbits escape from “Amphitrite” at all 
distances beyond 130 R,. Grains of this size started anywhere 
between the asteroid’s surface and 130 R, are forced to crash into 
the minor planet; smaller grains are even more severely affected. 
The orbits of millimeter-sized grains are also strongly perturbed. 
Planar paths bound for 20 years are found to extend to only -40% 
of the critical distance found by Hamilton and Burns (1991); orbits 
with inclinations near 90” are somewhat more resilient. In all cases, 
orbital evolution occurs on time scales comparable to the asteroid’s 
orbital period. Particles larger than a few centimeters are only 

slightly affected by radiation pressure. These results can be applied 
to “Gaspra,” an asteroid only one-thousandth as massive as “Am- 
phitrite,” by increasing all particle sizes by a factor of -10. o 1%~ 
Academic Press, Inc. 

1. INTRODUCTION 

While two questions-“How much material is likely to 
be in orbit around an asteroid?” and “Exactly where will 

that material be?“-are interesting to planetary scientists 
and celestial mechanicians, they are critically important 
to those spacecraft mission planners who must decide 
how closely to approach such objects. It is well known 
that, in the absence of perturbations, orbiting particles 
can move on Keplerian paths at all distances from an 
isolated asteroid. In reality, however, gravitational per- 
turbations from the Sun and other bodies, and solar radia- 
tion pressure will limit the zone in which particles can 
stably orbit. 

The primary gravitational perturbation is from the Sun 
so, to first order, one can ignore other effects and look 
only at solar perturbations on a particle orbiting an aster- 
oid which in turn orbits the Sun. The problem is greatly 
simplified if the orbits of the asteroid and the particle are 
coplanar and if the asteroid moves along a circular path 
about the Sun. In this case there are only two orbital 
types: prograde (those whose angular velocities are in the 
same sense as the asteroid’s) and retrograde (those whose 
angular velocities are in the opposite sense). This problem 
was addressed by Zhang and Innanen (1988) who also 
looked briefly at an asteroid on a mildly eccentricity orbit. 
Since then several studies have considered additional 
complications. Hamilton and Burns (1991) relaxed the 
restriction that the motion be confined to the asteroid’s 
orbital plane and introduced the concept of a three-dimen- 
sional stability surface. Chauvineau and Mignard treated 
Jovian perturbations (1990b) and the disruption of a binary 
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asteroid by the close approach of other asteroids (Chauvi- 
neau et ml. 1991). In the current paper we discuss two 
further effects. each of which acts in times comnarable 

TABLE I 
Parameters Used for “Amphitrite” and “Gaspra” 

to the asteroid’s orbital period. First, we present some 
analytic results and extensive numerical integrations for 
the eccentric three-dimensional problem. In the final sec- 
tion we discuss the influence of radiation pressure which, 
because of the asteroid’s low gravity, is found to be sur- 
prisingly effective in removing millimeter- and centimeter- 
sized particles from circumasteroidal orbits. A synopsis 
of possible sources of circumasteroidal debris and of all 
the above-mentioned destabilizing effects can be found in 
Burns and Hamilton (1992). 

1 .I. Stability Suyfuce for an Asteroid with 

Zero Eccentricit? 

We start by briefly summarizing the pertinent results of 
Hamilton and Burns (1991, henceforth HBl), who investi- 
gated the stability of orbits around a minor planet in the 
context of the three-body problem consisting of an aster- 
oid, the Sun, and an infinitesimal test particle placed near 
the asteroid. Since the Sun’s mass is much greater than 
the asteroid’s, which in turn is much greater than that of 
the test particle, this problem is a limiting case of both 
Hill’s problem (two small objects with a small separation 
orbiting a massive object) and the restricted three-body 
problem (a particle influenced by, but not influencing, a 
pair of much larger objects) (Henon and Petit 1986). In 
our earlier study, we placed the asteroid on a circular 
orbit and studied trajectories of a test particle. normally 
in a reference frame centered on the asteroid and rotating 
with the asteroid’s constant angular rate Q around the 
Sun. The test particle began along the Sun-asteroid line 
on a path that would be circular in the Sun’s absence, and 
could be inclined at an angle i from the asteroid’s orbital 
plane: our two free parameters were therefore the parti- 
cle’s initial distance from the asteroid and its starting 
inclination. 

The main goal of HBl was to delineate a zone around 
an asteroid in which it would be possible to find bound, 
orbiting material, and hence our study focused on distant 
orbits that were very weakly linked to the asteroid. To 
accomplish this end, we looked at the orbits resulting 
from numerical integrations of the equations of motion 
for several thousand different initial conditions. Holding 
inclination constant, we found that increasing the initial 
distance of our test particle resulted in an abrupt transition 
between bound and unbound orbits occurring at a position 
we defined as the criticul distuncr. Most grains started 
within the critical distance are tied to the asteroid, while 
most beginning outside of this distance escape, although 
there are exceptions as are seen below. The critical dis- 
tance is a strong function of inclination, increasing for our 

Radius Hill radius 
tr(AU) CJ (km) p (g/cm”) CR,) 

“Amphitrite” 2.55 0.0 100 2.38 452 
“Gaspra” 2.2 0.17 IO 2.38 390 

asteroid “Amphitrite” (parameters given in Table 1) from 
approximately 220 R, (asteroid radii) for prograde orbits 
to about 445 R, for retrograde ones (see Fig. 15 of HBl). 
We then defined the three-dimensional stability surface to 
be the outer envelope encompassing all orbits correspond- 
ing to initial conditions which lie below the critical dis- 
tance. 

In order to study the large number of initial conditions 
necessary to adequately define the stability surface, we 
only followed individual particles for five orbits of the 
asteroid around the Sun or about 20 years. At first sight the 
short integration time might seem prohibitively restrictive 
for drawing conclusions on the long-term stability of cir- 
cumasteroidal orbits, but we found that the critical dis- 
tance, and hence the stability surface, was not very sensi- 
tive to differences in integration times. Indeed, for pro- 
grade orbits, escapes occur in less than 20 years for initial 
orbital distances within one asteroid radius of the position 
where the opening of the zero-velocity surfaces (or zero- 
velocity curves-ZVCs) first allows escape, a difference 
of less than 0.5% (see HBl or Danby (1988) for a discus- 
sion of ZVCs; Lundberg et al. (1985) show nice three- 
dimensional views of these surfaces for the restricted 
three-body problem). Retrograde orbits, which are found 
to be stable far beyond the distance where the ZVCs first 
open (Chauvineau and Mignard 1990a), also seem to be 
relatively insensitive to differences in integration time; for 
a small subset of our numerical experiments in which 
orbits were followed for 1000 years, we found critical 
distances that differ by less than 1% from those obtained 
in 20-year integrations. Nevertheless, recent results from 
dynamical theory caution that additional escapes may oc- 
cur without much forewarning when the integration time 
is increased; at any rate our results certainly overestimate 
the maximum possible extent of circumasteroidal debris. 

The upper half of the stability zone within which debris 
is bound is shown in Fig. 16 of HBl . The zone is roughly 
spherical for latitudes less than 35” and has a radius 
slightly larger than the radius of the Hill sphere; this 
bounding distance is determined by the characteristic size 
of the largest retrograde orbit since such orbits are always 
the most stable. At higher latitudes, the stability zone is 
approximately flat and parallel to the asteroid’s orbital 
plane at a height of about 213 of the Hill radius. This 
flattened part of the stability surface is caused by orbits 
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with inclinations in the range 60” < i < 120” which were 
shown to rise to roughly the same height over much of the 
asteroid’s orbital plane. HBI argue that, for appropriate 
initial conditions, sizes of the stability surface can be 
scaled in proportion to the dimensions of the Hill sphere. 

I .2. Coriolis Acceleration 

We now discuss the Coriolis acceleration, the term 
- 2LR x vrot that appears when Newton’s equation is writ- 
ten for a particle moving with velocity v,~ relative to a 
reference frame rotating at angular velocity a. This slight 
diversion is made because we will often call upon Coriolis 
effects to explain differences in the stability of prograde 
and retrograde orbits; yet the role of the Coriolis accelera- 
tion in determining whether an orbit will remain bound 
may be puzzling because the Coriolis acceleration does 
no work and hence does not change the orbit’s “energy” 
as calculated in the rotating frame. In the following para- 
graphs, we explain in detail how the Coriolis acceleration 
influences the stability of an orbit. 

In dynamics, the Coriolis and centrifugal accelerations 
have always had somewhat tarnished reputations, often 
dismissed as merely “fictitious” accelerations conjured 
up to explain differences between motions observed in a 
rotating frame and the predictions of Newton’s F = ma 
written in that frame. Of the two, the Coriolis acceleration 
is considered to be the most mysterious and least reputa- 
ble since, unlike the centrifugal acceleration, it cannot be 
derived from a potential. While it is strictly true that these 
accelerations are “fictitious,” the air of illegitimacy that 
accompanies them is undeserved since their inclusion in 
the equations of motion is a perfectly valid way to treat a 
given dynamics problem. Indeed, the equations of motion 
are often simpler in a rotating frame than in an inertial 
one; this is definitely the case for orbits in Hill’s problem, 
the stability of which, for the purpose of illustration, we 
now discuss in both rotating and nonrotating frames. 

Numerical integrations of Hill’s problem show that the 
largest stable retrograde orbits are nearly twice the size 
of the biggest prograde ones. This asymmetry is easily 
explained in a system centered on the asteroid and rotating 
at the asteroid’s orbital angular velocity; the acceleration 
responsible is, of course, that of the eminent Monsieur 
Coriolis (HBI). Simple geometric considerations of the 
directions of n and v,~ show that the Coriolis acceleration 
has an outward component for prograde orbits and an 
inward component for retrograde ones; clearly an acceler- 
ation directed in this way diminishes the former’s stability 
while enhancing the latter’s. Let us consider this from a 
different perspective and recall that Hill’s problem admits 
an integral of the motion which is obtained from conserva- 
tion of total “energy” in the rotating frame; particle trajec- 
tories in phase space are therefore constrained to lie on 

a surface of constant “energy.” Although the Coriolis 
acceleration cannot push particles off this surface, it can 
still move them along the surface. Associated with the 
conservation of “energy” is a constraint in physical space 
that prevents a particle from crossing a zero-velocity 
curve. This restriction, however, does not stop the crafty 
M. Coriolis from pushing prograde particles up to the very 
edge of the ZVC while pulling retrograde ones away from 
it! In fact, when the ZVC is open to heliocentric space, 
M. Coriolis happily pushes prograde particles out through 
the neck of the curve and completely away from the aster- 
oid; this is why the opening of the ZVCs is such a good 
indicator of escape for prograde orbits (HBI). 

We can reach the same conclusions regarding the stabil- 
ity of prograde and retrograde orbits as viewed in a nonro- 
tating frame whose origin remains on the asteroid; such a 
frame is of course noninertial owing to the acceleration of 
the coordinate system’s origin. Here the difference in 
stability of the two orbital classes can be explained by 
the fact that their synodic periods differ. Recall that the 
synodic period is the time taken for a particle to return to 
the same orientation with respect to the Sun; this differs, 
in general, from the siderealperiod which is the time taken 
for a particle to move to the same position relative to the 
“fixed” stars. In fact, prograde orbits all have synodic 
periods that are longer than their sidereal periods since, 
due to the asteroid’s angular motion, prograde particles 
must travel a little further than one complete orbit to 
regain their original position with respect to the Sun. For 
retrograde orbits, the converse holds: sidereal periods 
exceed synodic ones. Escape from the asteroid, in both 
cases, occurs primarily along the Sun-asteroid line, either 
toward or away from the Sun where tidal effects are 
strongest (see Figs. 3, 10, and I I of HBl). Because syn- 
odic periods for prograde orbits exceed those for equally 
sized retrograde ones, prograde orbits linger along the 
Sun-asteroid line, thereby allowing the destabilizing tidal 
force to build up greater orbital perturbations. We obtain 
the same result: prograde orbits are torn from the aster- 
oid’s gravitational grasp much sooner than their retro- 
grade counterparts. 

In the rest of this paper we shall adopt the rotating 
frame in our discussions of dynamics; one advantage of 
this choice is that the Coriolis acceleration neatly encap- 
sulates all of the differences between prograde and retro- 
grade orbits. 

2. ECCENTRICITY EFFECTS 

2.1. Analytic Treatment 

2.1.1. Equation of motion. Our previous study of or- 
bital stability summarized above assumes an asteroid on 
a circular orbit and although HBI showed that an exact 
scaling law can connect results for asteroids with different 
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Per icenter 

FIG. 1. An eccentric orbit showing the definitions of some of the 

variables used in the text. The Sun lies at one focus of the ellipse and 

the asteroid’s true anomaly v is the angle between the asteroid and 

pericenter as seen from the Sun. The instantaneous Sun-asteroid dis- 

tance R is minimum at pericenter (u = 0) where it attains the value 

(/(I ~ e). 

masses and distances from the Sun, no such scaling to 
asteroids with other orbital eccentricities is expected to 
be possible. Since many asteroids and comets are on sig- 
nificantly elliptic orbits, this section explores the conse- 
quences of nonzero orbital eccentricity on the stability of 
circumasteroidal orbits. 

An asteroid on an elliptic orbit moves around the Sun 
at a nonuniform angular rate which, written as a vector. 
is 

where R is the instantaneous distance from the Sun given 

by 

R= 
a(1 - 62) . 

1 + fCOSV’ 

G is the gravitational constant; M, is the solar mass; ~1, 
e, and v are the asteroid’s semimajor axis, eccentricity, 
and true anomaly, respectively; and f is the unit vector 
normal to the asteroid’s orbital plane (see Fig. 1). The 
true anomaly V. which gives the angular location of the 
particle relative to pericenter, is a periodic function of 
time; thus R and R also vary periodically. To study orbits 
in the vicinity of the asteroid, it is desirable to work in a 
coordinate system centered on the asteroid and rotating 
with it at the instantaneous angular velocity &! around the 
Sun, which is located along the negative x-axis. To first 
order in r/R, the equation of motion for a particle moving 
in such a frame can be shown to be 

d’r GM, ^ GM, -= 
dt? 

-7r+ 
r- 

3 [(3x - z) + r cos u(x + y) 

+ 2r sin v($ - yf)] - 2a x v,,,~ . (3) 

Here r = ri = x + y + z is the vector pointing from the 
asteroid to the particle, M, is the mass of the asteroid, 
and v,,~ is the particle’s velocity measured in the rotating 
frame. We omit “rot” subscripts on position coordinates 
since all positions in this paper are measured in the rotat- 
ing frame. The velocity in the rotating frame is related to 
that in the nonrotating frame by 

v,.<,, = v - (&I x r), (4) 

where v is the test particle’s velocity relative to nonrotat- 
ing coordinates; its magnitude for a circular orbit is simply 
(GMAIr)“‘. Taking e = 0 in Eq. (3), we recover Hill’s 
equation (Eq. (2) in HBI). The three terms in Eq. (3) 
without explicit eccentricity dependence are the aster- 
oid’s gravitational attraction, the “tidal acceleration,” 
and the Coriolis acceleration. These terms are discussed 
in greater detail by HB 1 and above; for our purposes here 
it suffices to note that the tidal term is outwardly directed 
for all orbits. The new terms are only present for nonzero 
eccentricity and so are dubbed the “eccentric” terms in 
the discussion below. The term with e cos v dependence 
is a correction to the centrifugal acceleration which arises 
from the difference in the asteroid’s actual angular veloc- 
ity from the angular velocity it would have if it were on a 
circular orbit at the same distance. Near pericenter, the 
asteroid’s angular velocity exceeds that which it would 
have on a circular orbit (Eq. (1)) and hence there is an 
enhanced centrifugal acceleration away from the asteroid. 
Similarly, near the asteroid’s apocenter, the angular ve- 
locity is significantly lower than it would be on a corre- 
sponding circular orbit: consequently the “eccentric cen- 
trifugal acceleration” is inwardly directed. 

The term proportional to c sin v arises from the nonuni- 
form rate of rotation of the reference frame; it vanishes at 
pericenter and apocenter where the angular acceleration 
(the time derivative of Eq. (1)) is zero. This acceleration 
always lies in the s-JJ plane and is tangent to a circle 
surrounding the asteroid. In contrast to the other accelera- 
tions discussed above, this acceleration can have a sub- 
stantial component directed parallel or antiparallel to the 
particle’s velocity; “energy” is added to the orbit in the 
former case and removed from it in the latter. Since the 
term has a sin v dependence, it causes “energy” to be 
added to retrograde orbits as the asteroid moves from 
apocenter to pericenter and removed during the return to 
apocenter. Prograde orbits lose “energy” as the asteroid 
drops toward pericenter but regain it over the second half 
of the cycle. For many orbits, there is little net change in 
the “energy” over the asteroid’s complete orbital period. 
Nevertheless, acting over long times, we expect this ac- 
celeration to be destabilizing since it produces behavior 
analogous to a random walk in orbital “energy.” Those 
orbits whose orbital “energy” is increased may eventu- 
ally be driven to escape. 
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2.1.2. Hill sphere at pericenter scaling. In this sec- will happen to the system in the short term (a few orbits 
tion, our goal is to find a simple analytic way to extend of the asteroid around the Sun), and are only worried 
results obtained for an asteroid with a given semimajor about marginal escapes, which occur near pericenter, then 
axis, eccentricity, and mass to a second asteroid with in some sense we can ignore what happens over the rest 
different values of these quantities. In Hill’s problem of the orbit. Taking v = 0 in Eq. (5), we claim that, 
when the asteroid’s eccentricity was zero, HBl found apart from small differences in the centrifugal and Coriolis 
that such an extension was possible and that distances terms due to the faster angular velocity at pericenter, the 
scale like the radius of the asteroid’s Hill sphere in = result is just the equation of motion for orbits around an 
(~/3)“~a, where p = MAMMA is the asteroid-Sun mass asteroid with e’ = 0 and a’ = a(1 - e). In other words, 
ratio. Thus, for example, if an interesting orbit were dis- for the purposes of studying marginal escapes on short 
covered to exist around one asteroid with zero eccentric- time scales, an asteroid moving through its pericenter can 
ity, an orbit with the same shape exists around all other be reasonably well approximated by a second asteroid 
asteroids which move on circular paths. This follows from moving on a circular orbit at the pericenter distance of the 
the fact that Hill’s problem in dimensionless form is pa- first. A similar tack is taken by Lecar et al. (1992) in quite 
rameter free. a different context. 

These ideas extend readily to the case when the asteroid 
has nonzero eccentricity. To nondimensionalize Eq. (3), 
we choose to measure distances in units of the asteroid’s 
Hill radius and angular velocities in units of the asteroid’s 
mean motion n = (GM~/a 3 I”. With these choices and the ) 
de~nitions given in Eqs. (I) and (21, we can rewrite Eq. 

(3) as 

In order to justify this claim, we must show that the 
perturbation accelerations arising from the asteroid’s 
faster angular velocity at pericenter are small compared 
to the perturbations due to the asteroid’s closer distance 
to the Sun. Consider first the second term on the right 
side of Eq. (5) which, evaluated at pericenter (V = O), 
becomes 

[(3x - 2) + e cos u(x + y) + 2.5~ sin V(X$ - ya)] 

_ 2 (1 + e cos 4’ (i x vl _ 2 (1 + e cos v)~ 
(1 - e2)1.( (I - I?*)3 (x + Y), (5) 

where r = nt is the dimensionless time and v is the parti- 
cle’s dimensionless velocity measured in the nonrotating 
frame. Since the only parameter in Eq. (5) is e (u is a 
function of time), it follows that with a given eccentricity, 
the equations of motion are identical for asteroids of dif- 
ferent sizes and distances from the Sun; changing these 
quantities only affects how we define the dimensionless 
units. In short, since distances are measured in Hill radii, 
our results scale with that distance. The more interesting 
question, however, is the following: How can we scale 
results from one asteroid to another when the two have 
different orbital eccentricities? 

Clearly an exact scaling of results is impossible given 
the v dependence of Eq. (5); accordingly we attempt to 
find an approximation valid for the orbits that we are most 
interested in, namely those that narrowly avoid escaping 
from the asteroid. Physical intuition and Eq. (5) show that 
the perturbation accelerations felt by a orbiting particle 
are maximum when the asteroid is near the pericenter of 
its orbit. In general, therefore, weakly bound particles 
have their closest brush with escape during the asteroid’s 
pericenter passage and, given slightly more “energy,” 
many of these particles would be expected to escape dur- 
ing this time. If we are only interested in determining what 

atidal = 

[3x - z + e(x + y)] 
(I - e)3 * 

(6) 

Expanding Eq. (6) in a Taylor series in E, we find the first- 
order term is given by 

e[9x - 321 + e[x + y], (7) 

where the first term in brackets arises from the asteroid’s 
closer distance to the Sun and the second comes from 
the increased angular velocity. The distance terms are 
significantly larger, especially for particles along the X- 
axis where escape invariably occurs. This remains true 
for higher-order terms in the Taylor expansion although 
the magnitude of the difference decreases somewhat. 
Treating the Coriolis acceleration in the same manner, we 
find that at pericenter it can be written in the form 

aCcriolis = 

_2[1 + e]“’ 
[I - e13” 

(i x v,,) - 23(x + yk 181 

here the terms in the denominators arise from the aster- 
oid’s closer distance to the Sun while those in the numera- 
tors are due to the variation of the asteroid’s velocity 
along its elliptic path. As before, we find the change in 
distance is the dominant effect, accounting for 27.5% of 
the variance in the Coriolis acceleration for all values of 
the eccentricity. 

Since the terms arising from the asteroid’s increased 
angular velocity at pericenter are small compared to the 
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terms owing to its location closer to the Sun, we can-as 
a first approximation-ignore the velocity terms. A parti- 
cle’s equation of motion around an asteroid near pericen- 
ter is then identical to the equation of motion of a particle 
around a second asteroid on a circular orbit at the pericen- 
ter distance of the first. Furthermore, since the stability 
of weakly bound orbits is put to the greatest test during the 
asteroid’s pericenter passage, the most important factor 
determining escape is clearly how closely the asteroid 
approaches the Sun. The synthesis of these results sug- 
gests that the size of the asteroid’s stability zone is simply 
proportional to the asteroid’s pericenter distance. Com- 
bined with HBl’s previous result for an asteroid on a 
circular orbit, we have that the size ofan asteroid’s stabil- 
ity zone is roughly proportional to the size of’ the Hill 
sphere calculated ut the asteroid’s perkenter i.e. rH,, = 
(p/3)‘:3 a(1 - e). 

This is a very strong assertion. It states that, if we can 
ascertain the size of the stability zone for one asteroid, we 
can estimate it for other asteroids with different masses, 
semimajor axes, and eccentricities. As noted above and 
in HB 1, scaling to an asteroid with a different semimajor 
axis is mathematically exact and scaling to an asteroid 
with a different mass only errs to the order of the aster- 
oid-Sun mass ratio which is entirely negligible. Thus any 
given orbit around one asteroid has a counterpart around 
another asteroid with an identical shape if the orbital 
eccentricities of the two asteroids are the same. Since the 
stability surface is composed of multiple orbits all of which 
scale in this way, it does too. We have now shown that 
for orbits of short duration around asteroids with different 
eccentricities, most (perhaps 70-80s) of the effects of 
eccentricity on the size of the stability surface can be 
accounted for by scaling the surface as the Hill sphere 
calculated at the asteroid’s pericenter. In the sections 
to follow, we use the P = 0 results from HBl to make 
predictions for asteroids with nonzero eccentricity and 
then compare these predictions with actual numerical in- 
tegrations. We also discuss the validity of the approxima- 
tions made for three representative cases: prograde, retro- 
grade, and i = 90” orbits. 

2.1.3. The Jacobi integral. First, however, we digress 
slightly and consider the Jacobi integral which, after all, is 
one of the most powerful results available for the circular 
restricted problem of three bodies. In the circular case, 
the Jacobi integral allows the derivation of zero-velocity 
surfaces which place simple, but often useful, restrictions 
on the portion of space accessible to particles starting 
with given initial conditions. HBl applied these surfaces 
to an asteroid on a circular orbit; here we examine the 
difficulties inherent in extending this analysis to asteroids 
on eccentric orbits. 

Attempting to obtain the Jacobi integral in the standard 

way, we first take the scalar product of Eq. (3) with v,,, 
to obtain 

v 
GM,. 

ml, . V,,l ’ +7_r= 
r- 

+ c cos v(xjr + yji) + 2c sin v(xj - y.k)l, (9) 

where the Coriolis term has vanished since it is perpendic- 
ular to v,.,~. The next step is to integrate Eq. (9) over time. 
The terms on the left are directly integrable, but those on 
the right, especially the last one, are more stubborn. These 
right-hand terms are implicit functions of time through 
both the particle’s coordinates and the asteroid’s true 
anomaly, and hence they cannot be integrated for an un- 
known orbit. Thus we find a Catch-22: although a Jacobi 
integral exists for the case where the primaries orbit along 
ellipses, it is not known how to express the integral in a 
useful manner (Szebehely and Giacaglia 1964). That is to 
say, to obtain useful information from the Jacobi integral, 
the trajectory of the particle must be known but knowl- 
edge of the particle’s trajectory makes the information 
contained in the integral redundant! 

Once again, because we are mainly interested in orbits 
during the asteroid’s pericenter passage, we look for a 
result that can be applied in that region. Taking 1, = 0 
in Eq. (9) eliminates the final term and allows the time 
integration to be performed. Carrying out the integration 
and switching to slightly different dimensionless units 
(GM,,/ri = 1, (p/3)““r, = 1, where rP = u(l - e) is the 
pericenter distance), we obtain 

C = 6 + 3-r’ - i’ + e(x’ + p’) - use,,. (10) r 

This equation with u,,, = 0 determines the shape of the 
ZVCs instantaneously at the asteroid’s pericenter. The 
application of Eq. (10) is approximate, and even then 
strictly limited to a small time At near a single passage of 
an asteroid through pericenter; similar conclusions are 
reached through more rigorous derivations (Szebehely 
and Giacaglia 1964, Ovenden and Roy 1961). If one at- 
tempts to apply Eq. (IO) to two successive pericenter 
passages, unmodeled effects such as the final term in 
Eq. (9) acting in the interim might alter C, the Jacobi 
“constant.” Fortunately, such modifications are usually 
small for short time periods, and we can normally apply 
Eq. (10) to orbits followed for a few pericenter passages 
of the asteroid. 

Comparing Eq. (10) to the equivalent expression for a 
circular orbit we find that the two differ only by the excess 
centrifugal potential e(X? + y’). As an illustration of the 
slight difference, we calculate the locations where the 
zero-velocity surfaces surrounding the asteroid first open 
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up. These positions occur at saddle points of Eq. (10) 
(with u,~ = 0) which are also equilibrium points of Eq. 
(3) (with v = 0). Setting the partial derivatives of Eq. (10) 
equal to zero, we find that the openings of the ZVCs occur 
at the points (X = --fX,,it, y = 0, 2 = 0), where X,,it and 
the corresponding Jacobi “constant” are given by 

3 ( 1 
113 

Xcrit = 3 + e ; C,,it=9. (11) 
Xcrit 

As the eccentricity is increased in Eq. (ll), the opening 
of the zero-velocity surfaces occurs closer to the asteroid; 
this can be qualitatively understood by noting that the 
equilibrium points occur nearer the asteroid as a result of 
the additional outwardly directed centrifugal acceleration 
at pericenter. For e = 0, we recover the more familiar 
results X,,it = 1 and C,,it = 9 (see HBl, Chauvineau and 
Mignard 1990a); while, conversely, taking the extreme 
case e = 1, we obtain X,,it = 0.91 and Ccrit = 9.9, differ- 
ences of only -10%. We conclude, as above, that the 
influence of the additional centrifugal acceleration is 
minimal. 

2.2. Integrations 

2.2.1. General. Now that some intuition has been de- 
veloped about the effect of the asteroid’s orbital eccentric- 
ity, we present the results of our numerical integrations. 
For comparison purposes, we take the particle to have 
the same initial conditions used by HBl and discussed 
in Section 1.1 above; furthermore we set the asteroid’s 
semimajor axis to 2.55 AU in all of our integrations. The 
addition of orbital eccentricity, however, complicates 
matters by requiring the specification of two extra items, 
namely the eccentricity of the orbit and the asteroid’s 
position along its orbit at the time the particle is launched. 
The second of these complications has lesser significance 
since we follow the test particle’s motion during the time 
it takes the asteroid to complete five orbits around the 
Sun (-20 years); thus usually the influence of different 
starting positions should be minimal. For simplicity, 
therefore, we choose to start the asteroid at the apocenter 
of its heliocentric orbit in all of the following integrations. 
This choice should provide a stringent test of our neglect 
of the “eccentric” terms in the above discussion since 
these terms are allowed to act for some time before es- 
cape, which generally occurs during the pericenter pas- 
sage, is possible. Even with this reduction of the problem, 
a thorough exploration of the three-dimensional phase 
space (asteroid’s eccentricity, particle’s inclination, parti- 
cle’s starting distance) would require approximately (10 
eccentricities) x (20 inclinations) x (25 starting dis- 
tances) = 5000 initial conditions. To reduce this to a more 
manageable number we take four two-dimensional slices 

through this phase space, three at constant inclinations 
representing the three classes of orbits discovered to be 
important in HBI (prograde, retrograde, and highly in- 
clined), and one at the measured eccentricity of the aster- 
oid Gaspra. Table I lists relevant asteroid parameters. 

2.2.2. Prograde orbits. Prograde orbits provide the 
best test of the ideas presented above since, at least in the 
circular case, particles on such orbits usually escape very 
quickly whenever their ZVCs are open (HBl). We might 
be tempted, therefore, to predict that escapes will occur 
when the ZVC evaluated at the asteroid’s pericenter is 
open, but before we can confidently make such a predic- 
tion, an additional factor must be considered. Imagine 
that escape is energetically possible as the asteroid nears 
pericenter, but the particle is located at a disadvantageous 
spot for escape to occur, say 90” away from the Sun-aster- 
oid line. Then to give the particle a fair chance to escape, 
we must either require that the asteroid remain near peri- 
center long enough for the grain to complete a reasonable 
fraction of one orbit around the asteroid or, equivalently, 
we must integrate through multiple pericenter passages 
so that many opportunities to escape arise, some of which 
will find the particle in a favorable position. The prograde 
orbits with the longest periods are those near the limits of 
stability; these have synodic periods that are about l/4 of 
the asteroid’s period if the minor planet is on a circular 
orbit. For an eccentric asteroid orbit with the same semi- 
major axis, the stability zone is smaller and the particles 
orbit even faster. Thus we expect that five pericenter 
passages of the asteroid about the Sun should usually 
allow the particle ample opportunity to escape. 

Figure 2 shows the results of nearly two hundred orbital 
integrations carried out for initially circular prograde or- 
bits at a variety of distances from asteroids with differing 
eccentricities. We treat the full range of possible eccen- 
tricities; the low-to-moderate values are generally applica- 
ble to asteroids, while the larger are more appropriate for 
comets. The boundary line extends the critical distance 
found in HB 1 to asteroids with nonzero orbital eccentric- 
ity using the scaling result of Section 2.1.2. The division 
plots as a straight line in the (e, RA) coordinates used in 
Fig. 2 because the critical distance, like the size of the 
stability zone, is proportional to the asteroid’s pericenter 
distance a(1 - e). For these prograde orbits, the line also 
selects the initial condition corresponding to the critical 
pericenter ZVC (ignoring the small eccentricity depen- 
dence discussed in Section 2.1.3). Thus only particles 
with initial conditions above the line have ZVCs that are 
instantaneously open near pericenter. It is apparent that 
no orbits below the line escape; note, however, that this 
trapping is not necessarily required by the argument of 
closed ZVCs because accelerations that were ignored in 
developing these ZVCs can cause orbits to cross them. 
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pericenter passages of the asteroid about the Sun should 
be enough to allow most particles that are destined to 
escape to be dislodged. But HBl find that the opening of 
the ZVCs is not a good indicator of escape for orbits with 
i 2 30” since the Coriolis acceleration for these orbits does 
not have the large radially outward component character- 
istic of that for prograde orbits. We therefore discontinue 
our use of critical ZVCs as an escape criterion, instead 
focusing on Hill sphere scaling as described in Section 
2. I .2 to connect our results for an asteroid on a circular 
orbit to those with nonzero eccentricity. 

The line in Fig. 3 shows the application of this scaling. 
It does remarkably well, although not nearly as well as in 
the prograde case. The reason for this is clear. A prograde 
orbit will almost always escape if the corresponding ZVC 
is open, and will rarely escape if the ZVC is closed (recall 
that for eccentrically orbiting asteroids the ZVC is just an 
approximation); this idea is reflected in the sharpness of 
the empirical boundary seen in Fig. 2. Inclined orbits, on 
the other hand, are not so strictly constrained. Many 
remain at least temporarily in the asteroid’s vicinity even 
if their ZVCs are wide open; hence the division line be- 
tween bound and unbound inclined orbits is “fuzzier” 
than the division in the prograde case. Several bound 
orbits are located in the region dominated by escape orbits 
and a few escape orbits are even found below the line in 
the region where this criterion asserts that orbits should 
be bound. Note also that crash orbits are inextricably 
interwoven with both bound and escape paths. This result 
is consistent with a similar one for the circular case (HBl) 
where many crash orbits are found in the vicinity of the 
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FIG. 2. The orbital fate of nearly 200 particles on protrude orbits 

around an asteroid at 2.55 AU. Each particle was given the velocity that 

would put it on an initially circular path around the minor planet. A solid 

circle signifies a particle that remains in the asteroid’s vicinity for at 

least 20 years, a small dot corresponds to a grain that escapes into 

heliocentric space, while an open circle with a dot inside represents a 

particle that strikes the asteroid’s surface. The diagonal line is the pre- 

dicted division between bound and escape orbits; its derivation is based 

on scaling the Hill sphere at pericenter as developed in the text. 

Nevertheless, as we argued above, these accelerations 
should be small, so the fact that no escapes are seen to 
occur from below the boundary is encouraging. Further- 
more, there is only a single bound orbit that lies signifi- 
cantly above the division. This lone particle was never in 
the right place to get a boost from M. Coriolis at pericen- 
ter; it would almost certainly escape with increased inte- 
gration time. 

The distribution of orbits that strike the asteroid in Fig. 
2 displays an interesting regularity. All of these crash 
orbits are found above the division line at which particles 
become unbound. The lack of crash orbits below the line 
is consistent with the character of bound prograde and 
retrograde orbits which are usually very regular in appear- 
ance and rarely display chaotic behavior (cf. Chauvineau 
and Mignard 1990a). As we will see presently, however, 
the separation of bound and crash orbits observed here 
for prograde orbits is not a result that can be extended to 
three-dimensional paths. 

2.2.3. Inclined orbits. Bound orbits with inclinations 
in the range 60” < i < 120” have many similar characteris- 
tics (HB 1); accordingly we choose i = 90” orbits as typical 
examples of this class. The largest of these orbits is com- 
parable to the largest of the prograde orbits, so the maxi- 
mum period for bound, inclined orbits is also about 114 of 
an asteroid period. By the argument advanced above, five 
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FIG. 3. Same as Fig. 2 for initially circular orbits with inclinution 

i = 90”. As in Fig. 2, the approximate theoretical division separating 

bound and escape orbits matches the data quite impressively; the de- 

crease of stability with increasing eccentricity is very evident. 
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FIG. 4. Same as Fig. 2 for initially circular retrograde orbits. Note 
the sparsity of orbits that strike the asteroid. For retrograde orbits, the 
calculated bound-escape division disagrees with the data for reasons 
that are discussed in the text (compare Figs. 2 and 3). 

critical distance. The ubiquity of crash orbits in these 
circumstances is a direct consequence of the dynamics of 
such orbits as HBl discuss in some detail. 

2.2.4. Retrograde orbits. The situation for retrograde 
paths about elliptically orbiting asteroids is not as good 
as for the two cases discussed above for several reasons. 
First, since bound retrograde orbits are relatively large, 
their periods are about four times the period of biggest 
prograde orbits; this implies that integrations of five aster- 
oid years may not be sufficiently long to explore the full 
dynamical range. In addition, since these orbits are about 
twice the size of the ones considered previously, the aster- 
oid’s gravity is much weaker and the perturbations are 
significantly larger (see Fig. 3 of HBl). Consequently the 
unmodeled parts of these forces are more important for 
retrograde orbits that for either prograde or inclined ones. 
As an example, the Coriolis acceleration pulls more 
strongly inward at the asteroid’s pericenter for retrograde 
orbits than simple scaling would suggest and this aug- 
ments the stability of these orbits around asteroids on 
eccentric paths. Finally the point at which the ZVCs first 
open for retrograde orbits is only about 25% of the dis- 
tance to where escapes first occur assuming an asteroid on 
a circular orbit. The constraint provided by the retrograde 
ZVCs, therefore, is almost useless (cf. HB 1, Chauvineau 
and Mignard 1990a). 

Figure 4 shows our results for planar retrograde orbits. 
The scaling law that worked so well for the prograde and 
inclined orbits clearly fails here: many bound orbits are 
found above the line where the theory predicts only es- 

cape orbits. The behavior is not even linear; note the 
abrupt drop in stability that occurs for an asteroid eccen- 
tricity of 0.7. This steep falloff suggests that longer inte- 
grations would lead to additional escapes, at least near 
this edge. Farthermore, the finger of escape orbits ex- 
tending into the bound orbits at a distance of about 300 
asteroid radii also hints that the bound orbits above the 
finger will escape given a few more pericenter passages. 
But increasing the integration time will not solve all of the 
problems encountered here. We recall the results of Zhang 
and lnnanen (1988), who, after tracking orbits for 1000 
years, found that the critical distances for initially circular 
retrograde orbits around asteroids with eccentricities of 
0.0 and 0.07 were 445 and 358 R,, respectively. The e = 
0 result agrees with our finding for a 20-year integration; 
thus, scaling to the pericenter of an e = 0.07 orbit (see 
Fig. 4), we would predict a critical distance of 410 R, , or 
about 15% larger than the numerical result. Evidently the 
analysis of these retrograde orbits is hampered by both 
insufficient integration times and inadequate approxima- 
tions. 

2.2.5. “Gaspra” (e = 0.17). As a final test and an 
independent verification of the ideas addressed above, 
and because of the destination of a certain spacecraft, we 
carried out a more thorough investigation of the stability 
of orbits about an idealization of the asteroid 951 Gaspra. 
The results are displayed in Figs. 5 through 7. The first of 
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FIG. 5. The fate of about 650 particles started at different inclinations 
for an asteroid on an orbit with semimajor axis (I = 2.55 AU and an 
eccentricity e = 0.17. Note the prevalence of impacts for orbits with 
inclinations near 90”. We can scale this plot for application to “Gaspra” 
(u = 2.2 AU and e = 0.17): since the eccentricities of the two asteroids 
are identical, and differences in their masses are accounted for by mea- 
suring distances in R, , the abscissa need only be multiplied by the ratio 
of the two semimajor axes, namely 2.20/2..55 = 0.86. 
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FIG. 6. Maximum starting distance for those initially circular orbits 

that remained bound to the asteroid (for abou! 20 years) as a function of 

the orbiting particle’s initial inclination. Data are plotted for two values 

of the asteroid’s orbital eccentricity. CJ = 0 and e = 0.17; in both ca\es 

(I = 2.55 AU. The dotted line is the prediction for c = 0.17 derived from 

scaling the e = 0 result with the Hill sphere at pericenter. In this case 

the two semimajor axes are identical. so scaling is accomplished by 

simply multiplying the e = 0 results by I ~ 0.17 = 0.83. The plot clearly 

shows the erosion of the zone of stability caused by increasing the 

asteroid’s orbital eccentricity. 

these shows the fate of particles as a function of their 
starting distance and initial inclination for an asteroid with 
Gaspra’s eccentricity of 0.17 (cf. HBI, Fig. 1S which has 
c = 0). Note that these integrations are for an object at 
2.55 AU; for application to “Gasprd,” which orbits at 2.2 
AU, distances need to be reduced by a numerical factor 
equal to the ratio of the respective Hill sphere radii. For 
distances measured in R,, as are the abscissas in Figs. 5 
through 7, this factor is simply the ratio of the semimajor 
axes of the two asteroids. 

We estimate the critical distance from Fig. 5 by taking, 
for each inclination column, the outermost bound orbit 
such that there are no escape orbits below it: this proce- 
dure eliminates freak orbits such as the one at (i = 70”, 
~2’ = 470 R,J. The results, critical distance as a function 
of inclination, are plotted in Fig. 6 along with similar 
results for an asteroid with c = 0 (from Fig. I5 of HBl). 
The dotted line in Fig. 6 is the expected result for CJ = 
0.17 which has been scaled from the e = 0 data; comparing 
the predictions to the actual integrations, we see that 
prograde and inclined orbits actually escape at distances 
slightly less than predicted, but well within expected er- 
rors arising from the neglected effects. In those regions 
of Fig. 5 where there are many crash orbits, the division 

between bound and escape orbits is poorly constrained; 
this leads to a “choppiness” in the critical distance which 
is observed in the e = 0.17 data near i = 90” in Fig. 
6. Unlike prograde and inclined orbits, retrograde ones 
exhibit little loss of stability; once again suspicion falls on 
insufficient integration times. 

To describe the volume in which bound material might 
be present about asteroids on circular heliocentric orbits, 
HBI used the “stability surface.” They noted that its 
typical radius up to latitudes of 35” was nearly constant 
and was significantly larger than its vertical dimension 
which was approximately constant for latitudes greater 
than 3.5” (i.e., its shape is like a sphere with the poles 
sliced off 1. Because polar orbits are less stable than retro- 
grade ones for asteroids on elliptic orbits as well as those 
on circular paths (Fig. 6), we anticipate a similar morphol- 
ogy for the stability surface in the current case. Figure 7 
plots the largest out-of-plane distance (z-coordinate) from 
the union of all orbits with a given starting inclination that 
lie within the critical distance; for comparison, we also 
plot results for a circular asteroid orbit. We see that the 
maximum height to which material around Gaspra can 
rise is only about 75% the value it would have above an 
asteroid on a circular orbit. The dotted line in Fig. 7, the 
prediction of direct Hill sphere scaling of results for c = 
0, suggests that the value should be 83%. Clearly the 
correlation between the dotted line and the r = 0.17 data 
is worse in Fig. 7 than it is in Fig. 6: this difference reflects 
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FIG. 7. Maximum height above the asteroid’s orbital plane attained 

by the particles from Fig. 6: as in that figure, the dotted line is the 

prediction for the lower set of data obtained by scaling from the upper 

set. The data displayed here show that as the asteroid’s eccentricity is 

increased, orbits that rise to large heights above the orbital plane disap- 

pear faster than our simple scaling would suggest. 
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changes in the orbital evolution of the inclined orbits un- grains. In the rest of this work, we confine ourselves to 
der accelerations ignored in our analysis. large grains which obey Eq. (12). 

These numerical experiments indicate that bound de- 
bris should not be present beyond about 200 R, above 
Gaspra’s orbital pole. We remind the reader that our study 
has dealt only with the question of which orbits are stable 
and which are unstable. To actually estimate the probabil- 
ity that a spacecraft might strike something would require 
a knowledge of the population mechanisms for circum- 
asteroidal orbits. Most discussions of debris sources 
(Weidenschilling et al, 1989, Burns and Hamilton 1992) 
favor the likelihood that circumasteroidal debris, if any 
exists at all, will be produced much closer to the minor 
planet than the distant orbits considered here. Thus our 
criterion is likely to be quite conservative; that is, a space- 
craft should be able to safely pass much closer to the 
asteroid than the distance quoted above. 

3.1. Heliocentric us Circumplanetary Orbits 

3. RADIATION PRESSURE 

The acceleration of a particle on a heliocentric orbit is 
determined by the sum of the inward force of solar gravity 
and the outward force of radiation pressure, which can be 
combined into a single l/r’ force with magnitude (1 - /3) 
times solar gravity. The grain’s orbital dynamics is then 
identical to the gravitational two-body problem with a 
reduced solar mass; if a particle’s size, and hence its p, 
is constant, its orbit will be a conic section. Only if the 
particle’s p changes abruptly, as when a small grain is 
ejected from a comet, or gradually, as in the case of a 
subliming grain, will its orbital evolution be nontrivial 
(Burns et al. 1979). Radiation pressure, therefore, does 
not significantly alter the nature of most heliocentric orbits 
and, accordingly, it has received scant attention in the 
literature. 

All objects in interplanetary space are subject to pertur- 
bations not only from the gravitational attractions of the 
planets, but also from the absorption and subsequent re- 
emission of solar photons and corpuscular radiation. Of 
the many forces (radiation pressure, Poynting-Robertson 
drag, Yarkovsky effect, etc.; see the review by Burns et 
al. (1979)) that arise from this process, radiation pressure 
is by far the strongest. Radiation pressure arises primarily 
from the absorption of the momentum of solar photons 
and consequently is directed radially outward from the 
Sun. The force’s strength is proportional to the solar flux 
density which has the same inverse square radial depen- 
dence as the Sun’s gravity; hence radiation pressure is 
usually written as a dimensionless quantity p times solar 
gravity. For spherical particles that obey geometrical 
optics, 

The situation is quite different for particles that orbit a 
planet rather than the Sun (Milani et al. 1987); since the 
planet itself is essentially uninfluenced by radiation pres- 
sure while small objects orbiting it may be, the problem 
cannot be treated by simply reducing the mass of the Sun 
as in the case of heliocentric orbits. Furthermore, the 
dominant forces are different in each problem; in the case 
at hand, the important forces are the asteroids gravity and 
the solar tidal force rather than direct solar gravity as 
in the heliocentric problem. In many cases, therefore, 
radiation pressure produces stronger effects on circum- 
planetary orbits than on solar orbits; we show the truth 
of this statement when the “planet” is actually a large 
asteroid with a radius of 100 km. 

p = 5.7 x lo-‘% 
PS ’ 

(12) 

where s and p are the particle’s radius and density in cgs 
units and Qpr is a constant whose value depends on the 
optical properties of the grain (Burns et al. 1979). This 
result applies to particles larger than about a half-microm- 
eter, the wavelength of a photon at the peak of the solar 
spectrum. When a particle’s characteristic size is similar 
to the wavelength of incident light, Mie scattering occurs, 
Qpr is no longer constant, and p becomes a complex func- 
tion of particle size. In contradiction to Eq. (12), which 
predicts that the strength of radiation pressure will in- 
crease for smaller particles, it actually decreases (Burns 
et al. 1979) because most solar photons are in the visible 
and such photons interact only weakly with very small 

Since radiation pressure typically induces much smaller 
accelerations than the asteroid’s gravity, an orbit-aver- 
aged perturbation technique is often appropriate. This 
analysis, leading to a simplified set of differential equa- 
tions describing the evolution of the osculating orbital 
elements due to an external force which is constant in 
magnitude and direction, has been carried out by Burns 
et al. (1979) and Chamberlain (1979), among others. The 
semimajor axis of a circumplanetary orbit is found to be 
unchanged by radiation pressure. Burns et al. solved the 
planar system (i = 0) considering small eccentricity and 
weak radiation pressure, assumptions applicable to most 
situations arising in the Solar System. Their solution was 
later extended to arbitrary eccentricities and moderate 
radiation pressure by Mignard (1982). Both Burns et al. 
and Mignard find periodic oscillations in the orbital eccen- 
tricity that, for weak radiation pressure, vary with the 
planet’s orbital period. The solution to the full system with 
arbitrary inclination, as derived by Mignard and Henon 
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(1984). involves complicated coordinate transformations 
that render the study of an orbit with initial conditions 
expressed in orbital elements impractical. The planar so- 
lution shows, however, that if radiation pressure is suffi- 
ciently strong, it can induce eccentricities large enough 
that particles are forced to crash into the asteroid (cf. 
Peale 1966). This mechanism, which provides the poten- 
tial to efficiently remove tightly bound material from cir- 
cumasteroidal orbits, is discussed further in the sections 
to follow. 

3.2. Zero-Velocity Curves 

As we noted in Section 2.1.3 above, the existence of 
the Jacobi integral and its associated zero-velocity curves 
proves to be useful in addressing the eventual fate of 
loosely bound, prograde orbits. Accordingly, in this sec- 
tion we explore zero-velocity curves derived with the 
inclusion of solar radiation pressure; as a first approach 
to the problem and to avoid the difficulties encountered 
above, we treat only the case of circular asteroid orbits. 
For circular orbits, we find that exact results exist: ex- 
tending the results to eccentrically orbiting asteroids, 
however, entails the same approximations discussed in 
Section 2.1.3. 

The existence of a Jacobi integral for the restricted 
three-body problem with radiation pressure is anticipated 
since radiation pressure in the rotating frame can be de- 
rived from a time-independent potential. Indeed, the addi- 
tion of radiation pressure to solar gravity does not greatly 
complicate the problem since these forces are identical in 
both direction and radial dependence. In fact, the deriva- 
tion of the Jacobi integral and the zero-velocity curves 
in the photogravitational, restricted, circular three-body 
problem proceeds along almost identical lines as the 
“classical” derivation (Schuerman 1980). Extensive anal- 
ysis of the stability of the resulting equilibrium points has 
been carried out by Luk’yanov (1984, 1986, 1988). We 
now apply these ideas to Hill’s problem, which, like the 
restricted problem, has an integral of the motion. 

Incorporating radiation pressure into the equation of 
motion (Eq. (3) with e = O), we obtain 

A GM,- GM,,3x_zl -_ z= ).0fu3 

GM, ^ 
- 2ti x Vrot + /37x 

(1 3 
(13) 

where we have taken incoming solar rays to be parallel, 
an assumption that is valid in the vicinity of our asteroid. 
Assuming p is time-independent, the final acceleration on 
the right-hand side of Eq. (13) can be integrated to give 
the potential P(GM,Ia”)x. Taking the scalar product of 
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FIG. 8. Zero-velocity curves, including solar radiation, for a I-mm 

particle around “Amphitrite.” The Sun is located far out along the 
negative x-axis and the asteroid is the solid circle (not drawn to scale) 

at (0, 0). Associated with each curve is a unique value of the Jacobi 

constant; larger curves have smaller Jacobi constants. The four-pointed 

star, located at (370, 0), denotes the equilibrium point where all forces 

balance for I-mm particles; a second equilibrium point lies between the 

asteroid and the Sun at ( ~ 579, 0). 

Eq. (13) with v,,[, integrating over time, and nondimen- 
sionalizing, we find 

c = ; + 3x? - z? + 2p ; 0 
I ‘3 

X - r&. (14) 

Equation (14) depends on the parameter j3pL “’ and so, as 
in the case of nonzero orbital eccentricity, care must be 
exercised when scaling from one asteroid to another. In 
particular, results scale as the Hill sphere only if the pa- 
rameter /3~ -‘Q is kept constant. This can be shown more 
explicitly by examining Eq. (13) in the same manner that 
we studied Eq. (3) in Section 2.1.2. If Qpr and the particle 
and asteroid mass densities are constant, then p is in- 
versely proportional to the particle’s radius s (Eq. (12)) 
and p- iii is inversely proportional to the asteroid’s radius 
R,. Thus, simply stated, results from a small asteroid can 
be applied to a larger one if the product of the asteroid’s 
radius and the radius of the orbiting particle is kept con- 
stant. 

We can derive zero-velocity curves from Eq. (14) by 
setting v,,[ = 0 and choosing a particular value of C. For 
weak radiation pressure, the shape of the resulting zero- 
velocity curves differs only slightly from the more familiar 
ZVCs of Hill’s problem; for stronger radiation pressure, 
however, the difference is marked. In an attempt to pro- 
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vide the reader with some insight into the constraints on 
escape imposed by the ZVCs, we discuss their shape 
for a moderate value of radiation pressure, namely that 
appropriate for l-mm particles around “Amphitrite.” 
Several ZVCs are drawn in Fig. 8; these are simply plots 
of Eq. (14) with u,~ = 0 and z = 0 for different values 
of the Jacobi constant C. The small circles that closely 
surround the asteroid have large Jacobi constants; their 
shape is primarily determined by the asteroid’s gravity 
(cf. discussion by Chauvineau and Mignard (1990a) for 
ZVCs without radiation pressure). As C is decreased, the 
circles grow larger and begin to distort due to the tidal 
and radiation-induced accelerations. Because they both 
are directed along the x-axis, these perturbation accelera- 
tions cause a distortion of the ZVCs along that axis. The 
tidal potential is an even function of x and thus causes an 
elongation symmetric about x = 0 (see HBl, Figs. 5 and 
10). In contrast, radiation pressure, because it always 
acts in the %-direction, causes a nonsymmetric distortion, 
shifting the ZVCs away from the Sun. We see that radia- 
tion pressure is dominant for l-mm particles since the 
outer curves of Fig. 8 are highly asymmetric. One conse- 
quence of this asymmetry is that as the Jacobi constant is 
decreased, the curves open away from the sun before 
they open toward it. Radiation pressure allows sufficiently 
energetic particles to escape in the antisunward direction; 
escape in the sunward direction, which requires still more 
“energy,” occurs more rarely. 

When discussing Fig. 8, we carefully avoided quoting 
any actual numbers for the Jacobi constants or the loca- 
tion of the point at which the ZVCs open (see, however, 
the figure caption). This was done to keep the discussion 
general and therefore applicable to a large range of radia- 
tion pressure strengths. In reality, the Jacobi constant and 
the points where the ZVCs open are all functions of the 
relative strength of radiation pressure. To solve for the 
opening positions, which occur at the equilibrium points 
of Eq. (13), we set the partial derivatives of Eq. (14) (with 
u rot = 0) equal to zero (cf. Danby 1988, p. 260). Thus, 
defining 

p 3 “3 

y=5 G ’ 0 
(15) 

we find two solutions which lie on the x-axis (y = z, = 0) 
at positions given by solutions to the cubic 

x3 + yx ZTl=O, (16) 

where the upper sign refers to the critical point furthest 
from the Sun and the lower sign to the one closest to 
the Sun. Solving Eq. (16) for y 5 1 (weak-to-moderate 
radiation pressure), we obtain X,,it = +-(I T y/3 + y*/9) 

and C,,it z 9 t 67 - y2. We find that there are indeed 
two critical ZVCs, since the two opening points occur at 
different values of the Jacobi constant. Thus if more 
curves with ever-decreasing Jacobi constants were plot- 
ted in Fig. 8, we would eventually see a tunnel from 
the asteroid to heliocentric space opening up on the left 
side of the figure. For y %- 1 and X,,it > 0, we find X,,it = 

Y -I’*, which tends toward zero, and Ccrit = 12~“‘. 

3.3. Integrations 

Our philosophy in adding the effects of eccentricity and 
radiation pressure to the escape problem is to separate 
the two so that a more direct comparison with the results 
of HB 1 is possible. Accordingly, in all subsequent numeri- 
cal integrations, we place the asteroid on a circular orbit 
around the Sun. As before, we model the asteroid 29 
Amphitrite with the parameters given in Table I. We start 
particles out along the x-axis away from the Sun with a 
speed such that the orbit would be circular in the absence 
of all perturbations. As in the first half of this paper, we 
allow the velocity vector to take on one of three inclina- 
tions relative to the orbital plane: prograde (i = o”), retro- 
grade (i = 180’7, or inclined (i = 90”). As discussed above, 
these inclinations are representative of the three basic 
classes of circumasteroidal orbits in the case when radia- 
tion pressure is absent (HBl). The period of integration 
was set at five asteroid years (~20 years) to facilitate 
comparison with our previous results. 

Although these are the same initial conditions used in 
HBl and in the case of an eccentric orbit above, they are 
particularly appropriate here for two reasons. First, the 
radiation and tidal potentials are maximum in the antisun- 
ward direction; thus circular orbits starting on the positive 
x-axis have larger Jacobi constants than circular orbits of 
the same radius starting elsewhere. Our results for circular 
orbits, therefore, are conservative in the sense that at 
each distance, we study the initially circular orbit that, 
energetically, has the least chance of escaping. The sec- 
ond reason that our initial conditions are reasonable is 
more physical. One of the most dangerous potential 
sources for material in the circumasteroidal environment 
is a “feeder” satellite, a small body from which material 
can be efficiently removed by meteoroid bombardment 
(Burns and Hamilton 1992). In contrast to direct impacts 
on the central asteroid in which material generally escapes 
or is reaccreted, much of the debris blasted from a moonlet 
can end up in orbit around the asteroid. We envision the 
following scenario: a “feeder” satellite uninfluenced by 
radiation pressure is continually subjected to a flux of 
hypervelocity particles which blasts debris from its sur- 
face. Although sufficiently energetic to escape the weak 
gravity of the satellite, much of the debris cannot escape 
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the asteroid. As the clumps of ejected material separate 
exposing small bodies to solar rays, radiation pressure 
begins to exert its influence, preferentially eliminating the 
smaller particles. Our integrations begin at the point when 
mutual gravitational and shadowing effects can be ne- 
glected; further evolution of the debris in the aftermath of 
an impact event is governed by Eq. (13). 

Confining ourselves to an orbit of a given starting incli- 
nation, we still must fix the initial size of the particle’s 
circular orbit as well as the strength of the radiation pres- 
sure as parameterized by y; thus we have a two-parameter 
space to explore. In order to avoid confusion, we continue 
to display plots for “Amphitrite” with distances measured 
in asteroid radii and particle sizes measured in mulli- 
meters; to apply these plots to “Gaspra” (with e = 0) 
we simply multiply the vertical axis by the ratio of the 
semimajor axes 2.2/2.55 = 0.86 (Table I) and change “mil- 
limeters” to “centimeters.” The change in the vertical 
axis comes from scaling distances with the size of the Hill 
sphere (HB 1) while that of the horizontal axis arises from 
the condition that the parameter y, defined in Eq. (IS). be 
unaltered: keeping y constant is equivalent to requiring 
that the product of the asteroid and particle radii be con- 
stant as was discussed immediately following Eq. (14). 
Most of the equations to follow, however, depend on the 
dimensionless quantities r (measured in Hill radii) and y; 
use of these quantities both simplifies the appearance of 
the equations and facilitates scaling to other asteroids. 
The size of the Hill sphere for “Amphitrite” and “Gas- 
pra” in asteroid radii is given in Table I; below we make 
the connection between y and the particle’s size more 
apparent. Assuming spherical particles with the same den- 
sity as that assumed for the asteroid (p = 2.38 g/cm3) and 
a radiation pressure coefficient of unity (Qpr = 1). we find, 
using Eqs. (12) and (1_5), that y is inversely proportional 
to the particle’s radius; for “Amphitrite” 

y = 0.06731s, (17a) 

while for “Gaspra” 

y = 0.613/s, (1%) 

where s is the particle’s radius in centimeters. 

3.3. I. Progrude orbits. Figure 9 shows the fate of sev- 
eral hundred prograde paths followed for five orbits of 
“Amphitrite” around the Sun. The picture is remarkably 
regular; orbits that share a common fate cluster together 
in one of three distinct regions with few exceptions. The 
relative strength of radiation pressure increases from right 
to left as the particle’s size is decreased: this causes the 
rapid disappearance of bound orbits. For IO-mm particles, 
the division between bound and escape orbits is in 
agreement with that found analytically and numerically 

a 
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FIG. 9. The fate of approximately 200 particles of different radii 

started on pro~rtrde circular orbits of various sizes that evolve under 

the influence of solar radiation pressure; symbols are defined in Fig. 2‘s 

caption. The columns of initial conditions are evenly spaced along the 

horizontal axis. Orbits with the same fate tend to cluster, dividing the 

plot into three distinct regions. Note the rapid disappearance of bound 

orbits as the particle sizes are reduced to I mm and then to 4.5 mm. 

This, of course. is due to the increasing strength of radiation pressure 

relative to the asteroid’s gravity. For “Gaspra,” corresponding particle 

sizes would be IO times larger. 

by HBl in the absence of radiation pressure: initially 
circular prograde orbits are stable out to about 220 R, , or 
about one-half the radius of the Hill sphere. In this region, 
radiation pressure is strong enough to perturb orbits, but 
does not have the power to alter the orbital fates of many 
particles. As particle sizes are decreased, increased radia- 
tion pressure is seen to cause only a few extra escapes at 
large distances from the asteroid until we consider parti- 
cles with radii of a millimeter. In the l-mm column of Fig. 
9 an amazing transition takes place; bound orbits suddenly 
extend only half as far from the asteroid as they did for 
particles twice as large, their demise being due to the 
appearance of a large number of orbits doomed to strike 
the asteroid. For these particles, radiation pressure is 
large enough to induce major oscillations in orbital eccen- 
tricity, excursions so large that c -+ I and a collision 
with the minor planet occurs. Even more startling is the 
disappearance of bound orbits in the next column to the 
left; all orbits beyond 20 R,, with one exception, either 
impact the asteroid or escape from its gravitational grasp. 
Particles in this column have radii ~0.5 mm; around “Gas- 
pra” this corresponds to particles nearly a centimeter 
across! Decreasing particle sizes still further yields no 
surprises: bound orbits do not reappear, and the increas- 
ing radiation pressure causes escapes to occur ever closer 
to the asteroid. Recall that all of the points plotted in Fig. 



STABILITY ZONES ABOUT ASTEROIDS, II 57 

9 correspond to the fates of particles followed for just 
over 20 years; for this problem, radiation pressure accom- 
plishes much in an extraordinarily short amount of time! 

Probably the most interesting portion in Fig. 9 is the 
transition region where orbits first begin to impact the 
asteroid. Examining the orbits of the eleven l-mm grains 
that crash, we find all but three of them, the one closest 
to the asteroid and the two furthest from it, impact in 
about a third of an asteroid year. Orbital eccentricities 
rise monotonically to a critical value near unity at which 
point the pericenter of the orbit dips below the surface of 
the asteroid and impact occurs. The three exceptions, 
however, show that this is not the full story. Two of these 
orbits survive one stint of large eccentricity after which 
the orbit circularizes and the process begins anew. These 
orbits crash when the eccentricity rises to values near one 
a second time. The third orbit, which is the furthest from 
the asteroid, survives no less than eight successive peri- 
ods of large eccentricity before finally striking the asteroid 
during its ninth cycle. 

Several effects can cause these deviations from the 
simple sinusoidal oscillations of eccentricity predicted by 
Mignard (1982). Since the orbits under discussion are 
large, the tidal force from the Sun is significant and cannot 
be ignored as it is in the idealized case. This force will 
also influence the orbital eccentricity and may either aug- 
ment or detract from radiation-induced changes. Further- 
more, even in the absence of the tidal force, orbits of this 
size have long periods for which the orbital averaging 
employed by Burns et al. (1979) and Mignard (1982) is 
generally inappropriate. This will be the case any time the 
particle’s orbital elements change significantly during a 
single circuit around the asteroid. One important conse- 
quence of rapidly varying elements is that if a particle 
attains an eccentricity of one at some point far from the 
asteroid, the eccentricity may decrease below the critical 
value necessary for collision before the particle suffers a 
close approach. This, in fact, is the reason that the three 
orbits just discussed survive several close approaches. A 
final consideration that does not affect our integrations, 
but would alter orbits around a real asteroid, is the non- 
spherical shape of typical minor planets. Higher-order 
gravity terms can significantly alter the evolution of even 
a large orbit if, as in the case under discussion, the eccen- 
tricity of the orbit is near unity so that close approaches 
occur. 

The fish shape plotted in rotating coordinates in Fig. 10 
is the amazing orbit discussed above that narrowly avoids 
collision eight times only to impact the asteroid on the 
ninth pass. The heavy black line is the zero-velocity curve 
appropriate for the initial condition, a l-mm particle start- 
ing on a circular unperturbed orbit around the asteroid 
“Amphitrite” at 190 R,. Although the ZVC is open, the 
particle never had the chance to taste the freedom of 
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FIG. 10. A l-mm particle on an initially circular progruJe orbit 

started at 190 R,,,. The initial position is marked with a solid triangle 
whose upper apex points in the direction of the initial velocity; a filled 
square marks the end of the integration, and a solid circle represents the 
asteroid itself. In this case, the square and the circle overlap since the 
grain ends its orbital evolution on the asteroid’s surface. The four- 
pointed star is the equilibrium point, and the heavy curve partially 
enclosing the orbit is the zero-velocity curve appropriate for this initial 
condition; its asymmetry is due to radiation pressure. Although the ZVC 
shows that the particle is energetically able to escape, the grain suffers 
a more drastic fate. 

heliocentric space. At first sight this is strange, since the 
orbit extends nearly to the Lagrange point where forces 
on a stationary particle balance; prograde orbits that reach 
this far invariably escape since the Coriolis acceleration 
is outwardly directed. Retrograde particles, however, are 
stabilized by the Coriolis acceleration and can safely wan- 
der in this region; closer inspection of Fig. 10 reveals that 
although the orbit begins prograde, it becomes retrograde 
when farthest from the Sun, at the very fringes of heliocen- 
tric space. In fact, the orbit switches from prograde to 
retrograde and back again periodically, as can be seen 
from the time history of the inclination displayed in Fig. 
11. These transitions necessarily take place at e = 1, when 
the particle’s velocity vector points either directly toward 
or away from the asteroid; thus the very fact that the orbit 
survives so long warns us of the dangers of taking the 
orbit-averaged equations too seriously. 

The history of the osculating elements in Fig. 11 is also 
enlightening, especially when discussed along with the 
evolution of the actual orbit. After a single prograde loop, 
the orbit switches to retrograde as the eccentricity ap- 
proaches one: this first occurs very near the upper part of 
the zero-velocity surface in Fig. 10. A change in inclina- 
tions from i = 0” to i = 180” or vice versa can, but 
need not, involve closely approaching the ZVC; this only 
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FIG. 11. The time histories of some of the osculating orbital elements 

for the path displayed in Fig. 10. Plotted are the orbit’s semimajor 

axis, its eccentricity, and its inclination. These curves are calculated by 

integrating the equation of motion, and transforming the resulting veloc- 

ity v and position r into orbital elements (Danby 1988). Note that the 

particle switches from prograde (i = 0”) to retrograde (i = 180”) and 

back again periodically each time the eccentricity reaches unity. 

occurs if the particle is at the apocenter of a rectilinear 
ellipse (e = 1). Indeed, Fig. 10 has examples of transitions 
at varying distances from the ZVC. The particle then dives 
in for a close approach to the asteroid which occurs at the 
small dip in the center of the eccentricity peak. The small 
reduction in eccentricity, which manifests itself in less 
than an orbital period, is enough to allow the particle to 
successfully negotiate the treacherous region. The parti- 
cle subsequently moves outward toward the lower part of 
the ZVC, finally returning to its prograde state to repeat 
the cycle anew. The entire cycle, in which the eccentricity 
changes from zero to unity and back to zero, takes only 
four orbits of the particle around the asteroid; clearly an 
orbit-averaging technique is invalid here! The inadequacy 
of orbit-averaging can also be seen in the semimajor axis 
history of Fig. 11. Orbit-averaging of both radiation pres- 
sure and the tidal acceleration lead to predictions that the 
semimajor axis, a, will remain constant on time scales 
larger than the particle’s orbital period; these predictions 

rely on the fact that the orbital elements, a included, do 
not change much during a single orbit. Large variations 
in the semimajor axis should, therefore, not occur on any 
time scale; the extent to which this is untrue is a measure 
of the validity of the averaging approximation. 

3.3.2. Retrograde orbits. Figure 12 is the retrograde 
counterpart to Fig. 9. Qualitatively the two plots are very 
similar since radiation pressure acts analogously on pro- 
grade and retrograde orbits as is seen below; differences 
in the plots can be explained by the effects of the Coriolis 
acceleration. As in Fig. 9, orbits in Fig. 12 are segregated 
into three distinct regions containing bound, escape, and 
crash orbits. For weak radiation pressure, such as that 
acting on IO-mm particles, circular orbits are stable out 
to about the Hill sphere in accordance with the results of 
HB 1. The Coriolis acceleration exerts a powerful influ- 
ence on these orbits, keeping them bound at twice the 
distance of the largest prograde orbits. Retrograde orbits, 
like their prograde counterparts, experience a slight deg- 
radation of stability as particle sizes are decreased; but as 
with prograde orbits, an abrupt transition occurs for I- 
mm particles: half of the bound orbits are replaced by 
those that crash! The rapid erosion of stability is continued 
for grains ~0.5 mm in size for which bound orbits disap- 
pear entirely: comparing Figs. 9 and 12, we see that the 
disappearance of bound orbits in each case occurs for 
particles of the same size. As radiation pressure is in- 
creased, crash orbits continue to yield to escape orbits. 
Comparing with Fig. 9 again, we find a few extra crash 

-2 -1 0 1 
log,,(grain radius in mm) 

FIG. 12. The fate of about 300 particles of different radii started on 

retrogrudr circular orbits of various initial sizes. As in Fig. 9, orbits 

sharing a common fate cluster into three distinct regions; bound orbits 

rapidly disappear as particle sizes are decreased to I mm and then to 

~0.5 mm. For particles smaller than 0.1 mm. the differences between 

Fig. 9 and this plot are slight. 
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FIG. 13. A l-mm particle on an initially circular retrograde path 
starting at 180 R,; symbols are those defined in Fig. 10’s caption. Al- 
though the initial conditions for the particle in this figure and the one in 
Fig. 10 are quite similar, the orbital paths have a very different appear- 
ance. The zero-velocity curve for this initial condition is open even 
wider than the one in Fig. 10; the fact that the particle does not escape 
is an example of the poor constraint imposed by retrograde ZVCs. Only 
the first several loops of this orbit are shown, but subsequent motion 
repeats the pattern shown here. 

orbits in the retrograde case which rapidly disappear as 
the strength of radiation pressure increases; these extra 
impact orbits can also be attributed to Coriolis effects. 

Figure 13 shows the most distant bound orbit in the I- 
mm column of Fig. 12; its initial conditions are appropriate 
for a grain started at 180 R, from “Amphitrite.” Although 
we show only the first eccentricity cycle, which occurs 
over about an asteroid year, this orbit was in fact followed 
for five circuits of the asteroid around the Sun. The eccen- 
tricity behavior is similar to that of the prograde orbits; it 
increases to a value near one, remains flat as the “ellip- 
ses” in Fig. 13 move slowly clockwise, then decreases 
back to zero as the particle returns roughly to its initial 
position. Because the orbit is almost periodic, subsequent 
evolution repeats that described above although the “el- 
lipses” do not fall exactly atop those already present. 
In its 5-year tour, the particle survives multiple close 
approaches, the closest a mere 1.9 radii above the aster- 
oid’s surface! All impact orbits for l-mm particles in Fig. 
12 have the same sunwardly directed petals and general 
characteristics of the orbit in Fig. 13; in the former cases, 
however, the close approaches dip below 1 R, abruptly 
cutting short the orbital evolution! As with the prograde 
orbits discussed above, most of these retrograde orbits 
impact midway through their first eccentricity oscillation, 
although three of the five furthest survive at least one 
cycle for reasons similar to those discussed in Section 

3.3.1. Moving closer to the asteroid along the l-mm col- 
umn, we find that bound orbits have progressively more 
distant close approaches (corresponding to smaller eccen- 
tricities), although again the orbital shapes are reminiscent 
of Fig. 13. Finally, we note that all bound orbits, Fig. 13 
included, are purely retrograde; further from the asteroid, 
however, we do encounter orbits that switch between the 
prograde and retrograde states. Particles on these outer 
orbits have short lifetimes since they invariably crash 
while traversing the often fatal e = 1 regime. 

3.3.3. Znclined orbits. The situation for inclined orbits 
(here the term inclined will refer to orbits with i = 90”) is 
somewhat different than for planar ones. In the orbit- 
averaged equations of Burns et al. (1979) and Chamberlain 
(1979) there is a cos i term that is small for inclinations 
near 90” but equal to ? 1 for planar orbits. The change in 
this term reflects simple differences in the orbital geome- 
try which we illustrate with discussion of a hypothetical 
circular orbit around the asteroid. Imagine that a grain is 
started on a circular orbit fairly close to the asteroid such 
that its period is much less than that of the asteroid around 
the Sun. If the grain is placed on either a prograde or a 
retrograde orbit, the angle between the Sun and the parti- 
cle as measured from the asteroid will circulate between 
0” and 360” every synodic period; recall that the synodic 
period is the period of the particle with respect to the Sun. 
For a path inclined 90” to the asteroid’s orbital plane, 
however, the situation is quite different. If the particle is 
started on the positive x-axis, then after one-quarter of an 
asteroid orbit, the direction to the Sun is everywhere 
perpendicular to our hypothetical unperturbed circular 
orbit; at this point, the angle which circulates for the 
planar cases is constant! Clearly radiation pressure will 
act differently on inclined orbits than on planar ones. 
Considerations of the averaged equations of motion and 
the fact that a perpendicular perturbing force does not 
affect the orbital eccentricity (Danby 1988) lead us to 
the conclusion that driving orbital eccentricities to large 
values will be more difficult in the inclined case. 

Figure 14 verifies these ideas; bound orbits exist for 
particles approximately five times smaller than that where 
the last bound planar orbits are seen. These bound orbits 
in the transition region disappear even more abruptly than 
in the planar case; in the column for ==0.2-mm particles, 
stable orbits abound and there are no crash orbits while 
in the next column to the left there are no bound ones! 
Impact orbits sprinkled throughout the region of weak 
radiation pressure are probably not associated with that 
force at all; HBl noted a large number of such orbits for 
inclinations in the near 90” range in their integrations of 
the purely gravitational three-body problem. Discounting 
these exceptions, the bound, escape, and crash orbits 
separate nicely into three regions as before. In Fig. 14, as 
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FIG. 14. The fate of approximately 200 particles of different skes 

started on circular paths initially indinc~d rrt 90”. These orbits jealously 

guard their stability until particle sizes are reduced to 0. I mm; reasons 

for this are discussed in the text. Crash orbits in the upper left of the 

diagram are of the type seen in Fig. 5 and are caused by the tidal 

force; those to the lower right. however, are due to radiation pressure. 

Comparing this figure to Figs. 9 and I?. we see few differences for 

particles smaller than 0.1 mm. 

in the planar figures, the right side of the plot smoothly 
approaches results found by HB 1 in the absence of radia- 
tion pressure. For very small particles that are signifi- 
cantly influenced by radiation pressure, results are in ac- 
cordance with the planar cases; there are a few more 
impact orbits than in the analogous columns in Fig. 9 
and a few less than in Fig. 12 as could be predicted by 
considering the Coriolis acceleration. In this region of all 
three figures, orbits crash extremely rapidly; few survive 
more than the time necessary to increase the eccentricity 
to one. 

3.4. Anulytic Considerations 

3.4.1. Bound-escape division. For each of the orbital 
classes (prograde, retrograde, inclined) described above, 
we have found that-to a greater or lesser degree-parti- 
cles with similar characteristics (particle radius, initial 
orbit size) share similar fates, and that the boundaries 
between these fates are sharply defined. This suggests 
that the outcomes for such particles are being determined 
by simple processes; hence we now seek the mechanisms 
that segregate orbits into the three separate regions noted 
above. In this section and the ones to follow, we discuss 
the factors that cause a particle to escape and to crash, and 
we develop analytical expressions that define the divisions 
separating these areas from each other and from the region 
of bound orbits. 

We know, by analogy with the purely gravitational case, 
that if orbits lie within closed ZVCs they will remain 
bound. Hence, as a criterion for escape, the opening of 
the zero-velocity curves will prove to be useful, at least 
in the prograde case. To connect ZVCs to the orbits dis- 
cussed above, we substitute the initial conditions, y = 
i: = 0 and the initial circular velocity condition, 

113 
cos i - d,, sin’i, (18) 

into Eq. (14) to obtain 

CBE + -$ + 2(3d,,)“’ cos i + 2d& + 67 d,, , (19) 
BE 

where Car is the Jacobi constant for which the zero- 
VdOCity curves first open and dBE is the critical distance 
at which we expect the bound-escape division to occur. 
We solve this equation numerically in each of the three 
inclination cases and plot part of the solution curve in 
Figs. 15-17 (dashed line). If extended to smaller particle 
sizes, the curve would also separate those crash orbits 
that had the potential to escape from those that did not. 
Although the theoretical results in all three inclination 
cases correctly predict that orbital stability is lost as parti- 
cle sizes are decreased, the curves only succeed in fitting 
the numerical results for prograde orbits; the match stead- 
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FIG. 15. Pwgrcrde orbits. Same as Fig. 9 but now including theoreti- 

cal lines dividing bound. escape, and crash orbits. The dashed line. 

discussed in Section 3.4.1, presents a criterion that should separate 

particles that are bound from those that escape. Similarly. the heavy 
and lightweight solid curves are those that our theory predicts for the 

bound-crash (Section 3.4.2) and crash-escape (Section 3.4.3) divisions. 

respectively. 
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FIG. 16. Retrograde orbits. Same as Fig. 12 with theoretical lines 
dividing bound, escape, and crash orbits. See Fig. 15 and the text for an 
explanation of the three curves. 

ily worsens as the inclination is increased. The reason for 
this is, of course, that the derivation of Eq. (19) ignores 
the all-important Coriolis acceleration. Not surprisingly, 
the radial portions of the neglected Coriolis term, which 
has a cos i dependence, provides increasing stability as 
the inclination is raised from i = 0“ to i = 180”. The 
situation is complicated by nonradial parts of the Coriolis 
acceleration, with a sin i dependence, which tend to desta- 
bilize orbits. The two effects combine to explain why the 
division between bound and escape orbits, as numerically 
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FIG. 17. Inclined orbits. Same as Fig. 14 with theoretical lines divid- 
ing bound, escape, and crash orbits. See Fig. 15 and the text for an 
explanation of the three curves. 

obtained, occurs at a similar distance in the prograde and 
i = 90” cases but much further out for retrograde orbits 
(HBl). 

3.4.2. Bound-crash division. Particles risk collision 
with the asteroid once their orbital eccentricities become 
so large that at pericenter their orbits pierce the asteroid’s 
surface: rp = a(1 - e) < R,. If we neglect the tidal 
acceleration-an approximation that is certainly valid for 
strong radiation pressure-we can apply Mignard’s ex- 
pression for the eccentricity produced by radiation pres- 
sure (1982, his Eq. (28)) to determine when an impact 
can occur. More precisely, the tidal acceleration can be 
ignored in determining when escapes will occur for orbits 
with initial semimajor axes sr,/3 since tides cause only 
small eccentricity oscillations in this regime. Further- 
more, for orbits much larger than this, the orbit-averaging 
procedure employed by Mignard (1982) is no longer valid. 
For initially circular prograde orbits, Mignard’s result for 
the variation of eccentricity can be rewritten in the useful 
form 

(1 - e2)112 = ~ n2 + 
a2 + n2 

$$-+ cos [(a2 + .yt1, (20) 

where (Y is given by the equation: a! = 3/(2r0), and TV 
is Chamberlain’s (1979) expression for the time it takes 
radiation pressure to produce the circular velocity, i.e., 
r0 = (GMAIr)“2/(pGMo/R2). Loosely, cx is the strength of 
the solar radiation pressure relative to the asteroid’s local 
gravity. For weak radiation pressure (a < l), the eccen- 
tricity simply varies with the solar period, while for strong 
radiation pressure e varies more rapidly. Although mathe- 
matically Eq. (20) predicts a complex eccentricity when 
the right-hand side of the equation is less than zero (i.e., 
when CY > n and cos < O), this does not actually occur in 
the orbit-averaged perturbation equations from which Eq. 
(20) is derived because e is prevented from exceeding 
unity by 1 - e2 terms in these equations. What, then, 
really happens as e approaches one? There are two possi- 
bilities: the particle either can collide with the asteroid, 
preventing further evolution of the orbital elements, or, 
for longer-lived orbits, a prograde-to-retrograde transition 
can take place. Because Mignard’s solution is restricted 
to prograde orbits, it is unable to predict the prograde- 
to-retrograde transition and instead suggests a complex 
eccentricity. 

It is not difficult to repeat Mignard’s derivation for 
retrograde orbits. We begin with the orbit-averaged equa- 
tions of motion and consider the planar limit i = 180 
(instead of the i = 0” taken by Mignard). With an appro- 
priate choice of variables, the form of the resulting pair of 
equations can be made identical to those for the prograde 
case; specifically, we find that Eq. (20) applies equally 
well to retrograde orbits. This is a single example of a 
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more general result: if the orbital elements, evolving under 
some perturbation force, are taken to remain constant 
over a single sidereal period, then the resulting orbit- 
averaged equations will yield similar histories for pro- 
grade and retrograde orbits. According to this model of 
the effects of radiation pressure, therefore, there should 
be no difference in the fate of initially circular prograde 
and retrograde orbits since Eq. (20) governs the evolution 
of both. This is true, of course, only as long as the particle 
remains close to the asteroid where the Coriolis accelera- 
tion, which encapsulates the differences between pro- 
grade and retrograde orbits, can be ignored. Further from 
the asteroid, differences in the Coriolis acceleration mani- 
fest themselves in the increased stability of the retrograde 
particles noted in the discussion of Figs. 9 and 12. In these 
regions (e.g., l-mm crash orbits), Eq. (20) does not strictly 

apply. 
A collision with the asteroid can occur when the peri- 

center of the osculating orbit dips below the asteroid’s 
surface. For the large orbits under discussion, this re- 
quires an eccentricity that is nearly unity. Accordingly, 
we solve for the minimum (Y that allows e = 1 in Eq. (20); 
although e cannot exceed one, it must necessarily attain 
this value during a prograde-to-retrograde transition. The 
collision criterion is (Y = n, which can be recast as 

d,, = -5 
27~” (21) 

where dac is the dimensionless critical distance at which 
the division between bound and crash orbits is located. 
Furthermore, near this division where, by definition, (Y = 
n, we expect that collisions will occur in half the period 
given by Eq. (20), i.e., 2-3” = 0.35 asteroid years. This 
simple estimate is in very good agreement with the B of a 
year observed for the prograde orbits discussed in Section 
3.3.1. Equation (21) is also plotted on each of Figs. 15-17 
as a solid, heavyweight curve. We find reasonable 
agreement in the prograde and retrograde figures, but a 
rather poor match for the inclined orbits. The fact that 
inclined orbits are more resistant to radiation pressure- 
induced impacts should not be surprising in light of the 
discussion in Section 3.3.3. For l-mm particles around 
“Amphitrite” where the limits of the theory are stretched 
the most, we see that bound retrograde orbits extend 
further from the asteroid than expected (Fig. 16), while 
bound prograde orbits extend to distances less than pre- 
dicted (Fig. 15). These differences, which are due to the 
neglected Coriolis acceleration, only appear for large 
orbits. 

For =0.5-mm particles, bound orbits do not extend as 
far as predicted in both the prograde and retrograde cases. 
This is due to the finite size of the asteroid which allows 
impacts to occur for eccentricities less than one. This 
effect can be derived from Eq. (20) by putting e = e,,,,,, . 

where ecrash = 1 - R,ldsc. Setting the cosine to - 1, and 
solving for a/n as before, we find 

wheref(e,,,,,) is given by 

f (ecraah) 
1 - (1 - efrash)“’ 

= 
‘cra\h 

(22) 

(23) 

andf2(l) = 1 so that Eq. (21) is recovered. The solution 
of Eqs. (22) and (23) is complicated since ecrash is a function 
of dBc; in general, the equation must be numerically 
solved. In practice, however, an iterative procedure in 
which an initial value of d,, is substituted into the right- 
hand side of Eq. (22) to compute an updated value con- 
verges to a reasonable estimate relatively rapidly. As an 
example, consider the bound-crash division for =0.5-mm 
particles which Eq. (21) predicts will occur at about 30 
asteriod radii. For this distance, a collision takes place 
when e = ecrash = 29130 -‘I 0.97 for whichf2(0.97) = 0.59! 
Thus instead of occurring at 30 asteroid radii, a single 
iteration of Eq. (22) predicts that the division should hap- 
pen at about 18 asteroid radii; a few more iterations show 
that the division is actually nearer to 14 R, which is in 
good agreement with the data in Figs. 15 and 16. The 
surprisingly large change inf’(e,,,,,) for ecr.&h 5 1 has its 
origins in the fact that radiation pressure takes a long time 
to further increase the eccentricity of an already highly 
eccentric oribit 

To make our results more useful, we instead solve for 
the minimum-sized particle found in an asteroid’s neigh- 
borhood by applying Eq. (22), and employing Eqs. (12) 
and (15) to return to more familiar dimensional units. We 
find that particles satisfying the following inequality 

x (2.5,1A,i”2 (g) (2.38 fcm’) (24) 

are removed from circumasteroidal orbit. This formula is 
applicable only for strong radiation pressure where the 
bound-crash division exists (see Figs. 15 through 17), 
roughly where y 2 1. We find for “Gaspra” that, outside 
of 10 R,, no particles with s 5 0.45 cm should be found 
and at Galileo’s flyby distance of -200 R,, all particles 
with s d 1.4 cm should be absent. [Note added in revision: 
Griin et al. (1991) report that Galileo’s dust instrument, 
sensitive to particles larger than 0.1 pm, detected no hits 
during its encounter with Gaspra.] 
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3.4.3. Crash-escape division. Although the criteria 
described in the two preceding sections define the most 
interesting boundaries, namely those that separate regions 
where particles can freely orbit from regions where they 
cannot, we now derive, for completeness, an approximate 
argument to describe the curve separating orbits that 
crash from those that escape. Unlike the boundaries dis- 
cussed in the previous sections, here there is no nice 
theory to appeal to so we make the following somewhat 
arbitrary choice. We say that if a highly perturbed particle 
can complete a single orbit around the asteroid, its even- 
tual fate will be to crash into the asteroid. While this is 
not always true (some orbits near the actual boundary 
complete a few loops before escaping), it does apply to 
most of our numerical results, especially those for strong 
radiation pressure. We approximate further by saying that 
if our particle has enough “energy” to complete a quarter 
of a hypothetical circular orbit, it will complete a full loop 
around the asteroid and hence will eventually crash. This 
statement is certainly approximate since the path actually 
followed by the particle is certainly not circular; a look at 
the shape of the orbits in Figs. 10 and 13, however, shows 
that the approximation is fairly reasonable. In any case, 
particles with significantly less energy have no hope of 
swinging around the asteroid, while those with more “en- 
ergy” should be able to. Mathematically, we set the right- 
hand side of Eq. (14), evaluated at (x, y, z) = (dcE, 0, 0) 
with v,,~ as given by Eq. (IQ, equal to the same expression 
evaluated at (0, d,--, 0) with v,.,~ = 0. The result is 

3 
- = 2(3d&“l cos i + 2d& + 6y d,-E, 
d 

(25) 
CE 

where dCE is the distance to the division between crash 
and escape orbits. We numerically solve Eq. (25) to obtain 
the last defining curve which is plotted in Figs. 15-17 
as a solid, lightweight curve. This approximate division 
agrees remarkably well with the actual boundary for 
strong radiation pressure, deviating significantly only for 
large orbits along which the neglected tidal and Coriolis 
accelerations are important. 

4. DISCUSSION 

The above calculations and those of other groups have 
been carried out not so much to solve new celestial me- 
chanics problems but rather to address a practical ques- 
tion: will the circumasteroidal environment be hazardous 
to a flyby spacecraft? Accordingly, a reader might antici- 
pate that we would conclude this paper with a probability 
calculation determining the odds of finding debris of vari- 
ous types in the asteroid’s neighborhood. Unfortunately 
such calculations are fraught with uncertainty since they 
involve complicated supply and loss mechanisms, many 

of which are poorly constrained. We therefore content 
ourselves with a qualitative description of this problem, 
summarizing possible supply and loss processes. 

As pointed out by Chauvineau and Mignard (1990a), 
HBl, and many others, the distance within which copla- 
nar prograde material can remain trapped for short periods 
about an asteroid circling the Sun is roughly half the Hill 
radius; for coplanar retrograde particles the size increases 
to about a full Hill radius. In extending these ideas to 
three dimensions, HBl showed that bound out-of-plane 
material can only rise to about two-thirds of a Hill radius; 
they used their results to define a stability surface within 
which bound orbiting material might be found. This sur- 
face overestimates the zone of stability, however, because 
nearly all unmodeled processes, some of which operate 
on short time scales and others that take ages, are destabi- 
lizing. The former dominate, since they will overwhelm 
continuous supply mechanisms, which act on longer time 
scales. Accordingly, the focus of this paper has been to 
discuss the effects that cause changes to the stability of 
orbits in time intervals comparable to the asteroid’s orbital 
period (cf. Burns and Hamilton 1992). 

In assessing the importance of an asteroid’s elliptical 
orbit on the size of the stability zone, we discovered that 
the dimensions of the zone are roughly proportional to the 
minimum asteroid-Sun distance. Since the effects of an 
elliptic orbit can be quantified, the safety of a passing 
spacecraft can be assured simply by avoiding an asteroid’s 
calculated stability zone. We also found that radiation 
pressure is remarkably effective in sweeping small parti- 
cles rapidly out of the circumasteroidal environment. 
These grains would normally be expected to be the most 
numerous and, since the largest of them can severely 
damage a spacecraft, they pose the greatest threat to a 
flyby mission. Since small grains are removed much more 
rapidly than they are resupplied, however, our results 
define a region of space in which small orbiting debris will 
not be found. 

Many loss mechanisms operate over much longer time 
scales. In this category we include the long-term effect 
of the gravitational tugs of Jupiter and the other planets 
(Chauvineau and Mignard 1990b) as well as close ap- 
proaches of other asteroids which can disrupt a binary 
pair (Chauvineau et al. 1991). These effects cause parti- 
cles within the stability zone defined above to escape, 
but their efficiency is critically dependent on the un- 
known rate at which supply mechanisms populate the 
stability zone. Other long-term loss processes-notably 
Poynting-Robertson drag, catastrophic fragmentation, 
and sputtering-act most effectively on small grains. 
These grains are more efficiently removed by radiation 
pressure; collisions, for example, set lifetimes at 
-104-10’ years for particles between tenths of millime- 
ters and centimeters in radius while radiation pressure 
typically removes such grains in only a few years. The 
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important point to make is that 011 of these loss processes 
cause the actual region of space filled by stable orbits 
to be smaller than a simple circular three-body model 
would suggest. 

Several mechanisms (Weidenschilling et 01. 1989, Burns 
and Hamilton 1992) might supply circumasteroidal satel- 
lites or debris: (i) primordial coaccretion processes like 
those that are believed to have produced most planetary 
satellites; (ii) formation in a nearly catastrophic collision 
like the event thought to have generated Earth’s Moon; 
(iii) capture of interplanetary debris within the asteroid’s 
stability zone: (iv) a continuous flux of impact ejecta leak- 
ing off the asteroid itself as the latter is bombarded by 
micrometeoroids; and (v) similar ejecta leaving an asteroi- 
dal “feeder” satellite. The last of these is thought to 
be the most feasible supplier of circumasteroidal debris, 
since a significant fraction of the ejecta can remain trapped 
in this case in contrast to mechanism (iv). Unfortunately 
it is also the least calculable! 

Since none of these processes can be quantified well 
and since definitive observations of life-threatening debris 
cannot be made from the ground, mission planners have 
been quite anxious about where in the vicinity of an aster- 
oid a spacecraft could safely fly. Clearly this is a very 
difficult engineering question. Nonetheless, within the as- 
sumptions of the models, the recent research summarized 
above shows that regions beyond a few hundred asteroid 
radii will not contain stably trapped particles and that 
small particles will be entirely absent from asteroid’s vi- 
cinity. In addition, it is encouraging that no schemes seem 
capable of populating the most distant stable orbits. Nev- 
ertheless, when entering unknown territory, one always 
has a nagging worry that something was ignored, perhaps 
a new mechanism to stabilize orbits or one to efficiently 
generate distant material. For that reason these authors. 
at least, have greeted the unscathed flight of the Galileo 
spacecraft past 951 Gaspra at a distance of -200 R,, with 
a sigh of immense relief. 
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